JPS62244153A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62244153A
JPS62244153A JP61086185A JP8618586A JPS62244153A JP S62244153 A JPS62244153 A JP S62244153A JP 61086185 A JP61086185 A JP 61086185A JP 8618586 A JP8618586 A JP 8618586A JP S62244153 A JPS62244153 A JP S62244153A
Authority
JP
Japan
Prior art keywords
channel
resin
light emitting
photocoupler
semiconductor elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61086185A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tanaka
明善 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61086185A priority Critical patent/JPS62244153A/en
Publication of JPS62244153A publication Critical patent/JPS62244153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To raise the heat sink efficiency of heat generated from one semiconductor element during operation and to reduce heat transfer to other semiconductor element by forming a defect on a molding resin between the semiconductor elements disposed separately from each other. CONSTITUTION:A defect is formed on a molding resin between a plurality of semiconductor elements disposed separately from each other and having different signal transmission routes. For example, a light emitting diode 11 of a light emitting unit and a phototransistor 12 of a photodetector are supported to leads 14 to be placed in an opposed manner in an elevational direction, the diode 11 is coupled by a transparent resin 17 with a phototransistor 12 to transmit an optical signal through the resin 17, they are molded with epoxy resin 15 to form a 4-pin 2-channel photocoupler. Recesses are formed on molding resins 15 between channel photocouplers, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止される半導体装置にかかり。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device sealed with resin.

特に複数チャンネルを備えるフォトカプラのごとく異な
る信号伝播経路を有する複数の半導体素子が配置された
半導体装置に関する。
In particular, the present invention relates to a semiconductor device in which a plurality of semiconductor elements having different signal propagation paths are arranged, such as a photocoupler with a plurality of channels.

〔従来技術、〕[Prior art]

従来の異なる信号伝播経路を有する複数の半導体素子が
配置された半導体装置には一組の発光部と受光部とから
なる1チヤンネルフtトカプラを複数組備える多チヤン
ネルマルチタイプのフォトカプラがあり、第6図から第
8図に示すように各チャンネルを同一モールド内に設け
ている。4ビン2チャンネル塁を第6図に6ビン2チヤ
ンネル型を第7図に、8ビン2チヤンネル型を第8図に
示す。
Conventional semiconductor devices in which a plurality of semiconductor elements having different signal propagation paths are arranged include multi-channel multi-type photocouplers that include a plurality of sets of one-channel vertical couplers each consisting of a set of light-emitting parts and a light-receiving part. As shown in FIGS. 6 to 8, each channel is provided in the same mold. The 4-bin 2-channel type is shown in Figure 6, the 6-bin 2-channel type is shown in Figure 7, and the 8-bin 2-channel type is shown in Figure 8.

第6図において1発光ダイオード/とフr))ランジス
タ2とはそれぞれ発光部と受光部として1チヤンネルの
7オトカグラを構成し、それぞれ外部引出しリード4に
接続されて−る。これら発光ダイオード/フォトトラン
ジスタ2はエポキシ系樹脂5でモールドされている。第
7図は受光部にフすトサイリスタ3を用φた例が示され
ている。
In FIG. 6, one light emitting diode/transistor 2 constitutes one channel of seven devices as a light emitting part and a light receiving part, and each is connected to an external lead 4. These light emitting diodes/phototransistors 2 are molded with epoxy resin 5. FIG. 7 shows an example in which a closed thyristor 3 is used in the light receiving section.

第8図は発光ダイオード1を2個、7tトサイリスト3
a、3bを2個備えた1チヤンネルフオトカプラが2個
配置された2チヤンネルフオトカプラを示して−る。7
オトサイリスタ2a、2bはそれぞれのカソードと7ノ
ードが共通に接続されている。
Figure 8 shows two light emitting diodes 1 and a 7t cyrist 3.
This figure shows a 2-channel photo coupler in which two 1-channel photo couplers each having two elements a and 3b are arranged. 7
The cathodes of the otothyristors 2a and 2b are commonly connected to seven nodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のマルチタイプの7オトカプラでり、 −方チャン
ネルの7オトカプラが動作した場合、このフォトカブラ
からの発熱がモールド樹脂を介し、他方フォトカプラに
も伝達される。一般に、半導体素子はその温度変化によ
り特性が変動される。
In the conventional multi-type 7-channel optical coupler, when the 7-channel optical coupler operates, the heat generated from the photocoupler is transmitted to the other photocoupler via the mold resin. In general, the characteristics of a semiconductor device change due to changes in its temperature.

この特性の変動は、温度変化が激しい場合には。This characteristic fluctuates when the temperature changes drastically.

誤動作の原因ともなる。従って、従来の装置においては
、動作中の素子の発熱自体を抑えるため使用電流を減少
させる等の考慮が必要であった。
It may also cause malfunction. Therefore, in conventional devices, it is necessary to take measures such as reducing the current used in order to suppress the heat generated by the elements during operation.

使用電流の減少は、発光ダイオード10発光量゛を抑え
ることとなり、十分な信号伝達には好ましくない。又、
相対的に種々のノイズに対する影響も受けやすくなる。
A reduction in the current used will reduce the amount of light emitted by the light emitting diode 10, which is not preferable for sufficient signal transmission. or,
It also becomes relatively susceptible to the effects of various noises.

本発明は、動作中の一方の半導体素子から発生する熱の
放熱、効率を上げると共に、他方半導体素子への熱伝達
を減少させることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the efficiency of dissipating heat generated from one semiconductor element during operation, and to reduce heat transfer to the other semiconductor element.

〔問題点を解決するための手段〕 一本発明におい−ては、動作中の半導体素子から発生す
る熱を効率良く放熱し、且つ熱伝達を抑えるために、離
隔して配置された他生導体素子との間のモールド、ボ指
部に欠損部を設けることにより熱伝達を迎え、放熱面積
を増加することを特徴とする。
[Means for Solving the Problems] In the present invention, in order to efficiently dissipate heat generated from semiconductor elements during operation and to suppress heat transfer, alien conductors are arranged at a distance. A feature is that heat transfer is achieved by providing a cutout in the mold and the finger portion between the device and the heat dissipation area.

〔作 用〕[For production]

本発明は、各半導体素子間のモールド樹脂部に欠陥部を
設けることにより、モールド樹脂部の表面積も増えるの
で放熱が効率より行える。また、半導体素子間のモール
ド樹脂部に欠陥部を設けたので一半導体素子から他生導
体素子への熱の伝達路が従来より減少することになり、
誤動作を招く熱の伝達を抑えている。
In the present invention, by providing a defective portion in the molded resin portion between each semiconductor element, the surface area of the molded resin portion is increased, so that heat dissipation can be performed more efficiently. In addition, since a defective portion is provided in the molded resin portion between the semiconductor elements, the number of heat transfer paths from one semiconductor element to another conductive element is reduced compared to the conventional method.
This suppresses the transfer of heat that can lead to malfunctions.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。第1図aは4ビン2
f−′ヤンネル7t)カプラの平面図で第1図すは゛第
1図aの素子が配置された部分の縦方向断面図である。
An embodiment of the present invention is shown in FIG. Figure 1 a shows 4 bottles 2
FIG. 1 is a longitudinal sectional view of a portion where the elements of FIG. 1a are arranged.

フォトカプラの内部は第1図すに示すように発光部の発
光ダイオード11と受光部のフォトトランジスタ12と
がそれぞれリード14に支えられ、上下方向で向い合っ
て載置されて−る。発光ダイオード11とフォトトラン
ジスタには透明樹脂17で連結されてφる。この透明−
脂17を介して光信号が伝播される。これらはエポキシ
樹脂15でモールドされている0本発明では、第1図a
に示すように各チャンネルフォトカプラ間のモールド−
指部に凹部を設けて−る。
Inside the photocoupler, as shown in FIG. 1, a light emitting diode 11 as a light emitting part and a phototransistor 12 as a light receiving part are supported by leads 14 and placed facing each other in the vertical direction. The light emitting diode 11 and the phototransistor are connected to each other by a transparent resin 17. This transparency
An optical signal is propagated through the oil 17. These are molded with epoxy resin 15. In the present invention, FIG.
The mold between each channel photocoupler as shown in
A recess is provided in the finger.

このような形状にするにはモールド−脂を流込むモール
ド型に従来に加えて凸部を設け、従来通り、エポキシ樹
脂を流込み、加熱してモールドを行えばよい。このよう
に型を変えるだけで、放熱する表面積が増え、且つ、−
万チャンネルフtトカプラの動作時に発生する熱が他方
チャンネル7オトカプラに伝達されることを防ぐことが
できる。
In order to obtain such a shape, a convex portion may be provided in addition to the conventional mold in the mold into which the fat is poured, and the epoxy resin may be poured and molded by heating as in the conventional manner. By simply changing the mold in this way, the surface area for heat dissipation increases, and -
It is possible to prevent heat generated during operation of the 7-channel foot coupler from being transferred to the other channel 7 foot coupler.

また、外部衝撃を受けて一方チヤンネルフォトカプラ側
からモールド割れが起った場合、凹部によりモールド割
れが他方チャンネルフォトカプラ側へ伝わりに〈<、他
方チャンネルの7オトカグラには割れは生じない。従っ
て、他方チャンネルフォトカプラは正常に動作する。更
にこの一方チヤンネル7オトカプラ側のモールド割れに
゛より、光の漏れが起った場合にも他方チャンネルフォ
トカプラへの影響は少なく、正常に動作する。
Furthermore, if a mold crack occurs from one channel photocoupler side due to an external impact, the mold crack will be transmitted to the other channel photocoupler side due to the recess, and no crack will occur in the other channel 7 Otokagura. Therefore, the other channel photocoupler operates normally. Furthermore, even if light leaks due to mold cracking on the photocoupler side of one channel 7, the influence on the other channel photocoupler is small and it operates normally.

次に他の実施例を第2図からvXs図に示す。Next, other embodiments are shown in FIGS. 2 to vXs diagrams.

第2図は6ピン2ケー浄ンネルのフォトカプラである。Figure 2 shows a 6-pin, 2-channel photocoupler.

発光ダイオード11と7中トテイリスト13とで1チヤ
ンネルフオトカプラを構成し、第1図と同様な製造方法
により各チャンネルフォトカプラ間に凹部を設けて−る
。また第3図は8(ン2チャンネルの7オトカグラの実
施例で、第1図及び第2図と同様にして凹部を設けてい
る。この例にお鱒では、各チャネルのダイオード端子間
にも凹部18を設けることにより熱放散を更に向上させ
た構成となっている。即ち、一方ダイオードの動作によ
る発熱が他方ダイオードへ伝達されにくくすると共に、
熱放散の効率化をはかつている。との凹部を各端子間に
設けたならば、更に効率良く熱放散される。
The light emitting diode 11 and the toy list 13 constitute one channel photocoupler, and a recess is provided between each channel photocoupler by the same manufacturing method as shown in FIG. Also, Fig. 3 shows an example of an 8 (2-channel) 7 Otokagura, in which recesses are provided in the same manner as in Figs. 1 and 2. The configuration further improves heat dissipation by providing the recess 18. That is, it makes it difficult for heat generated by the operation of one diode to be transmitted to the other diode, and
Efficient heat dissipation is being achieved. If a recess is provided between each terminal, heat will be dissipated more efficiently.

第4図、第5図は第1図の変形例である。第4図は凹部
を2方向から設けたものであり、第5図は各チャンネル
間のモールド樹脂部に孔を設けたものである。これ、ら
の実施例は幅を狭く、奥行きを浅く設け、且つ放熱効率
及び熱伝達し中断効率を考慮し、最適値にすれば、第1
図の実施例と同機の効果が得られ、東に強度に優れた構
成となる。
4 and 5 are modifications of FIG. 1. Fig. 4 shows a case in which recesses are provided from two directions, and Fig. 5 shows a case in which holes are provided in a molded resin part between each channel. In these embodiments, if the width is narrow and the depth is made shallow, and the heat radiation efficiency and heat transfer and interruption efficiency are set to the optimum values, the first
The effect of the example shown in the figure and the same aircraft can be obtained, and the structure has excellent strength in the east direction.

なお1本発明は上述した実施例に限定されることはなく
、チャンネル間モートド4A脂の欠損部の形状は様々で
ある。また、半導体素子としては、発光ダイオード、受
光素子等フォトカプラに限定されることなく、他の半導
体素子、集積回路とすることもできる。
Note that the present invention is not limited to the above-mentioned embodiments, and the shape of the defective portion of the mortared 4A fat between the channels may vary. Further, the semiconductor element is not limited to a photocoupler such as a light emitting diode or a light receiving element, but may also be another semiconductor element or an integrated circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、モールドmqh
部に欠損部を設は九ことで表面積を増やし、各半導体素
子間のそ一ルド樹指部における熱の伝達を抑えることが
できるので使用電流を低下することなく正常に動作する
半導体装置が提供できる。
As explained above, according to the present invention, mold mqh
By creating a defective part in the part, the surface area can be increased and heat transfer between the semiconductor elements can be suppressed, thereby providing a semiconductor device that operates normally without reducing the operating current. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図から第5図は他の実
施例、第6図から第8図は従来例である。 11・・・発光ダイオード% 12・・・フォトサイリ
スタ、13・・・フォトサイリスタ、15・・・モール
ド6吋月旨。 代理人4「で士 則1で“:ゴ、′i 同  大胡火夫
FIG. 1 shows one embodiment of the present invention, FIGS. 2 to 5 show other embodiments, and FIGS. 6 to 8 show a conventional example. 11... Light emitting diode % 12... Photothyristor, 13... Photothyristor, 15... Mold 6 months. Agent 4: ``Deshi Rule 1'': Go, 'i Same Ogo Kao

Claims (1)

【特許請求の範囲】[Claims] (1)互いに離隔して配置され、且つ異なる信号伝播経
路を有する複数の半導体素子と、これら半導体素子をモ
ールドした樹脂とを有する半導体装置において、前記複
数の半導体素子間の樹脂に欠損部を設けたことを特徴と
する半導体装置。
(1) In a semiconductor device having a plurality of semiconductor elements arranged apart from each other and having different signal propagation paths, and a resin in which these semiconductor elements are molded, a defective part is provided in the resin between the plurality of semiconductor elements. A semiconductor device characterized by:
JP61086185A 1986-04-16 1986-04-16 Semiconductor device Pending JPS62244153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086185A JPS62244153A (en) 1986-04-16 1986-04-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086185A JPS62244153A (en) 1986-04-16 1986-04-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62244153A true JPS62244153A (en) 1987-10-24

Family

ID=13879707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086185A Pending JPS62244153A (en) 1986-04-16 1986-04-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62244153A (en)

Similar Documents

Publication Publication Date Title
JP5865859B2 (en) Optical coupling device
JPH1093131A (en) Multi-directional photocoupler
JP2006351859A (en) Manufacturing method of optical coupling
JPH071792B2 (en) Optical communication system
KR20120099963A (en) Light emitting diode package
JPS62244153A (en) Semiconductor device
JP2016171235A (en) Semiconductor module
TWI223458B (en) Light coupled device
CN116472480A (en) Multilayer planar waveguide interconnect
JP2013065717A (en) Semiconductor device and manufacturing method of the same
JP2008028033A (en) Optical coupling apparatus and electronic apparatus
JPH0677520A (en) Optical semiconductor device
JPS6199362A (en) Semiconductor device
JPS6312181A (en) Resin-sealed type photo-coupler
US20240113093A1 (en) Insulation module
JP4739989B2 (en) Lead frame and resin-encapsulated semiconductor device
JP2851985B2 (en) Power semiconductor device
JPS6254974A (en) Optical coupling semiconductor device
JP2851984B2 (en) Power semiconductor device
TWI302428B (en) Method for fabricating circuit board with optical component embedded therein
JPS59132176A (en) Photocoupler
JPH0648883Y2 (en) Optical coupling element
JPS5998565A (en) Optical coupling element
JPS6068678A (en) Photocoupling semiconductor device
JPS6081877A (en) Photocoupling semiconductor device