JPS62243260A - Electrolyte supply type cell - Google Patents

Electrolyte supply type cell

Info

Publication number
JPS62243260A
JPS62243260A JP61086882A JP8688286A JPS62243260A JP S62243260 A JPS62243260 A JP S62243260A JP 61086882 A JP61086882 A JP 61086882A JP 8688286 A JP8688286 A JP 8688286A JP S62243260 A JPS62243260 A JP S62243260A
Authority
JP
Japan
Prior art keywords
electrolyte
chamber
cell
reservoirs
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61086882A
Other languages
Japanese (ja)
Inventor
Yoshiteru Takeda
武田 義照
Eiji Ogino
荻野 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61086882A priority Critical patent/JPS62243260A/en
Publication of JPS62243260A publication Critical patent/JPS62243260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To drop the equal amount of electrolyte through every exhaust pipe, to effectively prevent liquid short circuit caused by dropping electrolyte, and to increase the energy efficiency of a cell by installing 1-5 dams in a stacked direction of cells inside electrolyte collecting chamber, forming plural reservoirs by increasing the height of dams in order from overflow chamber side, and installing plural exhaust pipes in the bottom of each reservoir to drop electrolyte. CONSTITUTION:1-5 dams 2 are installed in a stacked direction of unit cell 5 in an electrolyte collecting chamber 1 mounted in an overflow chamber 4 in the upper part of a frame unit cell 5. The height of dams is increased in order from the overflow chamber 4 side to plural reservoirs 1a-1c. Plural exhaust pipes 3 are installed in the bottoms of reservoirs 1a-1c to equally drop the electrolyte from the reservoirs 1a-1c. The exhaust pipes 3 are very important to decide the dropping direction of electrolyte and installed vertically in reservoirs 1a-1c. Thereby, the energy efficiency of a cell is increased and the height of the short circuit preventing chamber is shortened and a cell is made compact.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複数個の単位セルを積層して電気的に直列に接
続した電解液供給型電池に関し、特に各単位セルから排
出する電解液間の液!!8を防止し、電池のエネルギー
効率の向上を図ったものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electrolyte supply type battery in which a plurality of unit cells are stacked and electrically connected in series, and in particular, the present invention relates to an electrolyte supply type battery in which a plurality of unit cells are stacked and electrically connected in series. The liquid! ! 8 and to improve the energy efficiency of the battery.

〈従来の技術〉 複数個の単位セルを積層して電気的に直列に接続し、電
解液を外部から各単位セルに供給して、それぞれ電解質
を通して外部に排出する電解液供給型電池には、亜鉛−
ハロゲン電池、レドックス型電池、燃Fl電池等がある
。これ等電池はバイポーラ電極構造を取ることができる
ため、電池容量の増加には非常に有利である。
<Conventional technology> An electrolyte supply type battery has a plurality of unit cells stacked and electrically connected in series, and an electrolyte is supplied to each unit cell from the outside and discharged to the outside through the electrolyte. Zinc-
There are halogen batteries, redox type batteries, fuel cells, etc. These batteries can have a bipolar electrode structure, which is very advantageous for increasing battery capacity.

このような電解液供給型電池では一般に共通の電解液槽
から各セルに電解液を供給し、各単位セルから排出した
電解液を再び電解液槽に染めて循環している。このため
隣接する単位セルの間では電解液による液絡を防止して
単位セルの電池特性を保持する必要がある。例えば亜鉛
塩素電池では、第2図に示すように、枠体(5)内に亜
鉛極と電解液透過性塩素極の両極を集電体を介して組合
せたバイポーラ電極(図示せず)を組込み、これを多数
積層して枠体(バイポーラ電極)(5)間に電解室(単
セル)(6)を形成し、図に示すにうに枠体(5)下部
の電解液供給口(7)より供給室(8)を通して電解液
を送入する。電解液はバイポーラ電極の極室より電解室
(6)とオーバーフロー室(4)を通して集液室(1)
に集められ、排出管(3)を通して積層セルの共通の液
絡防止用ヂVンバー(9)内に落下させ、隣接する単位
セル間で液絡を発生させないようにすると共に、短い落
差で液切れを行ない、電気的絶縁を図るものである。
In such an electrolyte supply type battery, the electrolyte is generally supplied to each cell from a common electrolyte tank, and the electrolyte discharged from each unit cell is recirculated in the electrolyte tank. Therefore, it is necessary to maintain the battery characteristics of the unit cells by preventing liquid junctions caused by the electrolyte between adjacent unit cells. For example, in a zinc-chlorine battery, as shown in Figure 2, a bipolar electrode (not shown), which combines a zinc electrode and an electrolyte-permeable chlorine electrode via a current collector, is built into the frame (5). A large number of these are stacked to form an electrolytic chamber (single cell) (6) between the frames (bipolar electrodes) (5), and an electrolyte supply port (7) at the bottom of the frame (5) is formed as shown in the figure. The electrolyte is introduced through the supply chamber (8). The electrolyte flows from the polar chamber of the bipolar electrode through the electrolytic chamber (6) and overflow chamber (4) to the liquid collecting chamber (1).
The liquid is collected through the discharge pipe (3) and dropped into the common liquid junction prevention jacket (9) of the laminated cells to prevent liquid junctions from occurring between adjacent unit cells and to prevent the liquid from forming with a short head. This is done to provide electrical insulation.

〈発明が解決しようとする問題点〉 オーバーフロー室から流れてくる電解液を集液室に集め
、1個の排出管で排出すると、電解液の落下量が多すぎ
るため、液切れを起すまでに大ぎな落差を必要とするば
かりか、隣接する単位セルの落下液と途中で液絡を起し
易い。そこで2個以上の排出管を設けて排出しているが
、電解液がオーバーフロー室側の排出管に集中的に片寄
り、例えば2個の排出管では電解液の排出量が9:1と
極端にばらつく。このように電   。
<Problems to be solved by the invention> If the electrolytic solution flowing from the overflow chamber is collected in a collection chamber and discharged through one discharge pipe, the amount of electrolytic solution falling is too large, and it takes a long time before the electrolyte runs out. Not only does it require a large head difference, but it also tends to cause a liquid junction with the falling liquid from an adjacent unit cell. Therefore, two or more discharge pipes are installed to discharge the electrolyte, but the electrolyte is concentrated in the discharge pipe on the overflow chamber side. It varies. In this way, electricity

解液が一方の管に集中して落下すると十分な液切れが1
!?られず、他方の管では電解液がラッパ状に広がりな
がら落下するため、隣接する単位セル間で液絡を発生し
、十分な電気的絶縁が得られない欠点がある。
If the solution concentrates and falls into one tube, enough liquid will be drained.
! ? In the other tube, the electrolyte spreads out in a trumpet-like manner and falls, resulting in a liquid junction between adjacent unit cells, which has the disadvantage that sufficient electrical insulation cannot be obtained.

く問題点を解決するための手段〉 本発明はこれに鑑み種々検討の結果、各単位セルから排
出する電解液間の液絡を防止して、電池のエネルギー効
率を向上し得る電解液供給型電池を開発したもので、複
数個の単セルを積層して電気的に直列に接続し、各単位
セル毎に電解液を供給し、セル毎に上端のオーバーフロ
ー室に設けた集液室より電解液を共通のチャンバー内に
落下させて排出する電池において、各集液室内に積層方
向の堰を1〜5個設け、堰の高さをオーバーフロー室側
より順に高くして複 □数個の液溜りを形成し、各液溜
りの底部に複数個の排出管を取付けて電解液を落下させ
ることを特徴とするものである。
In view of this, and as a result of various studies, the present invention has developed an electrolyte supply type that can prevent liquid connections between the electrolytes discharged from each unit cell and improve the energy efficiency of the battery. This is a developed battery in which multiple single cells are stacked and electrically connected in series, and electrolyte is supplied to each unit cell, and electrolysis is carried out from the liquid collection chamber provided in the overflow chamber at the top of each cell. In batteries where liquid is discharged by dropping it into a common chamber, 1 to 5 weirs are installed in each liquid collection chamber in the stacking direction, and the height of the weirs is increased sequentially from the overflow chamber side to collect multiple liquids. It is characterized by forming a reservoir and attaching a plurality of discharge pipes to the bottom of each reservoir to allow the electrolyte to fall.

即ち本発明は、第、1図に示すように、枠体(単位セル
)(5)上部のオーバーフロー室(4)に取付ける集液
室(1)に、単位セル(5)の積層方向のII!(2)
を1〜5個(図は2個の場合を示す)設け、堰の高さを
オーバーフロー室(4)側より順に高くして複数個の液
溜り(1a)、(1b)、(1C)を形成し、各液溜り
(1a)、(1b)、(1c)の底部に複数個の排出管
(3)を取付けて、各液溜り(1a)、(1b)、(1
C)毎(それぞれ均等に落下せしめるものである。尚、
排出管(3)は電解液の落下方向を決める小要なもので
、各液溜り(1a)、(1b)、(1c)に垂直に取付
ける。
That is, as shown in FIG. ! (2)
1 to 5 (the figure shows the case of 2) are installed, and the height of the weir is increased in order from the overflow chamber (4) side to form multiple liquid pools (1a), (1b), and (1C). A plurality of discharge pipes (3) are attached to the bottom of each liquid reservoir (1a), (1b), (1c), and each liquid reservoir (1a), (1b), (1
C) (to make each fall evenly. Furthermore,
The discharge pipe (3) is a small item that determines the direction in which the electrolytic solution falls, and is installed perpendicularly to each of the liquid reservoirs (1a), (1b), and (1c).

〈作 用〉 集液室を堰により1〜5個の液溜りに分け、各液溜りに
複数個の排出管を設けることにより、電解液が特定の管
に集中することがなく、排出管毎に電解液の落下量が均
等となり、落下する電解液間の液絡を効果的に防止し、
電池のエネルギー効率を高めることができる。また排出
管の径を承ざくして数を多くすることにより、液切れを
短くして液絡防止のためのチャンバーの高さを短縮する
ことができる。
<Function> By dividing the liquid collection chamber into 1 to 5 liquid pools by a weir and providing multiple discharge pipes in each liquid pool, the electrolyte does not concentrate in a specific pipe, and each discharge pipe is The amount of electrolyte falling is even, effectively preventing liquid junctions between falling electrolytes,
The energy efficiency of batteries can be increased. Furthermore, by increasing the number of discharge pipes while reducing the diameter, it is possible to shorten the time when liquid runs out and shorten the height of the chamber for preventing liquid contact.

〈実施例〉 硬質グラファイトからなる亜鉛極板と多孔質グラファイ
トからなる塩素極板をポリ塩化ビニル製枠体内に集電板
を介して対設したバイポーラ電極を積層し、枠体間に単
セルを形成し、該セルの上部オーバーフロー室に第1図
に示す集液室を設け、各セルを電気的に直列に接続した
<Example> A bipolar electrode is stacked in which a zinc electrode plate made of hard graphite and a chlorine electrode plate made of porous graphite are placed opposite each other in a polyvinyl chloride frame with a current collector plate interposed therebetween, and a single cell is placed between the frames. A liquid collecting chamber shown in FIG. 1 was provided in the upper overflow chamber of the cell, and each cell was electrically connected in series.

集液室の排出管の内径を4#1111とし、オーバーフ
ロー室側より第1の堰まで等間隔に4個の排出管を取付
け、第1の堰より第2の堰まで2個の排出管を取付け、
第2の堰より2個の排出管を取付けた。また第1の堰の
高さを2 cm、第2の堰の高さを4 cmとした。こ
れについて充放電試験を行なった場合の電池のエネルギ
ー効率を第2図に示す従来電池と比較した。その結果を
第1表に示す。
The inner diameter of the discharge pipes in the liquid collection chamber is 4#1111, and four discharge pipes are installed at equal intervals from the overflow chamber side to the first weir, and two discharge pipes are installed from the first weir to the second weir. installation,
Two discharge pipes were installed from the second weir. Further, the height of the first weir was 2 cm, and the height of the second weir was 4 cm. A charge/discharge test was conducted on this battery, and the energy efficiency of the battery was compared with that of a conventional battery shown in FIG. The results are shown in Table 1.

電池は電極作用面積2,800oyfの単セルを10セ
ル、20ル、30レルとして運転し、電解液には塩化亜
tU2m01#l、塩化カリウム1mol#!、塩化す
1〜ツリウムmof/、1)の水溶液(pl+=1>を
用い、運転条件は電解液温度30℃、電解液流m5.6
.1! /min/セル、充放電電流密度30mA/C
Ii、充電時間8時間とした。
The battery is operated as a single cell with an electrode active area of 2,800 oyf as 10 cells, 20 liters, and 30 rel, and the electrolyte contains 2 ml of sodium chloride and 1 mol of potassium chloride. , an aqueous solution (pl+=1> of 1 to thulium chloride mof/, 1) was used, and the operating conditions were an electrolyte temperature of 30°C and an electrolyte flow rate of m5.6.
.. 1! /min/cell, charge/discharge current density 30mA/C
Ii, charging time was 8 hours.

第1表から明らかなように本発明電池は隣接する単位セ
ルの排出電解液間の液絡を効率的に防止し、電池のエネ
ルギー効率を向上し得ることが判る。
As is clear from Table 1, it can be seen that the battery of the present invention can effectively prevent liquid junctions between the discharged electrolytes of adjacent unit cells and improve the energy efficiency of the battery.

〈発明の効果〉 このように本発明によれば電池のエネルギー効率を高め
、液絡防止チVンバーの高ざを短縮し、電池のコンパク
ト化を可能にする等、工業上顕著な効果を奏するもので
ある。
<Effects of the Invention> As described above, the present invention has significant industrial effects such as increasing the energy efficiency of the battery, shortening the height of the liquid junction prevention chamber, and making it possible to make the battery more compact. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の要部の一例を示す説明図、第2図
は従来電池の一例を示す説明図である。 1、集M室 1a、 1b、 lc、液溜   2.堰
3、排出管 4.オーバーフロー室 5.枠体6、電解
室、7.電解液供給口  8゜電解液供給室9、液絡防
止チャンバー
FIG. 1 is an explanatory diagram showing an example of essential parts of a battery of the present invention, and FIG. 2 is an explanatory diagram showing an example of a conventional battery. 1. Collection M chamber 1a, 1b, lc, liquid reservoir 2. Weir 3, discharge pipe 4. Overflow room 5. frame 6, electrolysis chamber, 7. Electrolyte supply port 8゜Electrolyte supply chamber 9, liquid junction prevention chamber

Claims (1)

【特許請求の範囲】[Claims] 複数個の単セルを積層して電気的に直列に接続し、各単
位セル毎に電解液を供給し、セル毎に上端のオーバーフ
ロー室に設けた集液室より電解液を共通のチャンバー内
に落下させて排出する電池において、各集液室内に積層
方向の堰を1〜5個設け、堰の高さをオーバーフロー室
側より順に高くして複数個の液溜りを形成し、各液溜り
の底部に複数個の排出管を取付けて電解液を落下させる
ことを特徴とする電解液供給型電池。
Multiple single cells are stacked and electrically connected in series, and electrolyte is supplied to each unit cell, and the electrolyte is fed into a common chamber from a collection chamber provided in the overflow chamber at the top of each cell. In batteries that are discharged by dropping, 1 to 5 weirs in the stacking direction are provided in each liquid collection chamber, and the height of the weirs is increased in order from the overflow chamber side to form multiple liquid pools. An electrolyte supply type battery characterized by having multiple discharge pipes attached to the bottom to allow electrolyte to fall.
JP61086882A 1986-04-15 1986-04-15 Electrolyte supply type cell Pending JPS62243260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086882A JPS62243260A (en) 1986-04-15 1986-04-15 Electrolyte supply type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086882A JPS62243260A (en) 1986-04-15 1986-04-15 Electrolyte supply type cell

Publications (1)

Publication Number Publication Date
JPS62243260A true JPS62243260A (en) 1987-10-23

Family

ID=13899202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086882A Pending JPS62243260A (en) 1986-04-15 1986-04-15 Electrolyte supply type cell

Country Status (1)

Country Link
JP (1) JPS62243260A (en)

Similar Documents

Publication Publication Date Title
US4894294A (en) Electrolytic solution supply type battery
CA1130854A (en) Shunt current elimination in electrochemical devices
US4567119A (en) Nickel-hydrogen bipolar battery
CN101647138B (en) Cell stack for a flowing electrolyte battery
CN102479968B (en) Zinc / polyhalide energy storage cell
US4039729A (en) Rechargeable galvanic cell with zinc electrode and auxiliary structure
US4659559A (en) Gas fueled fuel cell
US3359136A (en) Rechargeable energy conversion system
JPS607075A (en) Bipolar metal air battery
TW201112468A (en) Electrochemical system having a device for separating reactants
US3980498A (en) Electrochemical cell using lithium-aluminum alloy anode and aqueous electrolyte
US4037031A (en) Bipolar lead acid battery having titanium and zirconium electrode supports
US4273839A (en) Activating carbonaceous electrodes
US3597275A (en) Process of operating fuel cell
US4675254A (en) Electrochemical cell and method
US3350225A (en) Rechargeable sealed secondary battery
JPH0529006A (en) Fuel cell
JPS62243260A (en) Electrolyte supply type cell
EP0157777A1 (en) Chemo-electric cell with at least one gas electrode
JPS60258850A (en) Electrolytic liquid supply type cell
US20230420747A1 (en) Systems for pump-free zinc bromide batteries
CN112599893B (en) Wall-in self-heating metal air fuel cell
JPS5822385A (en) Electrolytic cell for mgcl2
JPH02847Y2 (en)
CN112259917A (en) Lead-acid storage battery pole group and manufacturing method thereof