JPS63248712A - Inorganic filler and production thereof - Google Patents

Inorganic filler and production thereof

Info

Publication number
JPS63248712A
JPS63248712A JP7758987A JP7758987A JPS63248712A JP S63248712 A JPS63248712 A JP S63248712A JP 7758987 A JP7758987 A JP 7758987A JP 7758987 A JP7758987 A JP 7758987A JP S63248712 A JPS63248712 A JP S63248712A
Authority
JP
Japan
Prior art keywords
silica
powder
inorganic filler
particle size
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7758987A
Other languages
Japanese (ja)
Inventor
Tatsuro Iida
達郎 飯田
Takashi Chiba
尚 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP7758987A priority Critical patent/JPS63248712A/en
Publication of JPS63248712A publication Critical patent/JPS63248712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an inorg. filler having no acute angles and improving the flowability and moldability of its resin compound by heat treating a pulverized product of molten silica under special conditions. CONSTITUTION:Natural silica, rock crystal or synthesized silica powder is melted until the crystal content is reduced to <=0.2%. The resulting molten silica is pulverized to <=149mum max. particle size and the pulverized product is passed through a flame kept at a temp. above the m.p. of silica at a concn. of 6-20kg powder in the flame per 1Nm<3> combustible gas to obtain an inorg. filler made of siliceous powder having <=149mum max. particle size, 1-50mum average particle size, <=10m<2>/g specific surface area and <=0.2% crystal content. The inorg. filler has no acute angles.

Description

【発明の詳細な説明】 (厘東上の利用分野) 本発明は、無機質充填剤、詳しくは半島体等の電子部品
の封止材、絶縁基板、放熱シートなどを製造する際に使
用される樹脂組成物に逸した無機質充填剤に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Fields of Application on Lian Dong) The present invention relates to inorganic fillers, specifically resins used in the production of sealing materials for electronic components such as peninsular bodies, insulating substrates, heat dissipation sheets, etc. This relates to inorganic fillers missing in the composition.

(従来の技術) 半導体等電子部品の封止は樹脂封止が主流であるが電子
部品の発熱を放散させるために熱伝導性が良好であるこ
と、また、電子回路を正常に保つ為に熱膨張率が低いこ
となどが封止材に要求される。そこで通常は無機質充填
剤を樹脂に添加する珪石あるいは水晶を溶融、インゴッ
ト化した輸、粉砕、分級工程等を経て粒度調整された溶
融シリカ粉末が用いられる。しかしながら、粉砕されて
いる為、粒子は鋭利な角を有しており、それ故、樹脂り
蔦充填した場合、樹脂の流動性と成形性が低下し封止材
としての機能を示すに十分なjlを充填することができ
ない。しかも、素子表面やワイオー等への損傷の恐れも
ある。これらの欠点をカバーするものとして、球状タイ
プの溶融シリカ粉末が知られている(特開昭58−15
8740号公報)。
(Prior technology) Resin encapsulation is the mainstream method for encapsulating electronic components such as semiconductors. The sealing material is required to have a low expansion coefficient. Therefore, fused silica powder is usually used, which is obtained by melting silica stone or crystal to add an inorganic filler to the resin, converting it into an ingot, and adjusting the particle size through a process such as crushing, classification, etc. However, since the particles are pulverized, they have sharp edges, and therefore, when filled with resin resin, the fluidity and moldability of the resin decreases, which is insufficient to function as a sealant. jl cannot be filled. Moreover, there is a risk of damage to the element surface, wires, etc. Spherical type fused silica powder is known to overcome these drawbacks (Japanese Unexamined Patent Publication No. 58-15
8740).

球状タイプを得る場合は、粒度調整された珪石粉等を、
炭化水素、水素等の可燃がスと酸素等支燃がスの混合が
スから得られる高温の火炎中に過度という)を極力小さ
くして粒子に多大な熱Ikを与える必要があるので生産
性が極めて悪く経済的でない。それ程の球形度を要求せ
ず、単に実質的に鋭利な角をなくしたような形状のもの
も充填剤として知られている(特開昭61−64754
号公@)。この場合は、火炎中の含しん濃度を大きくす
ることが可能であるが、未溶融の結晶質部分が非定量的
に残存し、封止材の熱伝導性と熱膨張率が不安定になる
という問題がある。
When obtaining a spherical type, use silica powder etc. whose particle size has been adjusted.
The mixture of combustible gases such as hydrocarbons and hydrogen with combustible gases such as oxygen (excessively high temperature flame obtained from the gas) must be minimized to give a large amount of heat Ik to the particles, which improves productivity. is extremely bad and uneconomical. Fillers that do not require such sphericity and have a shape that has substantially no sharp corners are also known as fillers (Japanese Patent Laid-Open No. 61-64754
No.Ko@). In this case, it is possible to increase the concentration of soot in the flame, but the unmelted crystalline portion remains in a non-quantitative manner, making the thermal conductivity and coefficient of thermal expansion of the sealing material unstable. There is a problem.

(発明が解決しようとする間組点) 本発明者は、上記の欠点を解決すること金目的として種
々検討した結果、生産性と経済性が良好でしかも真球に
近い形状の充填剤と同等の封止特性が得られる無機質充
填剤を開発し本発明を提供するに至ったものである。
(Metal assembly point to be solved by the invention) As a result of various studies aimed at solving the above-mentioned drawbacks, the present inventor has found that a filler with good productivity and economical efficiency, and which is equivalent to a filler with a shape close to a true sphere. The present invention has been provided by developing an inorganic filler that can provide sealing properties.

(間順点を解決するための手段) すなわち、本発明は、溶融シリカ粉砕物の熱処理物から
なり、結晶含有率0.2%未満で実質的に鋭利な角を有
しないシリカ質粉末からなることを特徴とする無機質充
填剤、及びシリカの融点以上の温度に保たれた火炎中に
溶融シリカの粉砕物を含しん濃度(火炎中の粉末mkl
?/可燃ガス量NrrL5)が6を越え20以下になる
ようにして通過させて熱処理することを特徴とする結晶
含有率0.2%未満で実質的に鋭利な角を有しないシリ
カ質粉末からなる無機質充填剤の製法である。
(Means for solving the problems) That is, the present invention consists of a heat-treated product of pulverized fused silica, and consists of a siliceous powder having a crystal content of less than 0.2% and having substantially no sharp edges. An inorganic filler characterized by
? The powder is made of siliceous powder with a crystal content of less than 0.2% and having substantially no sharp edges, characterized by being passed through and heat-treated so that the amount of combustible gas (NrrL5) exceeds 6 and falls below 20. This is a method for producing an inorganic filler.

以下、本発明についてさらに詳しく説明する。The present invention will be explained in more detail below.

本発明の無機質充填剤は、溶融シリカ粉砕物の熱処理物
であって結晶含有率が0.2%未満で実質的に鋭利な角
を有しないシリ力負粉末からなるものである。このよう
な条件を満たすことによって実施例で示すとおり、従来
の真珠に近い形状のシリカ質粉末と同等の特性を備えた
封止材料を製造することができる。従って、本発明によ
れば、そのようにすぐれた特性を有する無機質充填剤を
生産性よく製造できるという効果がある。
The inorganic filler of the present invention is a heat-treated product of pulverized fused silica, and is composed of a silica-negative powder having a crystal content of less than 0.2% and having substantially no sharp edges. By satisfying these conditions, as shown in the examples, it is possible to produce a sealing material having properties equivalent to those of conventional siliceous powder having a shape similar to that of a pearl. Therefore, according to the present invention, an inorganic filler having such excellent properties can be produced with high productivity.

本発明において、結晶含有率はX線回折によるα−石英
のピーク強度比から求められ、また、実質的に鋭利な角
を有しないとは、粉砕によって角ばった部分が滑らかに
なっていることを意味し、必すしも球状であることは要
しない。
In the present invention, the crystal content is determined from the peak intensity ratio of α-quartz by X-ray diffraction, and "having substantially no sharp corners" means that the angular parts have been smoothed by crushing. meaning, it does not necessarily have to be spherical.

本発明の無機質充填剤の粒度分布や比表面積については
特に限定されたものではないが、最大粒径が149μ債
以下で平均粒径が1〜50戸好ブしくけ4〜65μλ比
衣面積は10 m2/9以下であることが望ましい。
The particle size distribution and specific surface area of the inorganic filler of the present invention are not particularly limited; It is desirable that it is 10 m2/9 or less.

次に、本発明の無機質充填剤の製法について説明する。Next, a method for producing the inorganic filler of the present invention will be explained.

原料としては、天然の珪石、水晶等や合成法で得られた
シリカ粉末を結晶部分の含有率が0.2%未満になるま
で溶融してなるインゴツIt−粉砕し必要に応じ℃分級
したものが使用される。俗融シ□リカ粉砕物の好ましい
最大粒径は149μm以下である。次いで、この粉砕物
を火炎中を通過させて鋭利な角を有しない粉末にするの
であるが、本く、単に鋭利な角がとれて清らかになった
程夏でよい。従って、火炎としては溶融シリカの融点以
上の温度1に電像していればよく、例を挙げると、水素
やプロパン等の可燃ガスと空気や酸素等の支はよく、具
体的には6を越えて20以下であることが好ましい。6
以下であると鋭利な角を単に滑らかにする程度の形状の
ものを得る場合、生産性と経済性において不利であり、
また、20よりも大きいと鋭利な角が残存するので好筐
しくない。
The raw material is an ingot made by melting natural silica stone, crystal, etc. or silica powder obtained by a synthetic method until the content of crystalline parts is less than 0.2%.It is crushed and classified at °C as necessary. is used. The preferred maximum particle size of the ground fused silica is 149 μm or less. Next, this pulverized material is passed through a flame to form a powder with no sharp edges, but it can be done in the summer until the sharp edges are simply removed and the powder becomes clear. Therefore, the flame only needs to be at a temperature of 1, which is higher than the melting point of fused silica.For example, a combustible gas such as hydrogen or propane and a support such as air or oxygen are sufficient. It is preferable that it exceeds 20 or less. 6
If it is below, it is disadvantageous in terms of productivity and economy when obtaining a shape that merely smooths out sharp corners.
Moreover, if it is larger than 20, sharp corners remain, which is not a good case.

本発明の無機質充填剤の使用量は、一般には樹脂100
重量部に対しテ150〜450[を部程度である。樹脂
としては、エポキシ、フェノール、アクリル、ポリエス
テル、ABSなどの熱硬化性、熱可塑性樹脂、ならひに
シリコーンゴム、フッ素樹脂、エチレンプロピレンなど
のゴムが使用される。これらの中、半導体封止用樹脂と
しては、エポキシ樹脂、具体的には、ビスフェノールA
Jj、フェノールノボラック型、クレゾールノボラック
型等のエポキシ樹脂が好ましく、特に不純物や加水分解
性塩素の少ないものがより望!しい。エポキシ樹脂を使
用する際の硬化剤としては、例えは、フェノールノボラ
ック樹脂やクレゾールノボラック樹脂などのフェノール
系硬化剤、アミン系硬化剤あるいは酸無水物硬化剤など
が使用される。
The amount of the inorganic filler used in the present invention is generally 100% of the resin.
It is approximately 150 to 450 parts by weight. As the resin, thermosetting or thermoplastic resins such as epoxy, phenol, acrylic, polyester, and ABS, and rubbers such as silicone rubber, fluororesin, and ethylene propylene are used. Among these, epoxy resins, specifically bisphenol A, are used as resins for semiconductor encapsulation.
Epoxy resins such as Jj, phenol novolac type, and cresol novolac type are preferred, and those with less impurities and hydrolyzable chlorine are especially desirable! Yes. As a curing agent when using an epoxy resin, for example, a phenolic curing agent such as a phenol novolac resin or a cresol novolac resin, an amine curing agent, or an acid anhydride curing agent is used.

なお、本発明の無機質充填剤を樹脂に配合する際、r−
グリシドキシプロビルトリメトキシシランなどのシラン
カップリング剤、イミダゾールなどの硬化促進剤、臭素
化エポキシ樹脂や三酸化アンチモンなどの難燃化剤、カ
ーボンブラックなどの顔料、モンタナワックスやカルナ
バワックスなどのj11型剤を必要に応じて添加するこ
とができる。
In addition, when blending the inorganic filler of the present invention into the resin, r-
Silane coupling agents such as glycidoxypropyltrimethoxysilane, curing accelerators such as imidazole, flame retardants such as brominated epoxy resins and antimony trioxide, pigments such as carbon black, and montana wax and carnauba wax. A j11 type agent can be added if necessary.

また、本発明の無機質充填剤は単独で使用することはも
ちろん、粉砕タイプの溶融シリカ粉末や結晶質シリカ粉
末、球形度の良好な球状溶融シリカ粉末と併用して樹脂
に配合することも可能である。
In addition, the inorganic filler of the present invention can be used alone or in combination with pulverized fused silica powder, crystalline silica powder, or spherical fused silica powder with good sphericity to be blended into the resin. be.

(実施例) 次に本発明を実施例をあげてさらに具体的に説明する。(Example) Next, the present invention will be described in more detail with reference to Examples.

実施例1〜5 無機質充填剤の製造 天然珪石の粗砕物(10〜60φ群〕を水素−酸素火炎
で加熱溶融してインゴット状にした後、粗砕・微粉砕・
分級を経て所定の粒度分布を有する溶融シリカ粉砕物を
準備した。X#11回折により結晶質部分の官有率を調
べたところ、0.2%未満であった。fた、S詣で形状
を観察したところ鋭利な角があることが認められた。
Examples 1 to 5 Production of inorganic filler Coarsely crushed natural silica stone (10 to 60φ group) was heated and melted in a hydrogen-oxygen flame to form an ingot, and then crushed, finely crushed, and
A pulverized fused silica product having a predetermined particle size distribution was prepared through classification. When the ownership ratio of the crystalline portion was examined by X#11 diffraction, it was found to be less than 0.2%. When I inspected the shape during a visit to S, I noticed that it had sharp corners.

次にこれらの粉砕物を、水素−酸素火炎中に第1表に示
した含しん濃度の条件で投入した。その後、陶により1
49μmより大きい粒子を除去して無機質充填剤A−D
を得た。
Next, these pulverized products were put into a hydrogen-oxygen flame under the conditions of the sorcerous concentration shown in Table 1. After that, 1
Inorganic filler A-D by removing particles larger than 49 μm
I got it.

一方、原料として、天然珪石の粗砕物のかわりに四塩化
珪素を加水分解して得られた合成シリカ粉末を用いたこ
と以外は同様にして無機質充填剤Eを製造した。
On the other hand, inorganic filler E was produced in the same manner except that synthetic silica powder obtained by hydrolyzing silicon tetrachloride was used as the raw material instead of the crushed natural silica stone.

これらの充填剤について、結晶部分の含有率をxi回折
で、粒子の長径/短径比及び鋭利な角の有無の確認をS
肪写真による観察で、また平均粒径をレーず一回折式粒
度分布測定装置で各々測定した。それらの結果を第1表
に示す。
For these fillers, the content of crystalline parts was measured by xi diffraction, and the particle length/breadth ratio and the presence or absence of sharp corners were confirmed.
The average particle size was measured using a laser beam diffraction particle size distribution analyzer. The results are shown in Table 1.

エポキシ樹脂組成物の作製 エポキシ当量260のクレゾールノボラック樹脂851
を部に対し臭素化エポキシ樹脂153kJi部、フェノ
ールノボラック樹脂501量部、2−ウンデシルイミダ
ゾール5fLji部、カルナバワックス2.5mJ1部
、カーボンブラック1重量部、三酸化アンチモン10重
量部からなる組成物に第1表のA−Eに示す無機質充填
剤を3503[を部加えた後ミキサーで混合し、さらに
ロールで混練り後冷却し、粉砕して5徳類の成形材料を
製造した。
Preparation of epoxy resin composition Cresol novolac resin 851 with epoxy equivalent weight 260
to a composition consisting of 153 kJi parts of brominated epoxy resin, 501 parts of phenol novolak resin, 5fLji parts of 2-undecylimidazole, 1 part of carnauba wax 2.5 mJ, 1 part by weight of carbon black, and 10 parts by weight of antimony trioxide. After adding 3,503 parts of the inorganic fillers shown in A to E in Table 1, they were mixed in a mixer, kneaded in a roll, cooled, and pulverized to produce a five-grade molding material.

矢に、これらの成形材料について次に示す評価試りを実
施した。それらの結果を第2表に示す。
The following evaluation trials were conducted on these molding materials. The results are shown in Table 2.

1)t&動性(スパイラルフロー) EMM I規格に準じた金温を使用し成形温度160°
0、成形圧カフ 0 kll/am2で測定した。この
値は大きいほど成形性が優れていることを示すものであ
る。
1) t & dynamics (spiral flow) Molding temperature 160° using metal temperature according to EMM I standard
0, molding pressure cuff 0 kll/am2. The larger this value is, the better the moldability is.

2)耐ヒートシヨツク性 アイランドサイズ4 X 7.5冨冨の16ビンリード
フレームを各組成物によりトランスファー成。
2) Heat shock resistance A 16-bin lead frame with an island size of 4 x 7.5 tomilli was formed by transfer using each composition.

形し、その16ビンDIP型成形体t−−196℃の液
体と+260℃の液体に30秒ずつ浸漬を繰り返した際
の成形体表面のクラックの発生率を試料数50個から求
めた。
The occurrence rate of cracks on the surface of the 16-bin DIP molded product was determined from 50 samples by repeatedly immersing it in a liquid at t--196°C and a liquid at +260°C for 30 seconds each.

6)信頼性 断線及びリーク電流測定用に設計した半導体素子に樹脂
組成物をトランスファーそ−ルドにより被覆し、それを
125℃、2.5気圧の水蒸気加圧下で、電極間に20
Vのバイアス電流をかけ、200時間までのアルミニウ
ム嶽のオープン不良率(断線率)とリーク不良率(アル
ミニウム線間の漏れ電流値が10nA以上になった率)
を測定することにより信頼性の評価を行なった。この際
、オープン不良率は被評価個数50個中の不良個数から
、!たリーク不良率は25個中の不良個数から各々求め
た。これらの不良率は値が小さいほど好ましいことを示
すものである。
6) A semiconductor element designed for reliability disconnection and leakage current measurement is coated with a resin composition using a transfer solder, and the resin composition is applied between the electrodes at 125°C and under a steam pressure of 2.5 atm.
Applying a bias current of V, open defect rate (disconnection rate) and leak defect rate (rate of leakage current between aluminum wires exceeding 10 nA) for up to 200 hours.
Reliability was evaluated by measuring . At this time, the open defect rate is calculated from the number of defective items out of 50 evaluated items. The leak defect rate was calculated from the number of defective pieces out of 25 pieces. These defective rates indicate that the smaller the value, the better.

4)応力評価 半導体素子にかかる内部応力を評価するためピエゾ抵抗
素子(応力により抵抗値の変化するピエゾ抵抗を半導体
チップに形成したもの)を16ビンDIP型ICフレー
ムにセットし、各組成物でトランスファー成形し、素子
にかかる応力を抵抗変化により測定した。
4) Stress evaluation In order to evaluate the internal stress applied to the semiconductor element, a piezoresistive element (a piezoresistor whose resistance value changes depending on stress is formed on a semiconductor chip) was set in a 16-bin DIP type IC frame, and each composition was Transfer molding was performed, and the stress applied to the element was measured by resistance change.

比較例1〜5 第1表のF−Hに示した無機質充填剤について実施例と
同様にして6a類の成形材料を製造した。
Comparative Examples 1 to 5 Class 6a molding materials were produced using the inorganic fillers shown in F-H in Table 1 in the same manner as in the examples.

充填剤のP゛〜Hは天然珪石を原料として第1表の条件
で製造したものであり、FとGは鋭利な角會有しない無
1!l!質充横剤、Hは鋭利な角を有する無機質充填剤
である。これらの評価結果を第2表に示す。
Fillers P~H were manufactured using natural silica stone as raw materials under the conditions shown in Table 1, and F and G were free from sharp corners. l! The filler H is an inorganic filler with sharp edges. These evaluation results are shown in Table 2.

第2表の結果から、本発明の無機質充填剤(A〜E)を
用いた封止材用樹脂組成物の特性(実施例1〜5)は、
従来の真球に近い形状の充填剤(F)を用いた特性(比
較例1)とほぼ同等であることがわかる。従って、第1
表に示すとおり、本発明の無機質充填剤は含じん濃度を
高くして生産することができるので生産性が向上する。
From the results in Table 2, the characteristics of the resin compositions for sealing materials (Examples 1 to 5) using the inorganic fillers (A to E) of the present invention are as follows:
It can be seen that the characteristics are almost the same as those using the conventional filler (F) having a shape close to a perfect sphere (Comparative Example 1). Therefore, the first
As shown in the table, the inorganic filler of the present invention can be produced with a high dust concentration, resulting in improved productivity.

また、比較例2のように結晶含有率が0.2%以上であ
ったり比較例6のように鋭利な角を有するものであって
は、良好な封止材用樹脂組成物を製造することはできな
い。
In addition, if the crystal content is 0.2% or more as in Comparative Example 2 or has sharp edges as in Comparative Example 6, it is difficult to produce a good resin composition for encapsulant. I can't.

(発明の効果) 本発明によれば、従来のように真球に近い形状としなく
てもそれと同等のすぐれた特性を示す封止材用樹脂組成
物tm造することができるので、充填剤の生産性が高ま
り取扱い性が容易となる効果を奏する。
(Effects of the Invention) According to the present invention, it is possible to produce a resin composition for an encapsulant that exhibits excellent properties equivalent to that of a true sphere without having to have a shape close to a true sphere as in the past. This has the effect of increasing productivity and ease of handling.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融シリカ粉砕物の熱処理物からなり、結晶含有
率0.2%未満で実質的に鋭利な角を有しないシリカ質
粉末からなることを特徴とする無機質充填剤。
(1) An inorganic filler comprising a heat-treated product of pulverized fused silica, and comprising a siliceous powder having a crystal content of less than 0.2% and having substantially no sharp edges.
(2)シリカの融点以上の温度に保たれた火炎中に溶融
シリカの粉砕物を含じん濃度(火炎中の粉末量kg/可
燃ガス量Nm^3)が6を越え20以下になるようにし
て通過させて熱処理することを特徴とする結晶含有率0
.2%未満で実質的に鋭利な角を有しないシリカ質粉末
からなる無機質充填剤の製法。
(2) The dust concentration (amount of powder kg in the flame/amount of combustible gas Nm^3) containing crushed fused silica in a flame maintained at a temperature higher than the melting point of silica is more than 6 and less than 20. Crystal content: 0
.. A method for producing an inorganic filler comprising less than 2% siliceous powder having substantially no sharp edges.
JP7758987A 1987-04-01 1987-04-01 Inorganic filler and production thereof Pending JPS63248712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7758987A JPS63248712A (en) 1987-04-01 1987-04-01 Inorganic filler and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7758987A JPS63248712A (en) 1987-04-01 1987-04-01 Inorganic filler and production thereof

Publications (1)

Publication Number Publication Date
JPS63248712A true JPS63248712A (en) 1988-10-17

Family

ID=13638155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7758987A Pending JPS63248712A (en) 1987-04-01 1987-04-01 Inorganic filler and production thereof

Country Status (1)

Country Link
JP (1) JPS63248712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425287B2 (en) 2003-01-24 2008-09-16 Showa Denko K.K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
JP2009221054A (en) * 2008-03-17 2009-10-01 Admatechs Co Ltd Manufacturing method of spheroidized silica

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425287B2 (en) 2003-01-24 2008-09-16 Showa Denko K.K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
JP2009221054A (en) * 2008-03-17 2009-10-01 Admatechs Co Ltd Manufacturing method of spheroidized silica

Similar Documents

Publication Publication Date Title
US5935314A (en) Inorganic filler, epoxy resin composition, and semiconductor device
JPS6157347B2 (en)
JP4053152B2 (en) Thermosetting resin composition and semiconductor device thereof
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
JP3468996B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JP6403075B2 (en) Semiconductor sealing resin composition and semiconductor device
JPS62212422A (en) Epoxy resin composition
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JP5795168B2 (en) Thermally conductive resin composition and semiconductor package
JPS6296568A (en) Semiconductor sealing resin composition
JPS63248712A (en) Inorganic filler and production thereof
JPH08245214A (en) Silica fine powder, its production, and epoxy resin composition for sealing semiconductor
JPS5829858A (en) Resin composition for sealing electronic component
JP3965536B2 (en) Method for producing fine spherical silica for insulating material
JP3445707B2 (en) Siliceous filler and its production method
JPS6296538A (en) Inorganic filler and resin composition
JPS6164755A (en) Inorganic filler-containing resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH02145416A (en) Fused spherical silica and sealing resin composition using the same
JP2925088B2 (en) Fine fused spherical silica and resin composition for sealing using the same
JPS61190961A (en) Semiconductor device
JP2601255B2 (en) Filler for semiconductor resin sealing
JP2005225970A (en) Epoxy resin composition and semiconductor device
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPH02158637A (en) Silica filler and sealing resin composition using the same