JPS62243630A - Inorganic filler - Google Patents

Inorganic filler

Info

Publication number
JPS62243630A
JPS62243630A JP8711286A JP8711286A JPS62243630A JP S62243630 A JPS62243630 A JP S62243630A JP 8711286 A JP8711286 A JP 8711286A JP 8711286 A JP8711286 A JP 8711286A JP S62243630 A JPS62243630 A JP S62243630A
Authority
JP
Japan
Prior art keywords
resin
inorganic filler
size
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8711286A
Other languages
Japanese (ja)
Inventor
Tatsuro Iida
達郎 飯田
Takashi Chiba
尚 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8711286A priority Critical patent/JPS62243630A/en
Publication of JPS62243630A publication Critical patent/JPS62243630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide such inorganic filler having particular specific surface area as to enable, when incorporated in a resin, the internal stress in said resin to be significantly reduced and also enable a resin composition outstanding in thermal shock resistance, moisture resistance and moldability to be obtained. CONSTITUTION:Inorganic powder with a maximum particle size pref. <=140mum and average particle size pref. 5-35mum, prepared by e.g. size regulation, through e.g. classification or mixing, of crystalline silica or fused silica is treated with e.g. dilute hydrofluoric acid. aqua regia, to effect regulation of the surface unevenness, thus obtaining the objective inorganic filler with a specific surface area S <=5m<2>/g, satisfying the relationship: 3<S<So [So is the theoretical specific surface area calculated with the equation (p is true specific gravity of the inorganic filler g/cm<3>; ai is content % of particles with a size imum; i=min and i=max are minimum size and maximum size, respectively, determined by size distribution measuring equipment)]. This inorganic filler is normally incorporated in a resin (pref. an epoxy resin in case of semiconductor sealing use) in an amount of 150-450pts.wt. per 100pts.wt. of the resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無機質充填剤、詳しくは、半導体等の電子部品
の封止材、絶縁基板、放熱シートなどr製造する際に使
用さnる樹脂組成物に通した無機質充填剤に関するもの
である。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to inorganic fillers, specifically resins used in the production of encapsulating materials for electronic components such as semiconductors, insulating substrates, heat dissipation sheets, etc. It relates to an inorganic filler passed through the composition.

(従来の技術) 近年、半導体等電子部品の封止はW脂射止が主流となり
、その樹脂の種類も素子との密着性−?価格の点からエ
ポキシ樹脂組成物が広く採用されている。しかしながら
樹脂封止方式は耐湿信頼性が劣ること及び樹脂の硬化収
縮時に樹脂と素子の熱膨張率の差が原因となって生ずる
内部応力が問題となっている。特に最近の半導体の高集
積度化から、素子が大型化したため、内部応力や、熱衝
撃時の内部応力に起因する樹脂のクラック発生は大きな
問題となっている。
(Prior Art) In recent years, W resin injection has become the mainstream for sealing electronic components such as semiconductors, and the type of resin also depends on its adhesion to the element. Epoxy resin compositions are widely used because of their cost. However, the resin sealing method has problems with poor moisture resistance reliability and internal stress caused by the difference in coefficient of thermal expansion between the resin and the element when the resin cures and shrinks. In particular, due to the recent increase in the degree of integration of semiconductors, devices have become larger, and cracks in resin due to internal stress and internal stress during thermal shock have become a major problem.

この為、最近この内部応力の低減を目的とした様々な検
討がなされ、例えは熱膨張率の小さい無機質充填剤を樹
脂に添加したり、あるいは可とう性付与剤を添加するこ
となどが行なわれている。
For this reason, various studies have recently been conducted with the aim of reducing this internal stress, such as adding inorganic fillers with a small coefficient of thermal expansion to the resin, or adding flexibility-imparting agents. ing.

前者は通常シリカ粉末を用いることが知られているが、
シリカ粉末が破砕タイプの場合、内部応力を低下させる
に充分な量を充填せしめることができず、又、素子表面
やワイヤー等への損傷の恐れがある。この欠点をカバー
するものとして球状タイプのシリカ粉末も検討されてい
るが、表面が平問題がある。後者は町とう性付与剤とし
てゴム成分あるいはシリコーン樹脂等を用いることが知
られているが、耐熱性、耐温性が低下する問題があつた
The former is known to usually use silica powder,
If the silica powder is of the crushed type, it cannot be filled in a sufficient amount to reduce internal stress, and there is a risk of damage to the element surface, wires, etc. Spherical type silica powder is also being considered as a solution to this drawback, but it has the problem of a flat surface. The latter is known to use a rubber component, silicone resin, etc. as a toughness imparting agent, but this has had the problem of lowering heat resistance and temperature resistance.

(発明が解決しようとする問題点) 不発明者は、上記の欠点を解決することを目的として種
々検討した結果、特定の比表面積を有する無機質充填剤
全含有させてなる樹脂組成物、例えばエポキシ樹脂組成
物上封止材料として用いれは、内部応力が大幅に低下し
、しかも、耐熱衝撃性と耐湿性と成形性に潰れたm脂組
酸物を得ることができることを児出し、本発明を完成し
たものである。
(Problems to be Solved by the Invention) As a result of various studies aimed at solving the above-mentioned drawbacks, the inventors have developed a resin composition completely containing an inorganic filler having a specific specific surface area, such as an epoxy resin composition. The inventors have discovered that when used as a sealing material on a resin composition, it is possible to obtain a m-lipid group acid having significantly reduced internal stress and excellent thermal shock resistance, moisture resistance, and moldability, and has developed the present invention. It is completed.

(問題点を解決するだめの手段) すなわち本発明は、比表面積Sが51112/i以下で
、かつ、粒度分布から算出される理論比表面積SOとの
関係が3<s/soを有してなることを特徴とする無機
質充填剤である。
(Means for Solving the Problems) That is, the present invention provides a method that has a specific surface area S of 51112/i or less and a relationship with the theoretical specific surface area SO calculated from the particle size distribution of 3<s/so. It is an inorganic filler characterized by:

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明の無機質充填剤の材質としては、例えは結晶質シ
リカ、浴融シリカ、ケイ酸カルシウム、アルミナ、炭酸
カルシウム、メルク、硫酸バリウム等が挙げられるが通
常は結晶性シリカi融シリカが用いられる。その粒度分
布については特に規定するものではないが、最大粒径が
140μm以下で平均粒住が5〜65μmのものが好ま
しい。
Examples of the material for the inorganic filler of the present invention include crystalline silica, bath-fused silica, calcium silicate, alumina, calcium carbonate, Merck, barium sulfate, etc., but crystalline silica-fused silica is usually used. . Although the particle size distribution is not particularly limited, it is preferable that the maximum particle size is 140 μm or less and the average particle size is 5 to 65 μm.

しかし、本発明では、比表面積S(”2/lと粒度分布
から算出される理論比表面積So (m2/M )の関
係u 3<s/so テ、しかもS≦5m”/11であ
ることが必要である。S/So≦6である場合、充填剤
と樹脂の接層面積が少なくなり密着性が劣ることにより
耐湿性が低下するので好ましくない。−万、5m2/J
i?<8の場合、封止材料の内部応力を大幅に低下させ
る為に必要な光填fを充填すると組成物の流動性・成形
性が著しく低下するので好1しくない。
However, in the present invention, the relationship between the specific surface area S ("2/l and the theoretical specific surface area So (m2/M) calculated from the particle size distribution u 3 < s/so te, and S ≤ 5 m"/11. If S/So≦6, it is not preferable because the contact area between the filler and the resin decreases, resulting in poor adhesion and a decrease in moisture resistance.-10,000,5m2/J
i? In the case of <8, it is not preferable because the fluidity and moldability of the composition will be significantly reduced if the optical filler f required to significantly reduce the internal stress of the sealing material is filled.

本発明における理論比表面積sOの算出#:は次の様に
定義される。無機質充填剤の形状を球と仮定すると粒径
1(μm)の粒子の比表面積5i(−2/&)は5t−
6/ρ・1(ρは無機質充填剤の真比重(9/cm”)
 )で算出される。そこで、粒度分布測定器で無機質充
填剤の粒度分布を測定し、粒住i(μnL)  の粒子
の官有率がai(%)である場合、無機質充填剤の理論
比表面積SOは で算出される。
Calculation # of the theoretical specific surface area sO in the present invention is defined as follows. Assuming that the shape of the inorganic filler is spherical, the specific surface area 5i (-2/&) of particles with a particle size of 1 (μm) is 5t-
6/ρ・1 (ρ is the true specific gravity of the inorganic filler (9/cm”)
) is calculated. Therefore, the particle size distribution of the inorganic filler is measured using a particle size distribution analyzer, and if the ownership ratio of the particles with particle size i (μnL) is ai (%), the theoretical specific surface area SO of the inorganic filler is calculated as Ru.

不発明の無機質充填剤の製造方法については色毎あるが
一例を挙げると、分級、混合等で粗間調整で行なった無
機質粉末を希薄な7ツ化水素散、王水等で処理し、表面
の凹凸状態tl−調整する方法である。
There are different methods for manufacturing inorganic fillers for each color, but for example, inorganic powder that has been roughly adjusted by classification, mixing, etc. is treated with dilute hydrogen heptadide dispersion, aqua regia, etc., and the surface This is a method for adjusting the uneven state tl of.

本発明の無機質充填剤の使用tは一般には樹脂1oox
盆部に対して150〜450重量部程度である。樹月旨
としては、エポキシ、フェノール、アクリル、ポリエス
テル、ABSなどの熱硬化性、熱可塑a樹脂、ならびに
シリコーンゴム、フッ素樹脂、エチレングロピレンなど
のゴムが使用される。これらの中、半尋体到止用樹脂と
しては、エポキシ樹脂、具体的には、ビスフェノールA
型、フェノールノボラック型、クレゾールノボラック型
等のエポキシ樹脂が好ましく、特に不純物や加水分解性
塩素の少ないものがよう望ましい。エポキシ樹脂を使用
する際の硬化剤としては、例えば、フェノールノボラッ
ク樹脂やクレゾールノボラック樹H′F1すどのフェノ
ール系硬化剤、アミン系硬化剤あるいは酸無水物硬化剤
などが使用される。
The use of the inorganic filler of the present invention is generally 1 oox of resin.
The amount is about 150 to 450 parts by weight based on the tray. As the material, thermosetting and thermoplastic A resins such as epoxy, phenol, acrylic, polyester, and ABS, as well as rubbers such as silicone rubber, fluororesin, and ethylene glopyrene are used. Among these, epoxy resins, specifically bisphenol A
Epoxy resins such as type, phenol novolac type, and cresol novolak type are preferred, and those containing less impurities and hydrolyzable chlorine are particularly preferred. As a curing agent when using an epoxy resin, for example, a phenolic curing agent such as a phenol novolac resin or a cresol novolac tree H'F1, an amine curing agent, or an acid anhydride curing agent is used.

なお、本発明の無機質充填剤を樹脂に配置する際、r−
グリシドキシノロピルトリメトキシシランなどのシラン
カップリング剤、イミダゾールなどの硬化促進剤、臭素
化エポキシ樹脂や三酸化アンチモンなどの峻燃化剤、カ
ーボンブラックなどの顔料、モンタナワックスやカルナ
バワックスなどの離型剤を必要に応じて添加することが
できる。
Note that when placing the inorganic filler of the present invention in the resin, r-
Silane coupling agents such as glycidoxynolopyltrimethoxysilane, curing accelerators such as imidazole, flame retardants such as brominated epoxy resins and antimony trioxide, pigments such as carbon black, and release agents such as Montana wax and carnauba wax. A molding agent can be added if necessary.

(実施例) 次に本発明を実7I例をあげて丈に具体的に説明する。(Example) Next, the present invention will be specifically explained using seven practical examples.

実施例1〜5 (無機質充填剤の作製) 四塩化珪素を加水分解することにより得られる高純度シ
リカ微粉末全造粒・焼成した後、分級・混合を行なって
所定の粒度分布を有する球状タイプのシリカ粉末を準備
した。又、同じく高純度シリカ倣粉床を加熱浴融してイ
ンゴット状にした後、粗砕・微粉砕・分級・混せを経て
、所定の粒度分布′t−有する角状タイプのシリカ粉末
を準備した。
Examples 1 to 5 (Preparation of inorganic filler) High-purity silica fine powder obtained by hydrolyzing silicon tetrachloride is completely granulated and fired, then classified and mixed to produce a spherical type having a predetermined particle size distribution. silica powder was prepared. In addition, after melting the same high-purity silica imitation powder bed in a heating bath and making it into an ingot, it is subjected to coarse crushing, fine crushing, classification, and mixing to prepare an angular type silica powder having a predetermined particle size distribution 't-. did.

これらのシリカ粉末’k 0.05東it%のフッ化水
素酸に加えて磯度40重量%のスラリーを作製し60°
Cに加温しながら10〜60分間撹拌を行なった。七の
後、水洗・濾過・乾燥・解砕を行ない本発明の無機質充
填剤A〜Eを作製した。
In addition to these silica powders'k 0.05 East it% hydrofluoric acid, a slurry with a roughness of 40% by weight was prepared and heated at 60°.
Stirring was performed for 10 to 60 minutes while heating to C. After step 7, washing with water, filtration, drying and crushing were performed to produce inorganic fillers A to E of the present invention.

(8!論比表面積の計算) 上記の充填剤A−Hについて、粒匿分布勿し−デー回折
式粒度分布創定装置it<シーラス社製)にて測定した
。七の結果を第1表に示す。次にこの結果を基に先程定
義した理−比表面積の算出法に従って理論比表面積SO
を求めた。
(8! Calculation of theoretical surface area) The above-mentioned fillers A to H were measured using a particle size distribution generator IT (manufactured by Cirrus). The results of Section 7 are shown in Table 1. Next, based on this result, according to the theoretical specific surface area calculation method defined earlier, the theoretical specific surface area SO
I asked for

−例として充填剤Aの場合金欠に示す。- As an example, the case of filler A is shown below.

鵬 0.64 (但しρ−2,21・・・溶1シリカの真北N)なお、
無機質充填剤の実際の比表thi横8はカンタソーブ(
湯浅アイオニクス社JA)を用いて測定した。
Peng 0.64 (However, ρ-2,21...N due north of molten silica)
The actual ratio table for inorganic fillers thi horizontal 8 is Cantasorb (
The measurement was performed using Yuasa Ionics Co., Ltd. (JA).

(エポキシ樹脂組成物の作製) エポキシ当f230のクレゾールノボラック樹脂85重
量部に対し臭素化エポキシ樹脂15重量部、フェノール
ノボラック樹脂50重量部、2−ウンデシルイミダゾー
ル5貞量部、カルナバワックス2.5重量部、カーボン
ブラックIJILfit部、三酸化アンチモン10m[
置部からなる組成物に第1表のA −Hに示す無機質充
填剤t−35031E値部加えた後ミキサーで混合し、
さらにロールで混練り後冷却して粉砕して5種類の成形
材料を製造した。
(Preparation of epoxy resin composition) 15 parts by weight of brominated epoxy resin, 50 parts by weight of phenol novolac resin, 5 parts by weight of 2-undecylimidazole, and 2.5 parts by weight of carnauba wax based on 85 parts by weight of cresol novolak resin of F230 epoxy resin. Weight part, carbon black IJILfit part, antimony trioxide 10m [
After adding t-35031E value parts of inorganic fillers shown in A to H in Table 1 to the composition consisting of
The mixture was further kneaded with rolls, cooled, and pulverized to produce five types of molding materials.

次に、これらの成形材料について次に示す評価試験を実
施した。その結果を第2表に示す。
Next, the following evaluation tests were conducted on these molding materials. The results are shown in Table 2.

1)応力評価 半導体素子にかかる内部応力を評価する九めピエゾ抵抗
素子(応力により砥仇値の変化するピエゾ抵抗を半導体
チップに形成したもの)を16ぎンDIP型ICのフレ
ームにセットシ、各組成物でトランスファー成形し、素
子にかかる応力を抵抗変化より測定した。
1) Stress evaluation A nine-piece piezoresistive element (a piezoresistor whose abrasion value changes depending on stress is formed on a semiconductor chip) for evaluating the internal stress applied to a semiconductor element is set in the frame of a 16-gain DIP type IC. The composition was transfer molded, and the stress applied to the element was measured from the change in resistance.

2)耐ヒートシヨツク性評価 アイランドサイズ4X7.5m+の16ビンリードフレ
ームを各組成物によりトランスファー成形し、その16
ビンDIP型成形体を一196℃の液体と+260 ”
Cの液体に60秒ずつ浸漬を繰り返して成形体表面のク
ラックの発生率を試料価数50個から求めた。
2) Heat shock resistance evaluation A 16-bin lead frame with an island size of 4 x 7.5 m+ was transfer molded using each composition.
Bottle DIP molded body is heated to -196℃ liquid and +260℃.
The molded product was repeatedly immersed in liquid C for 60 seconds each time, and the crack occurrence rate on the surface of the molded product was determined from 50 samples.

3)耐湿性評価 各組成物を用い、対向するアルミニウム線の電極を有す
る素子tトランスファー成形し、この封止サンプルにつ
いて、温度125°C,2,5気圧の水蒸気加圧下で、
電極間に直流20Vのバイアス電圧をかけ、時間の経過
によるアルミニウム線のオープン不良率を試料価数50
個から求めた。このテストをRPCT (バイアスプレ
ッシャークツカーテスト)と呼ぶ、、また同様に、ノン
バイアス下でもテストを行ない、このラス) ’i P
CT (プレッシャークツカーテスト)と呼ぶ。
3) Moisture resistance evaluation Using each composition, a device having aluminum wire electrodes facing each other was transfer molded, and the sealed sample was subjected to steam pressurization of 2.5 atm at a temperature of 125°C.
A bias voltage of 20 V DC was applied between the electrodes, and the open failure rate of the aluminum wire was measured over time with a sample value of 50.
Obtained from individuals. This test is called RPCT (Bias Pressure Test).Similarly, the test is also performed under non-bias conditions.
It is called CT (pressure cutter test).

4)成形性 無機質充填剤と樹脂t−混合した際、流動性が者しく低
下したものが「不良」、普通以上のものが「良好」であ
る。
4) When the moldable inorganic filler and the resin are mixed, the fluidity is markedly decreased as "poor", and the fluidity as above average is "good".

比較例1〜3 次に比較例として第1表のF−Hに示した無機質充填剤
(溶融シリカフィラー)について実施例と同様に6槙類
の成形材料1&:製造し絆勧を行なった。その結果を第
2表に示す。
Comparative Examples 1 to 3 Next, as Comparative Examples, inorganic fillers (fused silica fillers) shown in F-H of Table 1 were produced in the same manner as in the Examples and tested. The results are shown in Table 2.

(発明の効果) 本発明の無機質充填剤を使用したnth成形品は、内部
応力の低減、耐磁性向上に潰れ、しかも成形性の低下も
ないという効果を奏する。
(Effects of the Invention) The NTH molded product using the inorganic filler of the present invention exhibits the effects of reducing internal stress, improving magnetic resistance, and preventing deterioration in moldability.

Claims (1)

【特許請求の範囲】[Claims] 1、比表面積Sが5m^2/g以下で、かつ、粒度分布
から算出される理論比表面積Soとの関係が3<S/S
oを有してなることを特徴とする無機質充填剤。
1. The specific surface area S is 5 m^2/g or less, and the relationship with the theoretical specific surface area So calculated from the particle size distribution is 3<S/S
An inorganic filler characterized by having o.
JP8711286A 1986-04-17 1986-04-17 Inorganic filler Pending JPS62243630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8711286A JPS62243630A (en) 1986-04-17 1986-04-17 Inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8711286A JPS62243630A (en) 1986-04-17 1986-04-17 Inorganic filler

Publications (1)

Publication Number Publication Date
JPS62243630A true JPS62243630A (en) 1987-10-24

Family

ID=13905871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8711286A Pending JPS62243630A (en) 1986-04-17 1986-04-17 Inorganic filler

Country Status (1)

Country Link
JP (1) JPS62243630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935314A (en) * 1996-08-29 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Inorganic filler, epoxy resin composition, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935314A (en) * 1996-08-29 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Inorganic filler, epoxy resin composition, and semiconductor device
US6207296B1 (en) 1996-08-29 2001-03-27 Mitsubishi Denki Kabushiki Kaisha Inorganic filler, epoxy resin composition, and semiconductor device
CN1080746C (en) * 1996-08-29 2002-03-13 三菱电机株式会社 Inorganic filler, epoxy resin composition, and semiconductor device

Similar Documents

Publication Publication Date Title
US5935314A (en) Inorganic filler, epoxy resin composition, and semiconductor device
US5137940A (en) Semiconductor encapsulating epoxy resin compositions
JPS58138740A (en) Resin composition
EP0827159B1 (en) Epoxy resin composition and semiconductor device encapsulated therewith
JPH0450223A (en) Epoxy resin composition and semiconductor device
US4772644A (en) Method for resin encapsulation of a semiconductor device and a resin composition therefor
JP2000063636A (en) Epoxy resin composition for semiconductor sealing and semiconductor sealed therewith
JPS62243630A (en) Inorganic filler
JPH0657740B2 (en) Epoxy resin composition for semiconductor encapsulation
JPS6056749B2 (en) Epoxy molding material and its manufacturing method
JP3965536B2 (en) Method for producing fine spherical silica for insulating material
JPH08245214A (en) Silica fine powder, its production, and epoxy resin composition for sealing semiconductor
JPS61203160A (en) Epoxy resin composition for sealing semiconductor
JPS6210159A (en) Resin composition for semiconductor sealing
JPH0496929A (en) Epoxy resin composition and semiconductor device
JP2633856B2 (en) Resin-sealed semiconductor device
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0238417A (en) Sealing resin composition
JPS63248712A (en) Inorganic filler and production thereof
JP2649054B2 (en) Particulate inorganic composite and method for producing the same
JP2000248153A (en) Epoxy resin composition and ferroelectric memory device
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
JPH0479379B2 (en)
JPS59204633A (en) Resin composition with low radioactivity
JP2505485B2 (en) Additive for semiconductor resin encapsulation