TW201112468A - Electrochemical system having a device for separating reactants - Google Patents

Electrochemical system having a device for separating reactants Download PDF

Info

Publication number
TW201112468A
TW201112468A TW099124405A TW99124405A TW201112468A TW 201112468 A TW201112468 A TW 201112468A TW 099124405 A TW099124405 A TW 099124405A TW 99124405 A TW99124405 A TW 99124405A TW 201112468 A TW201112468 A TW 201112468A
Authority
TW
Taiwan
Prior art keywords
reactant
electrolyte
battery
electrode
volume
Prior art date
Application number
TW099124405A
Other languages
Chinese (zh)
Other versions
TWI491094B (en
Inventor
Rick Winter
Jonathan L Hall
O' Gerardo Jose La
Thomas Stepien
Original Assignee
Primus Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/458,853 external-priority patent/US8114541B2/en
Application filed by Primus Power Corp filed Critical Primus Power Corp
Publication of TW201112468A publication Critical patent/TW201112468A/en
Application granted granted Critical
Publication of TWI491094B publication Critical patent/TWI491094B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

An electrochemical system, such as a flow battery, includes a vessel. The vessel contains: (a) at least one cell that includes a first electrode, a second electrode, and a reaction zone between the first and second electrodes, (b) a reservoir containing a first volume configured to selectively accumulate metal-halide electrolyte component and a second volume configured to selectively accumulate a liquefied halogen reactant, (c) a separation device separating the first volume from the second volume, and (d) a flow circuit configured to deliver the halogen reactant and the metal-halide electrolyte between the reservoir and the at least one cell.

Description

201112468 六、發明說明: 【發明所屬之技術領域】 本發明係關於電化學系統(諸如液流電池組)及使用該等 電化學系統之方法。 . 本申請案主張2009年7月24曰申請之美國專利申請案第 、 12/458,853號及2010年7月15日申請之美國臨時專利申請案 第61/364’631號的權利’該兩個專利巾請案以全文引用的 方式併入本文中。 【先前技術】 再生性能源的開發已使對用於離峰能量儲存之大規模電 池組的需要復興。對此應用之要求不同於其他類型之可再 充電電池組(諸如鉛酸電池組)的要求。大體要求用於電力 柵格中之離峰能量儲存的電池組為低資本成本、長循環壽 命、高效率及低維護。 一種類型之適用於此能量儲存的電化學能量系統為所謂 之「液流電池組」,其使用用於在通常正電極處還原的函 素組份及經調適以在電化學系統之正常操作期間在通常負 電極處變成被氧化的可氧化金屬。含水金屬鹵化物電解質 用以在鹵素組份在正電極處變成被還原時補充齒素組份之 供應。電解質在電極區域與儲集器區域之間循環。此系統 之一實例將辞用作金屬且將氯用作函素。 此·#電化學能量系統描述於(例如)美國專利第3 713 8 8 8 號、第 3,993,502號、第 4,001,036號、第 4,072,540號、第 4,146,680號及第4,414,292號中以及由電力研究所發表的日 149813.doc 201112468 期為1979年4月之EPRI報告EM-105 1(部分ι·3)中,該等專 利及該EPRI報告ΕΜ-Ι051之揭示内容以全文弓丨用的方式併 入本文中。 【發明内容】 在一實施例中,一種電化學系統(諸如液流電池組)包括 一器皿。該器皿含有:(a)至少一電池,其包括第一電極、 第二電極及位於該第一電極與該第二電極之間的反應區; (b)—儲集器’其含有經組態以選擇性地聚積金屬齒化物電 解質組份的第一容積及經組態以選擇性地聚積液化齒素反 應物的第二容積;(c)一分離元件,其將第一容積與第二容 積分離;及(d) —液流環路,其經組態以在該儲集器與該至 少一電池之間傳遞_素反應物及金屬_化物電解質。 在一較佳實施例中,該分離元件包含分子篩或選擇性多 孔隔膜。 在另一實施例中,一種操作一電化學系統之方法包括: 提供一包含器皿之系統,該器皿含有:(a)至少一電池,其 包含第一電極、第二電極及位於該第一電極與該第二電極 之間的反應區;及(b)—儲集器,其含有由一分離元件分離 的第谷積及第一谷積。該方法進一步包括:將來自第一 容積之金屬!|化物電解質組份與來自第二容積之液化鹵素 反應物混合以形成電解質混合物;在放電模式下將電解質 混合物提供至該至少一電池以產生電;及使電解質混合物 自該至少一電池返回至儲集器中之第一容積,以使得來自 返回之電解質混合物的未用液化齒素反應物自第一容積穿 149813.doc 201112468 過分離元件滲透至第二容積。 在又-實施例中,該方法進—步包括:在充電模式下將 金屬齒化物電解質組份自第一容積提供至該至少一電池以 對電化學系統充電;及使電解質自該至少一電池返回至儲 集器中之第-容積,以使得在返回之電解質中之任何液化 鹵素反應物自第一容積穿過分離元件渗透至第二容積。 在另-實施例中,該分離元件包含集液板(_ρ pute), 諸如平坦集液板或具有至少兩個開口之脊曲薄板。 在-組態中,該分離元件為大體上截頭圓錐或漏斗狀薄 板。截頭圓錐或漏斗狀分離器具有圓形或橢圓形水平橫截 面形狀且第一端上之開口具有比相對第二端上之開口大的 大小。截頭圓錐形狀可具有自第二端至第一端之橫戴面大 小的穩定增加及一相對恆定之傾斜之側壁。漏斗形狀可具 有自第二端至第-端之橫截面大小的非穩定增加(亦即, 跳躍)及傾斜之側壁中的一或多個曲線。 【實施方式】 以下文獻(其揭示内容以全文引用的方式併入本文中)可 用於理解並實踐本文中所描述之實施例:美國專利申請案 第 12/523,146 號。 '、 本文中所揭示之實施例係關於—種電化學系统(有時亦 稱為「液流電池組」)。該電化學系統可利用金屬齒化物 電解質及諸如分子氯之㈣反應物。金屬_化物電解質及 鹵素反應物中之幽化物可為同一類型。舉例而言,當鹵素 反應物為分子氯時,金屬齒化物電解質可含有至少一金屬 149813.doc 201112468 氯化物。 該電化學系統可包括一密封器皿,該密封器皿含有位於 其内容積中的電化學電池、金屬_化物電解質及函素反應 物以及經組態以將金屬_化物電解質及齒素反應物傳遞至 該電化學電池的液流環路。該密封器皿可為含有電化學電 池之壓力器皿。_素反應物可為(例如)分子氣反應物。 在許多實施例中,可以液化形式來使用齒素反應物。密 封器孤使得其可維持一高於在給定周圍溫度下鹵素反應物 之液化壓力的内部壓力。可自函素反應物之相位圖判定給 定溫度之特定函素反應物之液化壓力。舉例而言,圖4呈 現元素氯之相位圖,可自該相位圖判定給定溫度的液化壓 力。在密封容器中利用液化齒素反應物的系統不需要壓縮 器,而壓縮器常用於其他電化學系統中以用於壓縮氣態鹵 素反應物。利用液化齒素反應物之系統不需要用於函素反 應物之單獨儲存器,該儲存器可位於密封器皿之内容積的 外部。術語「液化_素反應物」指代以下各者中之至少一 者:溶解於水中之分子函素,其亦稱為濕式_素或含水齒 素;及「乾式」液態分子函素,其未溶解於水中。類似 地,術語「液化氯」可指代以下各者中之至少一者:溶解 於水中之分子氣,其亦稱為濕式氯或氯水;及「乾式」液 態乳’其未溶解於水中。 在許多實施例中’該系統將液化分子氣用作齒素反 物。液化分子氯具有比水之重力大約兩倍的重力。 密封容器中所含有之液流環路可為封閉迴路環路,其 1498J3.doc 201112468 组態以將鹵素反應物(輕 佳呈液化或液體狀態)及至少一電 解質傳遞至該(等)電池及自哕 主/電 目忒(荨)電池傳遞齒素反應物(較 佳呈液化或液體狀態)及至少一電解質。在許多實施例 中,迴路環路可為密封迴路環路。儘管穿過封閉迴路循環 之,.且伤(諸如鹵素反應物及金屬齒化物電解質)較佳呈液化 狀態,但封閉迴路可在其中含## „ 牡丹于3有某一量之氣體(諸如氯氣)。 較佳地’迴路核路使得金屬齒化物電解質及齒素反應物 在電池中無分離件的情況下循環穿過同__液流路徑。, 電化學電池中之每一者可力人.贫 母f了包含.第一電極,其在標準放 電模式下可充當正電極;及第二電極,其在標準放電模式 下可充當負電極;及位於該等電極之間的反應區。 在許多實施例中,反應區可使得在反應區中不發生鹵素 反應物(諸如溶解於電解質溶液之水中的函素反應物或離 子化函素反應物)之分離。舉例而言,當齒素反應物為液 化氣反應物時,反應區可使得在反應區中不發生氯反應物 (諸如溶解於電解質溶液之水中的氣反應物或氣離子)之分 離。反應區可使得其在同一電池之正電極與負電極之間不 含有不能滲透齒素反應物(諸如溶解於電解質溶液之水中 的鹵素反應物或離子化鹵素反應物)的隔膜或分離器。舉 例而言,反應區可使得其在同一電池之正電極與負電極之 間不含有不能滲透液化氣反應物(諸如溶解於電解質溶液 之水中的氣反應物或氯離子)的隔膜或分離器。 在許多實施例中,反應區可使得在反應區中不發生卣素 離子(諸如藉由在該等電極中之一者處使函素反應物還原 149813.doc 201112468 所形成的i素離子)與液流之剩餘部分的分離。換言之, 反應區可使得其在同一電池之正電極與負電極之間不含有 不能滲透函素離子(諸如氯離子)的隔膜或分離器。 在某些實施例中’第一電極可為多孔電極或含有至少— 多孔零件。舉例而言,第一電極可包含多孔含碳材料(諸 如多孔碳發泡體)。在放電模式下,第一電極可充當正電 極,在該電極處鹵素可被還原為鹵素離子。在第一電極中 使用多孔材料可提高鹵素反應物之還原的效率。 在許多實施例中,第二電極可包含可氧化金屬(亦即, 可在放電模式期間被氧化以形成陽離子的金屬)。在許多 實施例中,第二電極可包含與金屬幽化物電解質之組份甲 之一者中的金屬離子為同一類型的金屬。舉例而言,當金 屬鹵化物電解質包含鹵化鋅(諸如氣化鋅)時,第二電極可 包含金屬#。在此狀況下,電化學系統可充當可逆系統。 因此,在一些實施例十,電化學系統可為可逆的(亦 即,能夠在充電操作模式與放電操作模式兩者下工作)或 為非可逆的(亦即,僅能夠在放電操作模式下工作”可逆 電化學系統通常利用電解質中之至少一金屬齒化物,以使 得金屬齒化物之金屬在其還原形式下足夠強大且穩定以能 夠形成電極。可用於可逆系統中之金屬函化物包括鹵化 鋅,因為元素鋅足夠穩定以能夠形成電極。另一方面,非 可逆電化學系統不利用滿足上述要求之金屬齒化物。用於 非可逆系統中之金屬齒化物的金屬通常在其還原、元素形 式下不穩定且強大的以能夠形成電極。此等不穩定金屬及 I49813.doc 201112468 其對應金屬鹵化物的實例包括鉀(κ)與南化鉀及鈉(Na)與 鹵化鈉。金屬齒化物電解質可為電解水溶液。電解質可為 至少一金屬函化物電解質化合物(諸如Ζηα)之水溶液。舉 例而言,該溶液可為ZnCl之15%至50%水溶液(諸如ZnC& 25%溶液)。在某些實施例中,電解質可含有一或多種添加 劑,其可增強電解溶液之導電率。舉例而言,當電解質含 有ZnCl時,此添加劑可為鈉或鉀之一或多種鹽(諸如 或 KC1)。 圖1說明電化學系統1 〇〇,其包括密封容器丨〇丨中所含有 的至少一電化學電池、電解質及函素反應物。密封容器 101較佳為壓力圍阻器亚,其經組態以維持其内容積丨中 咼於一個大氣壓的壓力。較佳地,密封容器1〇1經組態以 維持其内容積中高於函素反應物(諸如元素氣)之液化壓力 的壓力。為在諸如1(TC至4(rc之常溫下起作用密封容器 可經組態以維持至少75 psi或至少1〇〇 psi或至少i25 pd或 至少150 Psi或至少175 psi或至少· psi或至少25g㈣或至 少300 psi或至少35〇 psi或至少彻_或至少彻㈣或至少 500 psi或至少550 psi或至少_㈣(諸如75至65〇叫或” 至400 psi及先前所描述之所有子範圍)的内部壓力。密封 容态之壁可包含能夠經受住所需壓力的結構材料。此材料 之一非限制性實例為不鏽鋼。 密封容器1〇1内部所含有之至少-電化學電池較佳為水 平定位型電池,其可包括藉由—間隙而分離之水平正電極 及水平負電極。水平^位型電池可為有利的,因為當液體 149813.doc 201112468 之循環歸因於(例如)關斷排放泵或充填栗而停止時,某一 里之液體(電解質及/或_素反應物)可保留於電池之反應區 中。液體之量可使得其在同一電池之正電極與負電極之間 提供電接觸。反應區中之液體之存在可允許在金屬齒化物 電解質及南素試劑之循環恢復時較快速地重新啟動電化學 系統(與利用垂直定位型電池之系統相比),同時提供分路 中斷。反應區中之電解質之存在可允許電池在不存在循環 的情況下保持電荷且因此確保系統提供不中斷電源 (UPS)。水平定位型電池與用作齒素反應物之液化氯反應 物結合亦可防止或減少在操作期間形成氣氣泡。 在°午夕貫施例中,密封容器可含有一個以上之電化學電 池。在某些實施例中,密封容器可含有可串聯連接之複數 個電化學電池n實施例中’串聯連接之複數個電化 學電池可配置成一堆疊。舉例而言,圖之零件1〇3表示 串聯連接之水平定位型電化學電池之一垂直堆疊。水平定 位型電池之堆疊可類似於w〇2〇〇8/〇892〇5之第7頁至第工工 頁及圖1至圖3所揭示的堆疊’該案以全文引用的方式併入 本文中》單一水平定位型電池之優點亦適用於堆疊。 電化學系統可包括-饋送管或歧管,該饋送管或歧管可 在標準放電操作模式下組態以將包含金屬函化物電解質及 液化齒素反應物的混合物傳遞至該至少一電池。電化學系 統亦可包括-返回管或歧管,該返回管或歧管可在放電模 式下組態以自該至少一電化學電池收集電化學反應之產 物。此等產物可為包含金屬函化物電解質及/或液化_素 149813.doc 201112468 反應物之混合物,但與進入電池之混合物相比,該混合物 中之_素反應物的濃度可歸因於放電模式下之_素反應物 之消耗而降低。 舉例而言,在圖1中,饋送管或歧管i 15經組態以將包含 金屬鹵化物電解質及液化鹵素反應物之混合物傳遞至該堆 疊103之水平定位型電池。返回管或歧管i2〇經組態以自該 堆疊之電池收集電化學反應之產物。如將進一步論述,在 些貫施例中,饋送管或歧管及/或返回管或歧管可為用 於水平定位型電池之堆疊的堆疊總成之一部分。在一些實 施例中,可直接由器皿1〇1之壁支撐堆疊1〇3。在又一些實 施例中,可由連接至器皿1〇1及/或儲集器119之壁的一或 多個官、支柱或管柱(string)支撐堆疊1〇3。 饋送管或歧管及返回管或歧管可連接至儲集器119,該 儲集器119可含有液化(例如,液態)函素反應物及/或金屬 幽化物反應物。此儲集器可位於密封容器1〇1内。儲集 "°饋送管或歧管、返回管或歧管及該至少一電池可形成 迴路環路以用於將金屬齒化物電解質及液化齒素反應物循 環。 金屬齒化物電解質及液化齒素反應物可在充電模式及放 電模式下以相反方向流動穿過迴路環路。在放電模式中, 饋送官或歧官115可用於將金屬齒化物電解質及液化鹵素 反應物自儲集器119傳遞至該至少一電池,且返回管或 歧官120可用於將金屬齒化物電解質及液化鹵素反應物自 «亥至少一電池傳遞回至儲集器。在充電模式下,返回管或 1498l3.doc 201112468 歧管120可用於將金屬_化物電解質及/或液化鹵素反應物 自儲集器119傳遞至該至少一電池1〇3 ,且饋送管或歧管 U5可用於將金屬鹵化物電解質及/或液化_素反應物自該 至少一電池103傳遞回至儲集器119。 在一些實施例中,當系統利用水平定位型電池之垂直堆 疊時,返回管或歧管120可為向上行進之返回管或歧管。 管120包括向上延伸區段121及向下延伸區段122〇金屬鹵 化物電解質及液化_素電解質之液流在放電模式下離開堆 疊103的電池向上穿過區段121,且接著向下穿過區段122 直至儲集器。向上行進之返回管或歧管可防止液流大部分 穿過堆疊103的底部電池,藉此在該堆疊的電池之間提供 較均一的液流路徑阻力。 電化學系統可包括用於抽汲金屬函化物電解質及液化鹵 素反應物的一或多個泵。此泵可位於或可不位於密封容器 之内容積内《舉例而言,圖1展示排放泵123,該排放泵 123以流體方式連接儲集器119與饋送管或歧管115,且其 經組態以在放電模式下穿過饋送管或歧管丨15,將金屬鹵 化物電解質及液化齒素反應物傳遞至電化學電池丨〇3。在 一些實施例中,電化學發電系統可包括在圖1中被描繪為 零件124的充填泵。該充填泵以流體方式將返回管或歧管 120連接至儲集器119’且可用以在充電模式下穿過返回管 或歧管,將金屬齒化物電解質及液化齒素反應物傳遞至電 化學電池。在一些實施例中,電化學系統可包括充填泵與 排放泵兩者《充填泵及排放泵可經組態以在相反方向上穿 149813.doc •12- 201112468 過包括饋送管或歧管及返回泵或歧管的迴路環路抽汲金屬 鹵化物電解質及液化_素反應物。充填泵及排放泵宜以一 方式組態,使得在一給定時間僅一個泉操作。此配置可改 良系統的可靠性並提高系統的使用壽命。相反栗配置亦可 允許吾人在系統中不使用一用於在充電模式與放電模式之 間切換的閥。此切換閥的成本通常可能大於一額外泵。因 此,相反泵配置可降低系統的總成本。用於系統中之泵可 為向心泵。在一些實施例中,宜使用能夠提供至少30 L/min之抽汲速率的栗。 圖1將儲集器描纷為零件i! 9。儲集器】丄9可由對_素反 應物為惰性的材料製成。此惰性材料之一非限制性實例可 為聚合物材料’諸如聚氯乙稀(pvc)。儲集器ιΐ9亦可儲存 金屬鹵化物電解質β在此狀況下’若將液化氣用作液化函 素反應物,則氣可歸因於其較高密度(比重)及/或藉由如下 文多看圖7及圖8所&述之分離元件而與金屬函化物電解質 刀離圖1展不位於儲集器之下方部分處的液化氯(零件 126)及位於儲集&中之液化氣上方的金屬函化物電解質(零 件125)。 儲集器119可含有一用於液化鹵素反應物之饋送管線’ 其可將齒素反應物126供應至系統之饋送管或歧管ιΐ5。可 在排放粟123别、在排放粟123處或在排放录123後發生齒 素反應物饋送官線與系統之饋送歧管之間的連接。在一些 實施例中齒素反應物饋送管線與系統之饋送歧管之間的 連接可包3 —混合文氏管。® 1將用於液化鹵素反應物之 149813.doc 201112468 饋送官線呈現為零件127。饋送管線127(諸如管或管道)之 入口可延伸至儲集器119之可儲存有液化自素反應物(諸如 液化氣反應物)的下方部分126。饋送管線127之出口連接 至排放系123之入口。電解質引入饋送管線(諸如管或管道 132)可延伸至金屬函化物電解質所在之上方部分us ^ 在一些實施例中,儲集器119可包括一或多個集液板, 八可為(例如)其中具有孔之水平板。當液化鹵素反應物(諸 如液化氯反應物)在放電模式下(例如)自返回管或歧管12〇 返回至儲集器119時,集液板可促進使該液化函素反應物 在儲集器之下方部分126處沈降。儲集器119較佳地(但未 必)位於電池1〇3之堆疊下方。 在些實施例中,儲集器i! 9可包括一或多個隔板。此 等隔板可為位於儲集器之頂部及底部的垂直板。該等隔板 可減少及/或防止金屬齒化物電解質及液化函素反應物之 返回液流中的渦流,藉此增強儲#器中液化齒素與金屬齒 化物電解質的分離。 在某些實施例中,排放泵可相對於儲集器而定位以使身 其入口 /出口位於儲集器中之金屬齒化物電解質的上水^ 面下方。在某些實施例中,排放泵之入口 /出口可水平如 或基本上水平地定位。在此配置中,金屬_化物電解質石 液化齒素反應物之液流在排放泵中可形成自入口 、 T之水斗 方向至饋送歧管或管115中之垂直方向的9〇度轉向。在一 些實施例中,排放泵123之入口可包括鐘口件, ' 该鐘口件 可減慢液流且藉此防止/減少儲集器中之奈流之形成 J49813.doc 14 201112468 充填系亦可經定位而使其入口/出口位於儲集器中之金 屬#化物電解質的上水平面下方。在某些實施例中,充填 系之入口/出口可位於比排放泉之入口/出口低的水平面 處,。充填栗之人口/出σ亦可具有鐘口件,該鐘口件可減 慢液流且藉此防止/減少儲集器中之I流之形成。 圖6說明儲集器119,其具有:下方部分126,其可含有 液化齒素反應物(諸如液化分子氣反應物);上方部分⑵, 其可含有金屬•化物反應物;分離元件,諸如水平集液板 6〇3、垂直隔板6〇4、排放泵之水平入〇6〇5、充填录之水 平出口 606及液化幽素反應物之饋送管線6〇7,該饋送管線 607具有位於儲集器之下方部分126中的入口且連接至排放 栗之入口 6G5。集液板6〇3大致定位於預期金屬齒化物電解 質與齒素反應物之間的邊界所在的水平面處。線6〇8示意 性地枯繪健集器中之金屬函化物電解質的上水平面。排放 系之入π6〇5及充填杲之出σ嶋可穿過儲集器之壁突起。 在-些實施例中’電化學系統可包括一控制零件,該控 制零件可用於(例如)控制排放栗之速率、充填栗之速率及/ 或將函素反應物饋送至電解質中的速率。此控制零件可為 類比電路。圖1將控制零件描繪為零件128,其可控制以下 多數中之&多者:充填泵124及排放泵123之速率及液化 氣反應物穿過饋送管線127之饋送速率。 密封容器之内容積可具有若干加壓區,每-加壓區具有 7不同壓力。舉例而言’内容積可包括第-區及第二區, 該第二區具有高於第一區之壓力的壓力。在一些實施例 149813.doc •15· 201112468 中,第一區可由第二較高壓力區包封或包圍。第一區可含 有電解質/液化鹵素反應物迴路(亦即,儲集器119、電池 103、泵123及124、歧管115、120),而第二包圍或包封區 可為位於第一區與密封容器101之壁之間的空間。在圖1 中’電池103、饋送歧管或管115、儲集器119(包括位於儲 集器之上方部分125中的金屬鹵化物反應物及位於其下方 部分126中的液化函素反應物)及返回歧管或管120皆可位 於第一壓力區中,而較高壓力之第二區可由器皿1〇丨之内 容積的區域129、130及131表示。 在此配置中,第一區中之壓力可為足以在一給定溫度下 使鹵素反應物液化的壓力。此壓力可為至少75 pSi或至少 100 psi或至少125 psi或至少150 psi或至少175 psi或至少 200 psi或至少250 psi或至少300 psi或至少350 psi或至少 400 psi(諸如75至450 psi或75至400 psi及之間的所有子範 圍)。同時’第二壓力區中之周圍壓力可高於第一區之最 大操作壓力。此周圍壓力可為至少75 pSi或至少1〇〇 pSjj或 至少125 psi或至少15〇 pSi或至少175 psi或至少200 psi或至 少250 psi或至少3〇〇 psi或至少350 psi或至少4〇〇 psi或至少 450 psi或至少500 psi或至少55〇 psi或至少6〇〇 psi(諸如75 至650 psi或200至650 psi或400至650 psi及之間的所有子範 圍)。 S亥包封配置可提供若干優點。舉例而言,若發生自第一 區/迴路環路之洩漏,則包圍之第二區中之較高壓力可導 致洩漏之組份向第一區内流動’❿非朝外流動。且,包圍 149813.doc • 16 - 201112468 之較咼壓力區可降低/防止在第一區/迴路環路之組件(包括 由塑膠製成的組件(諸如歧管及儲集器之壁))上傳播疲勞裂 縫。加壓包封配置亦可允許將較薄外壁用於密封容器/器 皿,儘管如此,該等外壁仍可防止可負面地影響金屬_化 物電解質及液化!|素反應物之内部液流幾何形狀的變形。 在缺乏加壓之第二區的情況下,可能需要較厚外壁以防止 此(尊)變形(歸因於對抗内部較高壓力之膨脹力的未支撐結 構)。 在某些實施例中,密封容器/器m之外壁可由一圓柱形 組件及兩個圓形端板形成,該等圓形端板中之一者可置放 於圓柱形組件頂部且另一者可置放於底部以便密封該器 孤。與在外壁暴露至在系統操作期間所產生之可變壓力時 的狀況相比,將加壓包封配置用於此等外壁允許使用較薄 端板而不暴露金屬齒化物電解質及液化鹵素反應物之内部 液流幾何形狀。 第二壓力區可被填充惰性氣體(諸如氬或氮)。在一些實 施例中,第二壓力區亦可含有額外組份,其可中和自第— 區洩漏之試劑(諸如鹵素反應物)及/或修復第一區/迴路環 路之壁。此額外材料可為(例如)蘇打灰。因此,空間129、 130及131可被填充蘇打灰。 可如下製造呈加壓包封配置之電化學系統。首先,可製 造用於金屬函化物電解質及液化齒素試劑之密封迴路環 路。該密封迴路環路可使得其能夠維持一高於給定溫度2 液化齒素之液化壓力的内壓。該密封迴路環路可包括以下 149813.doc 17 201112468 零件中之一或多者:一或多個電化學電池;一儲集器用於 儲存金屬函化物電解質及液化_素反應物;一饋送歧管或 管,其用於將金屬鹵化物電解質及液化_素反應物自儲集 器傳遞至該一或多個電池;一返回歧管,其用於將金屬函 化物電解質及液化齒素反應物自一或多個電池傳遞回至儲 集器;及一或多個泵。在製造迴路環路之後,可將其置放 於器皿或容器的内部,該器JHL或容器稍後可加壓至一高於 迴路環路之最大操作壓力的壓力且密封。可藉由抽入惰性 氣體(諸如氬氣或氮氣)及視情況一或多種額外組份來執行 器皿之加壓。當器皿之壁由一圓柱形組件及兩個端板形成 時,密封程序可包括位於圓柱形組件之頂部及底部的端 板。 圖2說明在放電模式下金屬齒化物電解質及液化函素反 應物之液流穿過堆疊(諸如圖丨之堆疊1〇3)之水平定位型電 池的路徑《圖2中之電解質液流路徑由箭頭表示。對於該 堆疊中之電池中的每一者而言,液流可自饋送管或歧管 ^以圖!令之零件115)行進至分佈區22中,穿過多孔「氯」 電極23行進於金属電極25(其可包含基材(其可為(例如)鈦 基材或鍍釕之鈦基材)及基材上之可氧化金屬(其可為(例 如)鋅))上,仃進至收集區26 ’穿過向上之返回歧管27(圖1 中之零件121),且行進至返回管29(圖j中之零件122)。 在一些實施例中,零件24可置放於金屬電極乃之底部。 在又一些其他實施例中,可省略此零件。零件24之目的可 為防止金屬齒化物電解質之液流在通過位於下方之鄰近電 149813.doc 201112468 池的多孔電極時接觸活性金屬 24可包含聚合物或塑膠材料。 電極。在一些狀況下,零件 文予以更詳細論 電池之正電極與 其可為聚合材料 圖2亦展示障壁3〇。每一障壁3〇可為下 述之電池框架的一部分。障壁3〇可將同一 負電極分離。障壁3〇可包含電絕緣材料, (諸如聚氣乙稀(PVC))。 在圖2中所描緣之組態中’金屬_化物電解質可向下流 動穿過多孔電極且接著向上流動而離開電池。此向下及向L 上液流路徑可實現每__電池t之多孔電極與金屬電極之電 接觸,而使得當電解質液流停止且饋送歧管、分佈區、收 集區及返回歧管排空時一池金屬齒化物電解質保留於每一 電池中。此接觸可允許在液流停止時維持電池堆疊中之電 連續性且可在無連續泵操作的情況下提供不中斷電源 (UPS)應用。每-電池内之向τ及向上液流路徑亦可中斷 原本在電解質液流停止時將出現的分路電流。該等分路電 流並非為所要的,因為其可導致儲存於系統中之能量的不 良自放電及遍及該堆疊之一或多種活性材料(諸如可氧化 金屬(諸如Ζη))之不利的非均一分佈。 圖5進一步說明穿過堆疊式電池之液流路徑,該等堆聂 式電池將ZnCh用作例示性金屬鹵化物電解質且將cl〗用作 例示性鹵素反應物。圖5中之堆疊包括:電池521,其在正 電極504(例如,多孔碳「氣」電極)與負電極5〇2(例如,鋅 電極)之間具有反應區506 ;及電池522 ’其在正電極5〇5與 負電極503之間具有反應區507。電池522之負電極5〇2電連 149813.doc •19- 201112468 接至電池52 1之正電極5〇5,藉此在堆疊之電池之間提供電 連續丨生。5亥等負電極中之每一者可包含導電、不能滲透之 零件,其類似於圖2中之零件24。此零件被展示為電極5〇2 之零件509及電極5〇3之零件51〇。 圖5亦展示疋位於電池521之正電極上方的電極或 終端板。當電池521為頂部終端電池時,電極5〇1可為該堆 疊之終端正電極。若電池521並非終端電池,則電極52ι可 為堆疊之鄰近電池的負電極。正電極別及⑽較佳為多孔 電極(諸如多孔含碳電極(諸如碳發泡體電極))。 。玄等電池可以一方式配置於該堆疊中以使得電池間距離 可顯著大於該堆疊之—特定電池的正電極與負電極之間的201112468 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to electrochemical systems, such as flow battery packs, and methods of using such electrochemical systems. The present application claims the rights of U.S. Patent Application Serial No. 61/364, 631, filed on Jul. 24, 2009, to the U.S. Patent Application Serial No. 61/364, 633, filed on Jul. The patent towel application is hereby incorporated by reference in its entirety. [Prior Art] The development of regenerative energy has revived the need for large-scale battery packs for off-peak energy storage. The requirements for this application are different from those of other types of rechargeable battery packs, such as lead-acid battery packs. Battery packs that are generally required for off-peak energy storage in power grids are low capital cost, long cycle life, high efficiency, and low maintenance. One type of electrochemical energy system suitable for this energy storage is the so-called "flow battery" which uses a functional component for reduction at a normal positive electrode and is adapted for normal operation of the electrochemical system. It becomes an oxidizable oxidizable metal at the usual negative electrode. The aqueous metal halide electrolyte is used to supplement the supply of the dentate component when the halogen component becomes reduced at the positive electrode. The electrolyte circulates between the electrode area and the reservoir area. An example of this system would be used as a metal and chlorine as a function. The electrochemical energy system is described in, for example, U.S. Patent Nos. 3,713,88, 3,993,502, 4,001,036, 4,072,540, 4,146,680, and 4,414,292 The published day 149813.doc 201112468 is the April 1979 EPRI report EM-105 1 (part ι·3), and the disclosures of these patents and the EPRI report ΕΜ-Ι051 are in full text and Into this article. SUMMARY OF THE INVENTION In one embodiment, an electrochemical system, such as a flow battery, includes a vessel. The vessel comprises: (a) at least one battery comprising a first electrode, a second electrode, and a reaction zone between the first electrode and the second electrode; (b) - a reservoir comprising a configured Selectively accumulating a first volume of the metal toothed electrolyte component and a second volume configured to selectively accumulate the liquefied dentate reactant; (c) a separating element that will first and second volumes Separating; and (d) a flow loop configured to transfer a _-reactant and a metal- hydride electrolyte between the reservoir and the at least one battery. In a preferred embodiment, the separation element comprises a molecular sieve or a selective porous membrane. In another embodiment, a method of operating an electrochemical system includes: providing a system comprising a vessel, the vessel comprising: (a) at least one battery comprising a first electrode, a second electrode, and the first electrode a reaction zone with the second electrode; and (b) a reservoir containing a first valley product and a first grain product separated by a separation element. The method further includes: bringing the metal from the first volume! a compound electrolyte component is mixed with a liquefied halogen reactant from a second volume to form an electrolyte mixture; an electrolyte mixture is supplied to the at least one battery in a discharge mode to generate electricity; and an electrolyte mixture is returned from the at least one battery to the reservoir The first volume in the collector is such that the unused liquefied dentate reactant from the returned electrolyte mixture permeates from the first volume through the 149813.doc 201112468 through the separation element to the second volume. In still another embodiment, the method further comprises: providing a metal toothed electrolyte component from the first volume to the at least one battery to charge the electrochemical system in a charging mode; and causing the electrolyte to be from the at least one battery Returning to the first volume in the reservoir such that any liquefied halogen reactant in the returned electrolyte permeates from the first volume through the separation element to the second volume. In a further embodiment, the separating element comprises a liquid collecting plate, such as a flat liquid collecting plate or a curved curved plate having at least two openings. In the configuration, the separating element is a substantially frustoconical or funnel-shaped sheet. The frustoconical or funnel-shaped separator has a circular or elliptical horizontal cross-sectional shape and the opening on the first end has a larger size than the opening on the opposite second end. The frustoconical shape can have a steadily increasing lateral beam size from the second end to the first end and a relatively constant inclined side wall. The funnel shape may have an unsteady increase (i.e., jump) of the cross-sectional size from the second end to the first end and one or more of the sloped sidewalls. [Embodiment] The following documents, the disclosures of which are hereby incorporated by reference in their entirety, are hereby incorporated by reference in their entirety in the the the the the the the the the the The embodiments disclosed herein relate to an electrochemical system (sometimes referred to as a "flow battery pack"). The electrochemical system utilizes a metal dentate electrolyte and a (iv) reactant such as molecular chlorine. The metal-based electrolyte and the fragrant compound in the halogen reactant may be of the same type. For example, when the halogen reactant is molecular chlorine, the metal toothed electrolyte may contain at least one metal 149813.doc 201112468 chloride. The electrochemical system can include a sealed vessel containing an electrochemical cell, a metal-based electrolyte, and a hydroxyl reactant in its internal volume and configured to deliver the metal-electrolyte and dentate reactants to The flow loop of the electrochemical cell. The sealed vessel can be a pressure vessel containing an electrochemical cell. The _ prime reactant can be, for example, a molecular gas reactant. In many embodiments, the dentate reactant can be used in a liquefied form. The sealer is so isolated that it maintains an internal pressure above the liquefaction pressure of the halogen reactant at a given ambient temperature. The liquefaction pressure of the specific element reactant at a given temperature can be determined from the phase map of the element. For example, Figure 4 shows a phase diagram of elemental chlorine from which the liquefaction pressure at a given temperature can be determined. Systems utilizing liquefied dentate reactants in sealed vessels do not require a compressor, and compressors are commonly used in other electrochemical systems for compressing gaseous halogen reactants. Systems utilizing liquefied dentate reactants do not require a separate reservoir for the elementary reactants, which may be external to the internal volume of the sealed vessel. The term "liquefied-acid reactant" refers to at least one of: a molecular element dissolved in water, which is also known as wet-type or aqueous dentate; and a "dry" liquid molecular element, Not dissolved in water. Similarly, the term "liquefied chlorine" can refer to at least one of: molecular gas dissolved in water, also known as wet chlorine or chlorine water; and "dry" liquid milk, which is not dissolved in water. . In many embodiments the system uses liquefied molecular gas as a dentate counter. Liquefied molecular chlorine has a gravity that is approximately twice that of water. The flow loop contained in the sealed vessel may be a closed loop loop, the 1498J3.doc 201112468 configuration configured to deliver a halogen reactant (lightly liquefied or liquid state) and at least one electrolyte to the battery and/or The 哕 main/electrical (荨) battery transfers a dentate reactant (preferably in a liquefied or liquid state) and at least one electrolyte. In many embodiments, the loop loop can be a sealed loop loop. Although it is circulated through the closed loop, and the damage (such as halogen reactant and metal toothed electrolyte) is preferably liquefied, the closed loop may contain ## „ peony in 3 with a certain amount of gas (such as chlorine gas) Preferably, the 'loop nuclear path allows the metal dentate electrolyte and the dentate reactant to circulate through the same __ liquid flow path without the separator in the battery. Each of the electrochemical cells can be used The poor mother f contains a first electrode which can serve as a positive electrode in a standard discharge mode, and a second electrode which can serve as a negative electrode in a standard discharge mode; and a reaction zone between the electrodes. In many embodiments, the reaction zone may be such that no separation of halogen reactants, such as a hydroxyl reactant or ionization factor reactant dissolved in the water of the electrolyte solution, occurs in the reaction zone. For example, when the tooth reaction When the substance is a liquefied gas reactant, the reaction zone may cause separation of chlorine reactants (such as gas reactants or gas ions dissolved in water of the electrolyte solution) in the reaction zone. The reaction zone may make it the same There is no membrane or separator between the positive and negative electrodes of the battery that is impermeable to dentate reactants, such as halogen reactants or ionized halogen reactants dissolved in the electrolyte solution. For example, the reaction zone can It does not contain a membrane or separator that is impermeable to liquefied gas reactants, such as gaseous reactants or chloride ions dissolved in water of the electrolyte solution, between the positive and negative electrodes of the same battery. In many embodiments, the reaction zone Separation of the halogen ions (such as the i-form ions formed by reduction of the functional reactants 149813.doc 201112468 at one of the electrodes) with the remainder of the liquid stream may not occur in the reaction zone. In other words, the reaction zone can be such that it does not contain a membrane or separator that is impermeable to pheromone ions, such as chloride ions, between the positive and negative electrodes of the same cell. In certain embodiments, the first electrode can be a porous electrode. Or contain at least - a porous part. For example, the first electrode may comprise a porous carbonaceous material (such as a porous carbon foam). In the discharge mode, The electrode can act as a positive electrode at which the halogen can be reduced to a halide ion. The use of a porous material in the first electrode can increase the efficiency of reduction of the halogen reactant. In many embodiments, the second electrode can comprise an oxidizable metal (ie, a metal that can be oxidized to form a cation during the discharge mode.) In many embodiments, the second electrode can comprise a metal of the same type as the metal ion of one of the components of the metal-thickening electrolyte. For example, when the metal halide electrolyte comprises a zinc halide, such as zinc sulfide, the second electrode can comprise metal #. In this case, the electrochemical system can act as a reversible system. Thus, in some embodiments, The electrochemical system can be reversible (ie, capable of operating in both a charge mode of operation and a discharge mode of operation) or be non-reversible (ie, can only operate in a discharge mode of operation). Reversible electrochemical systems typically utilize electrolytes At least one metal toothing such that the metal of the metal toothing is sufficiently strong and stable in its reduced form to enable formation Pole. The metal complexes that can be used in the reversible system include zinc halides because the elemental zinc is sufficiently stable to be able to form electrodes. On the other hand, the irreversible electrochemical system does not utilize metal toothings that satisfy the above requirements. Metals used in metal dentates in non-reversible systems are generally unstable and strong in their reduction, elemental form to enable the formation of electrodes. Examples of such unstable metals and I49813.doc 201112468 Examples of corresponding metal halides include potassium (κ) and potassium and sodium (Na) and sodium halides. The metal toothed electrolyte may be an aqueous electrolytic solution. The electrolyte may be an aqueous solution of at least one metal complex electrolyte compound such as Ζηα. For example, the solution can be a 15% to 50% aqueous solution of ZnCl (such as a ZnC & 25% solution). In certain embodiments, the electrolyte may contain one or more additives that enhance the conductivity of the electrolytic solution. For example, when the electrolyte contains ZnCl, the additive may be one or more salts of sodium or potassium (such as or KCl). Figure 1 illustrates an electrochemical system 1 comprising at least one electrochemical cell, electrolyte, and hydroxyl reactant contained in a sealed container crucible. The sealed container 101 is preferably a pressure containment unit that is configured to maintain a pressure in its internal volume that is at one atmosphere. Preferably, the sealed container 101 is configured to maintain a pressure in its internal volume that is higher than the liquefaction pressure of the nutrient reactant (such as elemental gas). To seal a container at a temperature such as 1 (TC to 4 at room temperature rc can be configured to maintain at least 75 psi or at least 1 psi or at least i25 pd or at least 150 Psi or at least 175 psi or at least psi or at least 25g (d) or at least 300 psi or at least 35 psi or at least _ or at least (four) or at least 500 psi or at least 550 psi or at least _ (four) (such as 75 to 65 〇 or " to 400 psi and all subranges previously described The internal pressure of the sealed volume may comprise a structural material capable of withstanding the required pressure. One non-limiting example of this material is stainless steel. At least the electrochemical cell is preferably contained within the sealed container 1〇1. Positioning type batteries, which may include horizontal positive electrodes and horizontal negative electrodes separated by a gap. Horizontal level batteries may be advantageous because the circulation of liquid 149813.doc 201112468 is attributed to, for example, shutdown emissions When the pump or the pump is filled and stopped, a certain liquid (electrolyte and/or _-reactant) may remain in the reaction zone of the battery. The amount of liquid may be such that it is provided between the positive electrode and the negative electrode of the same battery. Electricity The presence of a liquid in the reaction zone allows the electrochemical system to be restarted more quickly when the metal dentate electrolyte and the nitrite reagent are recovered (compared to a system utilizing a vertically positioned battery) while providing a shunt interrupt The presence of the electrolyte in the reaction zone allows the battery to retain charge in the absence of circulation and thus ensures that the system provides an uninterruptible power supply (UPS). The horizontally positioned battery is also combined with the liquefied chlorine reactant used as a dentate reactant. The formation of air bubbles during operation may be prevented or reduced. In a midnight embodiment, the sealed container may contain more than one electrochemical cell. In some embodiments, the sealed container may contain a plurality of electrochemicals that may be connected in series In the battery n embodiment, a plurality of electrochemical cells connected in series may be configured in a stack. For example, the components 1 〇 3 of the figure represent one of the horizontally stacked electrochemical cells connected in series, and the vertical stacking of the horizontally positioned cells. It can be similar to the stack disclosed on page 7 of the w〇2〇〇8/〇892〇5 to the sheet of work and Figures 1 to 3' The manner in which the single horizontally positioned battery is incorporated herein is also applicable to stacking. The electrochemical system can include a feed tube or manifold that can be configured in a standard discharge mode of operation to include metal A mixture of a functional electrolyte and a liquefied dentate reactant is delivered to the at least one battery. The electrochemical system can also include a return tube or manifold that can be configured in the discharge mode to be at least one electrochemical The battery collects the product of the electrochemical reaction. These products may be a mixture comprising a metal complex electrolyte and/or a liquefied 149813.doc 201112468 reactant, but the γ reaction in the mixture compared to the mixture entering the battery The concentration of the species can be reduced due to the consumption of the cytokine reactant in the discharge mode. For example, in Figure 1, a feed tube or manifold i 15 is configured to deliver a mixture comprising a metal halide electrolyte and a liquefied halogen reactant to a horizontally positioned battery of the stack 103. The return tube or manifold i2 is configured to collect the product of the electrochemical reaction from the stacked cells. As will be further discussed, in some embodiments, the feed or manifold and/or return or manifold can be part of a stacked assembly for stacking of horizontally positioned cells. In some embodiments, the stack 1〇3 can be supported directly by the wall of the vessel 1〇1. In still other embodiments, the stack 1〇3 may be supported by one or more posts, struts or strings connected to the walls of the vessel 1〇1 and/or the reservoir 119. The feed or manifold and return or manifold may be coupled to a reservoir 119, which may contain a liquefied (e.g., liquid) nutrient reactant and/or a metal fragrant reactant. This reservoir can be located in the sealed container 1〇1. The reservoir "° feed or manifold, return or manifold and the at least one battery may form a loop loop for circulating the metal toothed electrolyte and the liquefied dentate reactant. The metal dentate electrolyte and the liquefied dentate reactant can flow through the loop loop in opposite directions in the charge mode and the discharge mode. In the discharge mode, the feed officer or the manifold 115 can be used to transfer the metal dentate electrolyte and the liquefied halogen reactant from the reservoir 119 to the at least one battery, and the return tube or manifold 120 can be used to metallize the electrolyte and The liquefied halogen reactant is transferred back to the reservoir from at least one battery. In the charging mode, a return tube or 1498l3.doc 201112468 manifold 120 can be used to transfer the metal-based electrolyte and/or liquefied halogen reactant from the reservoir 119 to the at least one battery 1〇3, and the feed tube or manifold U5 can be used to transfer the metal halide electrolyte and/or liquefaction reactant back from the at least one battery 103 to the reservoir 119. In some embodiments, when the system utilizes a vertical stack of horizontally positioned cells, the return tube or manifold 120 can be a return tube or manifold that travels upward. The tube 120 includes an upwardly extending section 121 and a downwardly extending section 122. The liquid metal halide electrolyte and the liquid of the liquefied-electrolyte flow out of the stack 103 in the discharge mode through the section 121, and then pass down through Section 122 up to the reservoir. The return tube or manifold traveling upwards prevents most of the flow from passing through the bottom cell of the stack 103, thereby providing a more uniform flow path resistance between the stacked cells. The electrochemical system can include one or more pumps for pumping the metal complex electrolyte and liquefying the halogen reactant. The pump may or may not be located within the inner volume of the sealed container. For example, Figure 1 shows a drain pump 123 that fluidly connects the reservoir 119 to the feed tube or manifold 115 and is configured The metal halide electrolyte and the liquefied dentate reactant are delivered to the electrochemical cell 3 by passing through a feed tube or manifold 15 in a discharge mode. In some embodiments, an electrochemical power generation system can include a fill pump depicted as part 124 in FIG. The fill pump fluidly connects the return tube or manifold 120 to the reservoir 119' and can be used to pass the metal dentate electrolyte and the liquefied dentate reactant to the electrochemical cell through the return tube or manifold in a charging mode battery. In some embodiments, the electrochemical system can include both a fill pump and a drain pump. The fill pump and drain pump can be configured to pass in the opposite direction. 149813.doc • 12- 201112468 over including the feed tube or manifold and return The circuit loop of the pump or manifold draws the metal halide electrolyte and the liquefied reactant. The filling pump and the discharge pump should be configured in such a way that only one spring is operated at a given time. This configuration improves system reliability and increases system life. The opposite configuration also allows us to use a valve in the system that switches between charging mode and discharge mode. The cost of this switching valve can often be greater than an extra pump. Therefore, the opposite pump configuration can reduce the overall cost of the system. The pump used in the system can be a centripetal pump. In some embodiments, a pump that is capable of providing a pumping rate of at least 30 L/min is preferred. Figure 1 shows the reservoir as part i! 9. The reservoir 丄9 can be made of a material that is inert to the _ 素 reactant. One non-limiting example of such an inert material can be a polymeric material such as polyvinyl chloride (pvc). The reservoir ιΐ9 can also store the metal halide electrolyte β. In this case, if liquefied gas is used as the liquefaction element reactant, the gas can be attributed to its higher density (specific gravity) and/or by the following Referring to the separation element described in Figures 7 and 8 and the metallization electrolyte knife, the liquefied chlorine (part 126) located at the lower portion of the reservoir and the liquefied gas located in the reservoir & Upper metallization electrolyte (part 125). The reservoir 119 can contain a feed line for liquefying the halogen reactants. It can supply the dentate reactant 126 to the feed tube or manifold ι of the system. The connection between the dentate reactant feed line and the feed manifold of the system may occur at the discharge mill, at the discharge mill 123 or after the discharge record 123. In some embodiments the connection between the dentate reactant feed line and the feed manifold of the system may comprise a mixed venturi. ® 1 presents the 149813.doc 201112468 feed official line for liquefying halogen reactants as part 127. The inlet of feed line 127 (such as a tube or tube) can extend to a lower portion 126 of reservoir 119 that can store a liquefied self-reacting reactant, such as a liquefied gas reactant. The outlet of the feed line 127 is connected to the inlet of the discharge system 123. The electrolyte introduction feed line (such as tube or tube 132) can extend to the upper portion of the metal complex electrolyte. In some embodiments, the reservoir 119 can include one or more headers, which can be, for example, There is a horizontal plate with holes. When the liquefied halogen reactant (such as a liquefied chlorine reactant) is returned to the reservoir 119 in a discharge mode, for example, from a return tube or manifold 12, the header plate can facilitate the storage of the liquefaction element reactant in the reservoir The lower portion 126 of the device settles. The reservoir 119 is preferably, but not necessarily, located below the stack of cells 1〇3. In some embodiments, the reservoir i! 9 can include one or more baffles. These baffles can be vertical plates located at the top and bottom of the reservoir. The separators reduce and/or prevent eddy currents in the return stream of the metal toothed electrolyte and the liquefaction reactant, thereby enhancing the separation of the liquefied dentate from the metal toothed electrolyte in the reservoir. In certain embodiments, the discharge pump can be positioned relative to the reservoir such that the body inlet/outlet is located below the upper surface of the metal toothed electrolyte in the reservoir. In some embodiments, the inlet/outlet of the drain pump can be positioned horizontally or substantially horizontally. In this configuration, the liquid stream of the metallization electrolyte liquefaction dentate reactant can form a 9 degree turn in the discharge pump from the direction of the inlet, the direction of the T bucket to the vertical direction in the feed manifold or tube 115. In some embodiments, the inlet of the drain pump 123 can include a bell mouthpiece, 'the bell mouthpiece can slow down the flow and thereby prevent/reduce the formation of the flow in the reservoir. J49813.doc 14 201112468 It can be positioned such that its inlet/outlet is located below the upper level of the metallization electrolyte in the reservoir. In some embodiments, the inlet/outlet of the filling system can be located at a lower level than the inlet/outlet of the discharge spring. The filled chestnut population/out σ can also have a bell mouthpiece that slows down the flow and thereby prevents/reduces the formation of the I flow in the reservoir. Figure 6 illustrates a reservoir 119 having a lower portion 126 that may contain a liquefied dentate reactant (such as a liquefied molecular gas reactant), an upper portion (2) that may contain a metal reactant reactant, and a separation element such as a level The liquid collecting plate 6〇3, the vertical partition 6〇4, the horizontal inlet 〇6〇5 of the discharge pump, the filled horizontal outlet 606 and the feeding line 6〇7 of the liquefied nucleus reactant, the feeding line 607 has a storage line The inlet in the lower portion 126 of the collector is connected to the inlet 6G5 of the discharge chest. The header plate 6〇3 is positioned substantially at the level at which the boundary between the desired metal toothed electrolyte and the dentate reactant is located. Line 6〇8 schematically plots the upper level of the metal-donate electrolyte in the builder. The 系6〇5 of the discharge system and the σ嶋 of the filling enthalpy can pass through the wall of the reservoir. In some embodiments, the electrochemical system can include a control component that can be used, for example, to control the rate at which the pump is discharged, the rate at which the pump is filled, and/or the rate at which the nutrient reactant is fed into the electrolyte. This control part can be an analog circuit. Figure 1 depicts the control part as a part 128 that can control the majority of the following: the rate at which the pump 124 and the discharge pump 123 are filled and the feed rate of the liquefied gas reactant through the feed line 127. The inner volume of the sealed container may have a plurality of pressurized zones, each having a different pressure. For example, the inner volume can include a first zone and a second zone, the second zone having a pressure that is higher than the pressure of the first zone. In some embodiments 149813.doc • 15· 201112468, the first zone may be enclosed or surrounded by a second, higher pressure zone. The first zone may contain an electrolyte/liquefied halogen reactant loop (ie, reservoir 119, battery 103, pumps 123 and 124, manifolds 115, 120), and the second enclosure or encapsulation zone may be located in the first zone The space between the wall and the sealed container 101. In Figure 1 'battery 103, feed manifold or tube 115, reservoir 119 (including metal halide reactants located in upper portion 125 of the reservoir and liquefaction reactants located in lower portion 126 thereof) And the return manifold or tube 120 can be located in the first pressure zone, and the second zone of higher pressure can be represented by the inner regions 129, 130 and 131 of the vessel 1〇丨. In this configuration, the pressure in the first zone can be a pressure sufficient to liquefy the halogen reactant at a given temperature. The pressure can be at least 75 pSi or at least 100 psi or at least 125 psi or at least 150 psi or at least 175 psi or at least 200 psi or at least 250 psi or at least 300 psi or at least 350 psi or at least 400 psi (such as 75 to 450 psi or 75 to 400 psi and all subranges between). At the same time, the ambient pressure in the second pressure zone can be higher than the maximum operating pressure of the first zone. The ambient pressure can be at least 75 pSi or at least 1 〇〇pSjj or at least 125 psi or at least 15 〇 pSi or at least 175 psi or at least 200 psi or at least 250 psi or at least 3 psi or at least 350 psi or at least 4 〇〇 Psi or at least 450 psi or at least 500 psi or at least 55 psi or at least 6 psi (such as 75 to 650 psi or 200 to 650 psi or 400 to 650 psi and all subranges between). The S-Hold Encapsulation configuration offers several advantages. For example, if a leak from the first zone/loop loop occurs, the higher pressure in the second zone surrounded may cause the leaked component to flow toward the first zone '❿ not outward. Moreover, the helium pressure zone surrounding 149813.doc • 16 - 201112468 can reduce/prevent the components in the first zone/loop loop (including components made of plastic (such as the walls of manifolds and reservoirs)) Spread fatigue cracks. The pressurized encapsulation configuration may also allow for the use of a thinner outer wall for sealing the container/ware, although such outer walls may still prevent the internal flow geometry of the metal-based electrolyte and the liquefied reactant from being adversely affected. Deformation. In the absence of a second zone of pressurization, a thicker outer wall may be required to prevent this (deprecated) deformation (due to an unsupported structure that resists the expansion forces of the internal higher pressure). In some embodiments, the outer wall of the sealed container/mother can be formed by a cylindrical assembly and two circular end plates, one of which can be placed on top of the cylindrical assembly and the other Can be placed at the bottom to seal the device. The use of a pressurized encapsulation configuration for such outer walls allows for the use of thinner end plates without exposing the metal toothed electrolyte and liquefied halogen reactants as compared to the condition when the outer wall is exposed to variable pressures generated during system operation. Internal flow geometry. The second pressure zone can be filled with an inert gas such as argon or nitrogen. In some embodiments, the second pressure zone may also contain additional components that neutralize reagents leaking from the first zone (such as halogen reactants) and/or repair the walls of the first zone/loop loop. This additional material can be, for example, soda ash. Therefore, the spaces 129, 130, and 131 can be filled with soda ash. An electrochemical system in a pressurized encapsulation configuration can be made as follows. First, a sealed loop loop for a metal complex electrolyte and a liquefied lignin reagent can be fabricated. The sealed loop circuit allows it to maintain an internal pressure above a liquefied pressure of a liquefied dentate at a given temperature of 2. The sealed loop circuit can include one or more of the following 149813.doc 17 201112468 parts: one or more electrochemical cells; a reservoir for storing the metal complex electrolyte and the liquefied reactant; a feed manifold Or a tube for transferring a metal halide electrolyte and a liquefied reactant from the reservoir to the one or more batteries; a return manifold for using the metal complex electrolyte and the liquefied dentate reactant One or more batteries are passed back to the reservoir; and one or more pumps. After the loop is manufactured, it can be placed inside the vessel or container, which can later be pressurized to a pressure above the maximum operating pressure of the loop loop and sealed. The pressurization of the vessel can be performed by drawing in an inert gas such as argon or nitrogen and optionally one or more additional components. When the wall of the vessel is formed from a cylindrical assembly and two end plates, the sealing procedure can include end plates at the top and bottom of the cylindrical assembly. Figure 2 illustrates the path of the horizontally-displaced battery of the metal dentate electrolyte and the liquefaction reactant in the discharge mode through a stack (such as stack 1 〇 3). The electrolyte flow path in Figure 2 is The arrow indicates. For each of the cells in the stack, the flow can be from the feed tube or manifold. The part 115) is advanced into the distribution zone 22 and travels through the porous "chlorine" electrode 23 to the metal electrode 25 (which may comprise a substrate (which may be, for example, a titanium substrate or a rhodium-plated titanium substrate) and The oxidizable metal on the substrate (which may be, for example, zinc) is advanced into the collection zone 26' through the upward return manifold 27 (part 121 in Figure 1) and travels to the return tube 29 ( Part 122 in Figure j). In some embodiments, the part 24 can be placed on the bottom of the metal electrode. In still other embodiments, this part may be omitted. The purpose of the part 24 may be to prevent the flow of the metal toothed electrolyte from contacting the active metal 24 while passing through the porous electrode of the adjacent cell 149813.doc 201112468, which may comprise a polymer or plastic material. electrode. In some cases, the parts are more detailed. The positive electrode of the battery and its polymerizable material. Figure 2 also shows the barrier 3〇. Each of the barriers 3 can be part of the battery frame described below. The barrier 3〇 separates the same negative electrode. The barrier 3 can comprise an electrically insulating material, such as polyethylene oxide (PVC). In the configuration depicted in Figure 2, the 'metallization electrolyte can flow down through the porous electrode and then flow upwardly away from the cell. This downward and upward flow path on the L allows electrical contact between the porous electrode and the metal electrode of each cell, so that when the electrolyte flow is stopped and the feed manifold, distribution zone, collection zone and return manifold are emptied A pool of metal toothed electrolyte remains in each cell. This contact allows electrical continuity in the stack of cells to be maintained while the flow is stopped and provides uninterruptible power (UPS) applications without continuous pump operation. The τ and upward flow paths in each cell can also interrupt the shunt current that would otherwise occur when the electrolyte flow ceases. Such shunt currents are not desirable because they can result in poor self-discharge of energy stored in the system and unfavorable non-uniform distribution throughout one or more active materials of the stack, such as oxidizable metals (such as Ζη) . Figure 5 further illustrates the flow path through a stacked cell that uses ZnCh as an exemplary metal halide electrolyte and uses cl as an exemplary halogen reactant. The stack in FIG. 5 includes a battery 521 having a reaction zone 506 between a positive electrode 504 (eg, a porous carbon "gas" electrode) and a negative electrode 5〇2 (eg, a zinc electrode); and a battery 522 ' A reaction zone 507 is provided between the positive electrode 5〇5 and the negative electrode 503. The negative electrode 5〇2 of the battery 522 is electrically connected. 149813.doc • 19- 201112468 is connected to the positive electrode 5〇5 of the battery 52 1 to provide continuous electricity generation between the stacked batteries. Each of the negative electrodes, such as 5 hai, may comprise electrically conductive, impermeable parts similar to the part 24 of Figure 2. This part is shown as part 509 of electrode 5〇2 and part 51〇 of electrode 5〇3. Figure 5 also shows the electrode or termination plate located above the positive electrode of battery 521. When the battery 521 is a top terminal battery, the electrode 5〇1 may be the terminal positive electrode of the stack. If the battery 521 is not a terminal battery, the electrode 52ι may be a negative electrode of the adjacent battery of the stack. The positive electrode and (10) are preferably porous electrodes (such as porous carbon-containing electrodes (such as carbon foam electrodes)). . The battery may be disposed in the stack in such a manner that the distance between the batteries may be significantly greater than between the positive electrode and the negative electrode of the stack-specific battery.

149813.doc -20· 201112468 池間距離;且(π)提供鄰近電池之正電極與負電極之間的 電接觸。 在圖5中,電池522之正電極505具有一多孔部分525及兩 個導電間隔物523及524,該等導電間隔物523及5M電連接 至鄰近電池521之負電極502。導電間隔物523及524可由多 孔材料製成或可並非由多孔材料製成。在某些實施例中, 導電間隔物(諸如間隔物523及524)可由含碳材料(諸如石 墨)製成。類似於電極505’電池521之電極504含有一多孔 部分52〇及兩個導電間隔物518及519。 除電池521及522之外’圖5展示:儲集器119;饋送管線 115,其包括泵123;及返回歧管120,其包括上延伸部分 121及與儲集器119連接的部分122。饋送管線U5、返回歧 管120及反應區506與507連同儲集器119形成一用於金屬鹵 化物電解質(其在圖5中說明為ZnCi2)及鹵素反應物(其在圖 5中s兒明為C】2)之封閉迴路(例如,液流循環)。 在放電模式下,金屬齒化物電解質及液化齒素反應物之 混合物自儲集器119到達一電池之各別正電極(諸如電池 521之電極504及電池522冬電極505)的頂部。鹵素反應物 在正電極處還原。在混合物穿透正電極之多孔部分(電池 521之部分520及電池522之部分525)之後,其變得富含鹵 素陰離子(在分子氣被用作鹵素反應物的狀況下為CP)。 電池之反應區(諸如電池521之區506或電池522之區507) 不含有經組態以將鹵素陰離子(諸如C1·)與金屬鹵化物電解 質分離的隔膜或分離器。因此,富含鹵素陰離子之混合物 149813.doc 21 201112468 自正電極向下行進至負電極(諸如電池之電極Μ]及電 池522之電極503)。在放電模式下,負電極之金屬被氧 化,從而形成被釋放至富含_素陰離子之混合物中的陽離 子。 舉例而言,若負電極包含金屬Zn(如圖5中所示),則該 金屬鋅被氧化為鋅離子,同時釋放兩個電子。在接觸負電 極之後富含鹵素陰離子與金屬陽離子兩者之電解質混合物 穿過上延伸之返回歧管而離開電池且回至儲集器,在該儲 集器中該混合物可被重新供應新劑量之液化 總之,在圖5中所說明之系統中,可在放電模式下^以 下化學反應:149813.doc -20· 201112468 The distance between the pools; and (π) provides electrical contact between the positive and negative electrodes of the adjacent battery. In FIG. 5, the positive electrode 505 of the battery 522 has a porous portion 525 and two conductive spacers 523 and 524 electrically connected to the negative electrode 502 adjacent to the battery 521. Conductive spacers 523 and 524 may or may not be made of a porous material. In some embodiments, conductive spacers, such as spacers 523 and 524, can be made of a carbonaceous material, such as graphite. Electrode 504, similar to electrode 505' cell 521, has a porous portion 52 and two conductive spacers 518 and 519. In addition to the batteries 521 and 522, FIG. 5 shows a reservoir 119; a feed line 115 including a pump 123; and a return manifold 120 including an upper extension portion 121 and a portion 122 connected to the reservoir 119. Feed line U5, return manifold 120, and reaction zones 506 and 507, along with reservoir 119, form a metal halide electrolyte (illustrated as ZnCi2 in Figure 5) and a halogen reactant (which is shown in Figure 5). It is a closed loop of C] 2) (for example, a liquid flow cycle). In the discharge mode, the mixture of metal dentate electrolyte and liquefied dentate reactants from reservoir 119 reaches the top of a respective positive electrode of a cell (such as electrode 504 of battery 521 and winter electrode 505 of battery 522). The halogen reactant is reduced at the positive electrode. After the mixture penetrates the porous portion of the positive electrode (portion 520 of battery 521 and portion 525 of battery 522), it becomes enriched in a halogen anion (CP in the case where the molecular gas is used as a halogen reactant). The reaction zone of the battery, such as zone 506 of battery 521 or zone 507 of battery 522, does not contain a membrane or separator configured to separate a halogen anion (such as C1·) from the metal halide electrolyte. Therefore, a mixture rich in halogen anions 149813.doc 21 201112468 travels from the positive electrode down to the negative electrode (such as the electrode of the battery) and the electrode 503 of the battery 522). In the discharge mode, the metal of the negative electrode is oxidized to form a cation that is released into the mixture rich in the ionic anion. For example, if the negative electrode contains metallic Zn (as shown in Figure 5), the metallic zinc is oxidized to zinc ions while releasing two electrons. After contacting the negative electrode, the electrolyte mixture enriched in both the halogen anion and the metal cation exits the cell through the upper extended return manifold and returns to the reservoir where the mixture can be re-supplied with a new dose. Liquefaction In summary, in the system illustrated in Figure 5, the following chemical reactions can be performed in the discharge mode:

Cl2(Aq)+2e -»2C1·(正電極)Cl2(Aq)+2e -»2C1·(positive electrode)

Zn⑷->Zn2++2e’(負電極)。 由於此等反應,可產生每電池2Q2V。 在放電模式下,電化學系統可消耗函素反應物及構成負 電極之金屬且可產生電化學電位。在充電模式下,可藉由 將電位施加至該堆疊之終端電極來補充函素反應物及電極 之金屬。在充電模式下,來自儲集器之電解質在與放電模 式之方向相反的方向上移動。 對圖5而言,此相反之移動意謂電解質逆時針方向移 動。在充電模式下,電解質在通過返回歧管52〇之後在電 極處進入電池(諸如電池521或522),該電極在放電模式下 充當負電極但在充電模式下充當正電極。圖5中之此等電 極為電池521之電極502及電池522之電極5〇3。在此電極 I498l3.doc -22- 201112468 處電解質之金屬離子可被還原為可沈積回於該電極處的 兀素金屬。舉例而t ’對於圖5中之系統而言,鋅離子可 被還原且沈積於電極5〇2或503處(Zn2++2e·—Zn)。電解質 接著可通過多孔電極(諸如圖5中之電極5〇5及5〇4),在該多 孔電極處’電解質之齒素離子可氧化而形成分子齒素反應 物。 對於圖5中所說明之狀況而言,金屬_化物電解質之氣 離子在電極505及504處氧化而形成分子氣。由於圖5中所 說明之系統係置於一高於齒素反應物之液化壓力的壓力 下,所以形成於電極505岌504處的鹵素反應物呈液態形 式。電解質以與所形成之鹵素反應物之混合物的形式穿過 官或或歧官115離開電池(諸如電池521或522)。混合物中之 金屬鹵化物電解質的濃度可低於自管12〇進入電池之電解 質的濃度。混合物可自管115進入儲集器,在該儲集器中 該混合物可本質上使用(例如)重力及任選之集液板而分離 為鹵素反應物及金屬電解質。 在被傳遞至電池之前,與液化函素反應物混合之金屬鹵 化物電解質可經歷一或多次液流分裂,其可產生至多孔電 極的多個液流路徑。此等液流路徑可具有相同液流阻力。 該一或多次分裂中之每一者可將液流劃分為兩個。舉例而 言,圖3說明一種可能的電池設計,其具有第一級分裂節 點340,該第一級分裂節點340將穿過饋送歧管331提供的 金屬||化物電解質’且液化齒素反應物之液流分裂為子液 流341及342。該等子液流341及342中之每一者可分別在第 149813.doc -23- 201112468 二級分裂節點343及344處進一步分裂為兩個下一級子液 流。形成於第二級節點處的四個子液流3 4 5 ' 3 4 6、3 4 7及 348中的每一者分別在第三級節點349、35〇、351及352處 進一步分裂為兩個第三級子液流。 由於該三個層級之分裂,金屬齒化物電解質及液化鹵素 反應物之液流可穿過八個獨立路徑353、354、355、356、 357、358、359、360進入電池,該等獨立路徑中之每一者 具有相同液流阻力,因為其具有相同長度及相同數目之轉 向,該等轉向具有相同半徑(亦即,相同幾何形狀)。該等 液流分裂節點可分裂該堆疊之每一電池之電解質及函素反 應物的液流。電解質及液化南素反應物可穿過多個液流路 徑或穿過單一液流路徑而離開電池。 在一些實施例中,多個液流路徑可在到達返回歧管或管 之前合併為較少數目的液流。舉例而言,圖3展示電解質 及液化函素反應物可穿過八個液流路徑361至368而離開電 池。鄰近液流路徑361及362、363及364、365及366、Μ? 及368在第一級合併節點369至372處分別合併為第二級液 流路徑373、374、375及376 °該等第二級液流路徑在四個 第二級合併節點377及378處進一步合併而形成兩個第三級 液流路徑381及382,該等第三級液流路徑38ι及如在第三 級節點383處進一步合併而形成單一液流384,該單一液流 384進入返回歧管338。液流路徑361至刊8中之每—者在= 返回歧官的路途上具有相同液流阻力’因為其具有相同長 度及相同數目的轉向’該等轉向具有相同半徑。 149813.doc •24· 201112468 圖3說明包a電池框架之電化學電池。此電化學電池可 用以達成圖2中所不之結構及液流。電池框架可包括饋送 歧官零件331、分佈通道、液流分裂節點、間隔物突出部 分335、液流合併節點、收集通道、返回歧管零件338及旁 ' 路管道零件334。 . 在一些實施例中,複數個電池框架(其各自與圖3中所描 繪之框_ @ s戈類似)可#直堆疊並使電極位於適當位 置’以形成圖2中所示之堆疊。為形成此堆叠,該複數個 電池框架中之每一者中的饋送歧管零件(諸如圖3中之零件 33D可與該等電池框架中之另—者中的饋送歧f零件對 準,藉此形成該系統之饋送歧管。該等電池框架中之每一 者中的分佈通道及液流分裂節點可與該等電池框架中之另 一者中的分佈通道及液流分裂節點對準,藉此形成該系統 之分佈區。電池中之每一者中的正電極(放電模式)在電池 框架之間隔物突出部分上位於每—電池之負電極(放電模 式)上方或下方,藉此形成正電極與負電極之交替層。 該複數個電池框架中之每一者中的液流合併節點及收集 通道可與該等電池框架中之另一者中的液流合併節點及收 . 集通道對準,藉此形成該系統之收集區。該等電池框架中 之每一者中的返回歧管零件(諸如圖3中之零件338)可與該 等電池框架中之另一者中的返回歧管零件對準,藉此形成 該系統之返回歧管。該等電池框架中之每一者中的旁路管 道零件(諸如圖3中之零件334)可與該等電池框架中之另一 者中的旁路管道零件對準,藉此形成該系統之旁路管道。 149813.doc •25· 201112468 4旁路B道可用於流體液流及/或電線或電纜。 在-些實施例中,該電池框架可具有圓形形狀。此形狀 可促進將該複數個電池插入至具有圓柱形形狀之壓力圍阻 器皿中,藉此降低該系統之生產成本。該等框架可包含電 絕緣材料,其可為聚合物材料(諸如pvc)。 。基於電池框架之設計可促進:電解質及齒素反應物之低 損耗液流(具有均一分佈);雙極電設計;内部旁路路徑及 可藉以達成操作靜態平衡模式(描述於下文)之零件之製造 容易性。 電池框架之優點可包括(但不限於)分佈區中之液流分裂 設計,其可包括多個階層分裂(諸如圖3中之液流通道中^ 第-階層分裂、第二階層分裂及第三階層分裂),該等階 層分裂產生各自具有相同液流阻力之多個通 通道中之每-者具有相同長度及f曲之數目與半 展示每電池八個饋送通道,該等饋送通道各自具有相同液 流阻力。此具有多次液流分裂之設計可允許維持穿過該多 個通道巾之每-者的層流。該設計可允許獨立於液流速 度、黏度之均-性或電解質中之密度之均一性而在該多個 通道之間相等地劃分液流體積。 操作模式 關斷模式可用於儲存或傳送電化m在關斷模式期 間,金屬齒化物電解質及_素反應物未傳遞至電池。少量 之鹵素反應物(其可維持於水平定位)可被還原並與金屬= 子組合而形成金屬!|化物。舉例而言,剩餘液化氣反應物 149813.doc -26· 201112468 可還原為ii素陰離子並與鋅離子組合而形成氣化鋅。 在關斷模式下,.該系統之一或多個電池之終端電極可經 由短路電阻器連接,從而產生該系統之電池的零伏特電 位。在一些實施例中,一阻斷二極體較佳可用以防止經由 任何外部電壓源而穿過系統之反向電流。 在放電模式期間,排放泵可開啟且金屬函化物電解質及 鹵素反應物之混合物可循環穿過該系統之電池。當自構成 負電極之可氧化金屬形成金屬陽離子時,可釋放電子。所 釋放之電子可由齒素反應物俘獲,藉此將該反應物還原為 鹵素陰離子且在該系統之電池的終端電極上產生電位。對 來自該系統之電力的需要可消耗齒素反應物,從而導致額 外劑量之液化i纟反應物自㈣器釋放至該系统之饋送管 或歧管中。 在靜態平衡或待用模式期間,可存在極少的金屬齒化物 電解質及i素反應物之液流或不存在液流。可經由平衡電 壓來維持㈣'統之可用性。此平衡電壓可藉由維持該系統 之電池上的精確電位來防止該系統之自放電以抵制可在不 存在金屬i化物電解質及_素反應物之循環時出現的電化 學反應力。所揭示之電池板之特定設計可巾斷原本流經饋 送歧管及返回歧管的分路電流,同時維持電池間電連續 性。 、 刀離元件之第一實施例 圖6說明具有分離元件6〇3之儲集器ιΐ9的第—實施例。 在此實施例中,分離元件包含圖6中所示且上文所描述之 149813.doc -27- 201112468 集液板603 »該集液板603較佳為具有開口之平板,其機械 地及/或使用重力來分離電解質之較重組份及較輕組份。 分離元件之第二實施例 圖7說明具有分離元件7〇3之儲集器j丨9的另一實施例。 圖7之實施例之儲集器〖丨9可用於上文所描述之實施例中之 任一者的系統及方法。隔板6〇4為任選的且未展示於儲集 器U9之底部部分中。分離元件703可為(例如)分子篩、選 擇性隔膜或能夠將電解質混合物之一組份與該電解質之其 他組份分離藉此促進液流電池組之操作模式(例如,充電 及放電)的其他元件。具有用於分離所要組份之適當幾何 形狀及特性的分離元件7〇3較佳安置於儲集器ιΐ9中位於至 貝送笞線607之入口與栗入口 /出口 6〇5及之間以在液流 電池組操作期間將儲集器119中之電解質混合物分離為兩 個容積705、707。 第一容積7G5經提供以用於選擇性電解f組份聚積且第 二容積707經提供以用於選擇性液化_素(諸如氣水)聚積。 第一今積707可位於第一容積下方,藉此利用具有高於剩 餘電解質組份之密度的液化齒素。然而’取決於分離元件 7〇3之類型及操作以及特定電解質及函素組份,容積707可 位於容積705上方或側方。適當之分子篩或隔膜可選擇性 地允5午所要分子通過。該選擇性可基於(例如)—組份之分 子大小及/或電荷。 ★刀子碑或隔膜之渗透率可隨諸如壓力、溫度、化學濃度 等之參數而為可轡的 ^ α』隻的。/刀子篩之一實例包含中孔碳隔膜, 149813.doc •28· 201112468 該隔膜提供可穿過㈣散之分子的基於大小之選擇性。較 大分子較難以穿透微孔。此舉對液化齒素反應物(例如, 氣水)提供比金屬鹵化物電解質組份(例如,氯化辞)高的滲 透率另外,分離元件可進一步包含一經組態以在隔膜或 分子篩上施加電場的元件。外部施加之電場可促進穿過隔 膜之分子擴散且輔助基於電荷之選擇性擴散。 取決於所使用之特定液化_素及金屬齒化物電解質,可 選擇分子筛以具有適合於使預定分子通過的微孔大小。分 子篩之一些實例描述於(例如)美國專利第3,939,丨丨8號中。 分子篩可包括:粒狀天然或合成二氧化矽-氧化鋁材料, 其可具有席石類型之晶格結構(例如,見〇. Grubner、Ρ.Zn(4)->Zn2++2e' (negative electrode). Due to these reactions, 2Q2V per battery can be produced. In the discharge mode, the electrochemical system can consume the hydroxyl reactants and the metals that make up the negative electrode and can generate electrochemical potentials. In the charging mode, the metal of the pixel reactant and the electrode can be supplemented by applying a potential to the terminal electrode of the stack. In the charging mode, the electrolyte from the reservoir moves in a direction opposite to the direction of the discharge mode. For Figure 5, this opposite movement means that the electrolyte moves counterclockwise. In the charging mode, the electrolyte enters the battery (such as battery 521 or 522) at the electrode after passing through the return manifold 52, which acts as a negative electrode in the discharge mode but acts as a positive electrode in the charging mode. The electric current in Fig. 5 is the electrode 502 of the battery 521 and the electrode 5〇3 of the battery 522. The metal ions of the electrolyte at this electrode I498l3.doc -22- 201112468 can be reduced to a halogen metal which can be deposited back to the electrode. For example, for the system of Figure 5, zinc ions can be reduced and deposited at electrode 5〇2 or 503 (Zn2++2e·-Zn). The electrolyte can then pass through a porous electrode (such as electrodes 5〇5 and 5〇4 in Figure 5) where the dentate ions of the electrolyte can be oxidized to form a molecular dentate reactant. For the situation illustrated in Figure 5, the gas ions of the metal-electrolyte are oxidized at electrodes 505 and 504 to form a molecular gas. Since the system illustrated in Figure 5 is placed at a pressure above the liquefaction pressure of the dentate reactant, the halogen reactant formed at electrode 505 504 is in a liquid form. The electrolyte exits the cell (such as battery 521 or 522) through the official or orient 115 in the form of a mixture with the formed halogen reactant. The concentration of the metal halide electrolyte in the mixture can be lower than the concentration of electrolyte entering the cell from the tube 12〇. The mixture can enter the reservoir from tube 115 where it can be separated into a halogen reactant and a metal electrolyte using, for example, gravity and, optionally, a liquid collecting plate. The metal halide electrolyte mixed with the liquefaction reactant can undergo one or more liquid flow splits prior to being transferred to the cell, which can create multiple flow paths to the porous electrode. These flow paths can have the same flow resistance. Each of the one or more splits can divide the flow into two. For example, Figure 3 illustrates one possible battery design having a first stage split node 340 that will pass through the metal provided by the feed manifold 331 and liquefy the dentate reactant The liquid stream splits into sub-liquid streams 341 and 342. Each of the substreams 341 and 342 can be further split into two lower stage substreams at level 149813.doc -23- 201112468 secondary split nodes 343 and 344, respectively. Each of the four sub-fluids 3 4 5 ' 3 4 6 , 3 4 7 and 348 formed at the second-stage node is further split into two at the third-stage nodes 349, 35〇, 351 and 352, respectively. The third stage sub-liquid stream. Due to the splitting of the three levels, the flow of the metal dentate electrolyte and the liquefied halogen reactant can enter the cell through eight separate paths 353, 354, 355, 356, 357, 358, 359, 360, in such independent paths. Each has the same flow resistance because it has the same length and the same number of turns, which have the same radius (i.e., the same geometry). The flow splitting nodes split the electrolyte of the battery and the flow of the functional element of each of the cells of the stack. The electrolyte and the liquefied Nantin reactant can exit the cell through a plurality of flow paths or through a single flow path. In some embodiments, the plurality of flow paths may be combined into a smaller number of streams prior to reaching the return manifold or tube. For example, Figure 3 shows that the electrolyte and liquefaction reactants can exit the cell through eight flow paths 361 through 368. Adjacent flow paths 361 and 362, 363 and 364, 365 and 366, Μ? and 368 are merged at the first stage merged nodes 369 to 372 into second stage flow paths 373, 374, 375 and 376, respectively. The secondary flow path is further combined at the four second stage merge nodes 377 and 378 to form two third stage flow paths 381 and 382, such as the third stage node 383. Further merged to form a single stream 384 that enters the return manifold 338. Each of the flow paths 361 through 8 has the same flow resistance ' on the way back to the ambiguity' because it has the same length and the same number of turns' the turns have the same radius. 149813.doc •24· 201112468 Figure 3 illustrates an electrochemical cell with a battery frame. This electrochemical cell can be used to achieve the structure and flow shown in Figure 2. The battery frame can include a feed manifold component 331, a distribution channel, a flow splitting node, a spacer projection 335, a fluid merge node, a collection channel, a return manifold component 338, and a bypass conduit component 334. In some embodiments, a plurality of battery frames (each similar to the frame depicted in Figure 3) can be stacked in a straight line and the electrodes are in the proper position to form the stack shown in Figure 2. To form the stack, the feed manifold components in each of the plurality of battery frames (such as the part 33D in FIG. 3 can be aligned with the feed differential f-parts in the other of the battery frames, This forms a feed manifold of the system. The distribution channels and flow splitting nodes in each of the battery frames can be aligned with the distribution channels and flow splitting nodes in the other of the battery frames, Thereby forming a distribution area of the system. The positive electrode (discharge mode) in each of the cells is located above or below the negative electrode (discharge mode) of each cell on the protruding portion of the spacer of the battery frame, thereby forming An alternating layer of a positive electrode and a negative electrode. The liquid stream merging node and the collecting channel in each of the plurality of battery frames can merge with the liquid stream in the other of the battery frames and the collecting channel Aligning thereby forming a collection area of the system. Return manifold components in each of the battery frames (such as part 338 in Figure 3) can be returned with the other of the battery frames Manifold parts are aligned, Thereby forming a return manifold of the system. Bypass conduit parts (such as part 334 in Figure 3) in each of the battery frames can be bypassed with the other of the battery frames The parts are aligned, thereby forming a bypass conduit for the system. 149813.doc • 25· 201112468 4 Bypass B can be used for fluid flow and/or wire or cable. In some embodiments, the battery frame can have A circular shape that facilitates insertion of the plurality of cells into a pressure containment vessel having a cylindrical shape, thereby reducing the production cost of the system. The frames may comprise an electrically insulating material, which may be a polymeric material (such as pvc). Based on the design of the battery frame can promote: low loss flow of electrolyte and dentate reactants (with uniform distribution); bipolar electrical design; internal bypass path and can be used to achieve operational static equilibrium mode (description The ease of manufacture of the parts of the following. The advantages of the battery frame may include, but are not limited to, a flow splitting design in the distribution zone, which may include multiple stratigraphic splits (such as the flow channel in Figure 3) ^ first-level splitting, second-level splitting, and third-level splitting), each of which splits to produce each of a plurality of through-channels having the same flow resistance having the same length and the number of f-curves and half-displays per The battery has eight feed channels, each of which has the same flow resistance. This design with multiple flow splits allows for the maintenance of laminar flow through each of the plurality of channel towels. This design may allow for independence from The liquid flow velocity, the homogeneity of the viscosity, or the uniformity of the density in the electrolyte to equally divide the flow volume between the plurality of channels. The operational mode shutdown mode can be used to store or transmit the electrochemical m during the shutdown mode, The metal dentate electrolyte and the _ reactant are not delivered to the battery. A small amount of the halogen reactant (which can be maintained in a horizontal position) can be reduced and combined with the metal = sub-form to form a metal! For example, the remaining liquefied gas reactant 149813.doc -26· 201112468 can be reduced to an anion anion and combined with zinc ions to form a vaporized zinc. In the shutdown mode, the terminal electrodes of one or more of the batteries of the system can be connected via a shorting resistor to produce a zero volt potential of the battery of the system. In some embodiments, a blocking diode is preferably used to prevent reverse current flow through the system via any external voltage source. During the discharge mode, the discharge pump can be turned on and a mixture of the metal complex electrolyte and the halogen reactant can be circulated through the battery of the system. When an oxidizable metal constituting the negative electrode forms a metal cation, electrons can be released. The released electrons can be captured by the dentate reactant, thereby reducing the reactant to a halogen anion and generating a potential on the terminal electrode of the battery of the system. The need for power from the system can consume dentate reactants, resulting in an additional dose of liquefied i纟 reactant being released from the (four) device into the feed tube or manifold of the system. During the static equilibrium or standby mode, there may be little or no liquid flow of the metal toothed electrolyte and the i-reactant. The availability of (4) can be maintained via a balanced voltage. This balancing voltage prevents self-discharge of the system by maintaining a precise potential across the battery of the system to counteract the electrochemical reaction forces that can occur in the absence of cycling of the metal i-electrolyte and the reactants. The particular design of the disclosed panel slashes the shunt current that would otherwise flow through the feed manifold and return manifold while maintaining electrical continuity between the cells. First Embodiment of Knife Off Element FIG. 6 illustrates a first embodiment of a reservoir ι 9 having a separation element 6〇3. In this embodiment, the separating element comprises the 149813.doc -27- 201112468 liquid collecting plate 603 shown in FIG. 6 and described above. The liquid collecting plate 603 is preferably a flat plate having an opening, which is mechanically and/or Or use gravity to separate the more recombinant and lighter components of the electrolyte. Second Embodiment of Separating Element Figure 7 illustrates another embodiment of a reservoir j丨9 having a separating element 7〇3. The reservoir of the embodiment of Figure 7 can be used in any of the systems and methods of any of the embodiments described above. The partition 6〇4 is optional and is not shown in the bottom portion of the reservoir U9. The separation element 703 can be, for example, a molecular sieve, a selective membrane, or other component capable of separating one component of the electrolyte mixture from other components of the electrolyte to thereby facilitate operation modes (eg, charging and discharging) of the flow battery. . Separating elements 〇3 having suitable geometries and characteristics for separating the desired components are preferably disposed in the reservoir ι 9 between the inlet to the bellows 607 and the inlet/outlet 6 〇 5 and The electrolyte mixture in reservoir 119 is separated into two volumes 705, 707 during operation of the flow battery. A first volume 7G5 is provided for selective electrolysis of the f component accumulation and a second volume 707 is provided for selective liquefaction (e.g., gas water) accumulation. The first product 707 can be located below the first volume, thereby utilizing liquefied lignin having a higher density than the remaining electrolyte component. However, depending on the type and operation of the separation element 7〇3 and the particular electrolyte and element components, the volume 707 can be located above or to the side of the volume 705. A suitable molecular sieve or membrane can selectively pass the desired molecules at 5 noon. This selectivity can be based, for example, on the molecular size and/or charge of the component. ★ The permeability of the knife or diaphragm can be abrupt with parameters such as pressure, temperature, and chemical concentration. An example of a knife/knife sieve containing a mesoporous carbon membrane, 149813.doc • 28· 201112468 This membrane provides size-based selectivity for molecules that can pass through (iv). Larger molecules are more difficult to penetrate micropores. This provides a higher permeability to the liquefied dentate reactant (e.g., gas water) than the metal halide electrolyte component (e.g., chlorination). Additionally, the separation element can further comprise a configuration to apply on the membrane or molecular sieve. The component of the electric field. An externally applied electric field promotes diffusion of molecules through the membrane and assists in selective diffusion based on charge. Depending on the particular liquefied metal and metal dentate electrolyte used, the molecular sieve may be selected to have a pore size suitable for passage of a predetermined molecule. Some examples of molecular sieves are described, for example, in U.S. Patent No. 3,939, filed. The molecular sieve may comprise: a granular natural or synthetic ceria-alumina material, which may have a lattice structure of a matte type (for example, see 〇. Grubner, Ρ.

Jiro 及 M. Ralek 之專論 Molekularsiebe(分子筛^^^丑· Verlag der Wissenschaften,1968年,柏林),具有 2 A至 10 A之微孔寬度(例如’彿石粉末或珠筛,諸如Grace Davison S YL0SIV牌粉末);^夕膠,其具有40 A至100 A之微孔寬 度,其視情況被吸收於玻璃珠中;及根據w. Haller(J. Chem. Phys. 42, 686 (1965))之經改質硼矽玻璃,其具有在 75人與2,400 A之間的微孔寬度。亦可使用基於有機產品 之分子篩。此等產品包括:三維交聯多糖,諸如葡聚糖凝 膠(Sephadex級,其為由 GE Healthcare Life Sciences銷售之 產品),其可視情況被烧基化(Sephadex-LH級,其為由GE Healthcare Life Sciences銷售之產品);瓊脂糖凝膠 (Sepharose,其為由 GE Healthcare Life Sciences銷售之產 品);纖維素凝膠;及瓊脂凝膠。合成有機凝膠之其他實 149813.doc -29- 201112468 例包括交聯聚丙稀醢胺及經由丙烯酸酯基團交聯之聚氧化 乙稀(商心名為Merckogel OR)。亦可使用離子交換凝膠, 諸如具備磺酸基之三維交聯聚苯乙烯及上文已提及之葡聚 糖凝膠,其中其擁有離子交換所需之酸基或銨基(葡聚糖 凝膠離子交換劑)。 分離元件可包括固持隔膜或分子篩材料之多孔容器或托 盤。該等分子篩材料可呈粒狀或粉末形式。該容器可包括 用於將電場施加至該隔膜或該等分子篩材料的電極或導電 板。可將來自該液流電池組之電壓輸出或來自一不同電源 (例如,柵格電力、位於液流電池組器皿1〇1内部或外部的 小型電池組等)的電壓施加至該等電極或導電板。施加至 該分離元件之電壓促進液化函素反應物選擇性地穿過該分 離元件擴散。該分離元件可永久性地耦接(例如,焊接、 膠合4 )或可移除地搞接(例如,栓接 '夾住等)至儲集器 119之壁。或者,僅粒狀分子篩材料或隔膜可自多孔容器 或托盤移除,而容器或托盤可永久性地耦接至該儲集器之 壁。 應注意,第一容積705不必排他地僅含有剩餘電解質組 伤且第一谷積707不必排他地僅含有液化鹵素(諸如氣水)。 跨越分離元件703之鹵素反應物或剩餘電解質組份之實質 濃度差異係足夠的。因此,第一容積7〇5除剩餘電解質組 份之外可含有液化鹵素且第二容積707除液化鹵素之外可 含有剩餘電解質組份’只要容積707中之液化鹵素濃度高 於容積705中之液化鹵素濃度,及/或只要容積7〇5中之剩 149813.doc -30· 201112468 餘電解質組份濃度高於容積707中之剩餘電解質組份濃 度。该浪度差異可為(例如)第—容積與第二容積之間的函 素反應物之濃度的至少跳之差異,諸如至少鄕之差 異,諸如至少麵之Μ,諸如至少扇%之差異(例如, 1〇%至娜之差異)。可選擇(例如,可選擇特定微孔大小) 及/或操作(例如’藉由施加特定電壓)分離元件7〇3以提供 所要之濃度差異。 在圖7中所說明之液流電池組操作的放電模式下,饋送 管線607具有位於分離元件7〇3下方之儲集器ιΐ9之第二容 積7〇7中的人口 ’且將具有較高濃度之i素反應物的流體 (亦即,用於排放液流功能之具有較高濃度之所要元素的 流體)自容積707饋送至液流迴路中。排放泵之入口 6〇5引 入來自第一容積705之流體,該第一容積7〇5之剩餘電解質 組份的濃度高於容積707之剩餘電解質組份的濃度。視情 況,排放泵之入口 605可省略或可在足夠之電解質存在於 第二容積707中的情況下在放電模式期間保持不操作。電 解質及液態鹵素在液流迴路中混合且在流經電池並在其中 經歷反應之後,流體混合物被排放回至儲集器丨丨9中。較 佳地,該混合物自充填泵入口 /出口 6〇6排放至第一容積 7〇5中。然而,可使用—不同的獨立出口以將該混合物自 該液流迴路排放至容積705中。未用之鹵素反應物選擇性 地或優先地滲透穿過分離元件703(亦即,鹵素反應物以比 剩餘電解質組份高的速率滲透穿過元件7〇3)且選擇性地或 優先地聚積於第二容積7〇7中。其他電解質組份具有比鹵 149813.doc •31· 201112468 素低的穿過分離元件703的渗透率且優先地保留於第一容 積705中。因而,在分離元件7〇3的幫助下建立並維持上文 所描述之濃度差異。 在圖8中所說明之充電模式下,藉由位於分離元件7〇3上 方之第一容積705中的充填泵入口 6〇6而將第一容積7〇5中 之剩餘電解質組份饋送至液流迴路中。第二容積7〇7中之 經濃縮南素較佳被排除被吸入至液流迴路中或最小化被吸 入至液流迴路中。在流經電池並在其中經歷反應之後,該 流體被排放回至儲集器119中。較佳地,該流體自排放系 入口 /出口 605排放至第一容積7〇5中。然而,可使用一不 同的獨立出口以將該流體自該液流迴路排放至容積705 中。所排放之流體藉由分離元件703而分離,鹵素反應物 選擇性地滲透至第二容積707中,從而保持第一容積7〇5中 之電解質組份之濃度高於第二容積7〇7中之電解質組份之 濃度。 分離元件之第三實施例 圖9說明具有分離元件903之儲集器119的另一實施例。 圖9之貫施例之健集器1丨9可用於上文所描述之實施例中之 ^者的系統及方法。如圖所示之分離元件903經組態以 用諸士 乂下各者之機制之一組合來分離電解質之較重組 知及車父輕組份:使用網篩或穿孔板進行之機械分離;降低 液流速度(因為分離元件903亦可充當隔板);由於採用軸對 稱幾何形狀(例如’大體上關於軸(諸如垂直軸)而對稱的漏 斗或截頭圓錐903)所產生的離心力;及重力。 149813.doc •32- 201112468 分離元件903 ώ A六甘也丨e* I s ^___Jiro and M. Ralek's monograph on Molekularsiebe (Molecular Sieve ^^^ ug. Verlag der Wissenschaften, Berlin, 1968), with a micropore width of 2 A to 10 A (eg 'Buddha powder or bead sieve, such as Grace Davison S YL0SIV brand powder); it has a micropore width of 40 A to 100 A, which is optionally absorbed in the glass beads; and according to w. Haller (J. Chem. Phys. 42, 686 (1965)) The modified borosilicate glass has a micropore width between 75 and 2,400 A. Molecular sieves based on organic products can also be used. These products include: three-dimensional cross-linked polysaccharides, such as dextran gel (Sephadex grade, which is a product marketed by GE Healthcare Life Sciences), which can optionally be alkylated (Sephadex-LH grade, which is GE Healthcare) A product sold by Life Sciences); agarose gel (Sepharose, which is a product marketed by GE Healthcare Life Sciences); cellulose gel; and agar gel. Other examples of synthetic organogels 149813.doc -29- 201112468 Examples include cross-linked polypropylene amide and polyethylene oxide cross-linked via acrylate groups (commercial name Merckogel OR). It is also possible to use an ion exchange gel, such as a three-dimensional crosslinked polystyrene having a sulfonic acid group and a glucan gel as mentioned above, which has an acid group or an ammonium group (glucan) required for ion exchange. Gel ion exchanger). The separation element can comprise a porous container or tray holding the membrane or molecular sieve material. The molecular sieve materials may be in the form of granules or powder. The container can include an electrode or a conductive plate for applying an electric field to the membrane or the molecular sieve material. A voltage output from the flow battery or a voltage from a different power source (eg, grid power, a small battery pack located inside or outside the flow battery unit 1-1, etc.) can be applied to the electrodes or conductive board. The voltage applied to the separation element promotes selective diffusion of the liquefaction reactant through the separation element. The separating element can be permanently coupled (e.g., welded, glued 4) or removably engaged (e.g., bolted & clamped, etc.) to the wall of the reservoir 119. Alternatively, only the particulate molecular sieve material or membrane can be removed from the porous container or tray, and the container or tray can be permanently coupled to the wall of the reservoir. It should be noted that the first volume 705 need not exclusively contain only the remaining electrolyte damage and the first grain product 707 need not exclusively contain only liquefied halogens (such as gas water). The substantial concentration difference between the halogen reactant or the remaining electrolyte component across the separation element 703 is sufficient. Thus, the first volume 7〇5 may contain liquefied halogen in addition to the remaining electrolyte component and the second volume 707 may contain the remaining electrolyte component in addition to the liquefied halogen as long as the liquefied halogen concentration in the volume 707 is higher than in the volume 705 The concentration of liquefied halogen, and/or the remaining electrolyte composition concentration of 149813.doc -30· 201112468 remaining in volume 7〇5 is higher than the remaining electrolyte component concentration in volume 707. The difference in pulsation may be, for example, a difference in at least a jump in the concentration of the nutrient reactant between the first volume and the second volume, such as at least a difference in enthalpy, such as at least a defect, such as at least a difference in fan% ( For example, the difference between 1% and Na). The element 7〇3 can be selected (e. g., by selecting a particular pore size) and/or operating (e.g., by applying a particular voltage) to provide the desired concentration difference. In the discharge mode of operation of the flow battery described in Figure 7, the feed line 607 has a population 'in the second volume 7〇7 of the reservoir ι 9 below the separation element 7〇3' and will have a higher concentration The fluid of the i-reactant (i.e., the fluid having a higher concentration of the desired element for discharging the liquid stream function) is fed from the volume 707 into the liquid flow circuit. The inlet of the discharge pump 6〇5 introduces fluid from the first volume 705, the concentration of the remaining electrolyte component of the first volume 7〇5 being higher than the concentration of the remaining electrolyte component of the volume 707. Depending on the circumstances, the inlet 605 of the discharge pump may be omitted or may remain inoperative during the discharge mode if sufficient electrolyte is present in the second volume 707. The electrolyte and liquid halogen are mixed in the liquid flow circuit and after flowing through the battery and undergoing the reaction therein, the fluid mixture is discharged back into the reservoir crucible 9. Preferably, the mixture is discharged from the filling pump inlet/outlet 6〇6 into the first volume 7〇5. However, a separate outlet can be used to discharge the mixture from the flow loop into the volume 705. The unused halogen reactant selectively or preferentially permeates through the separation element 703 (i.e., the halogen reactant permeates through the element 7〇3 at a higher rate than the remaining electrolyte component) and selectively or preferentially accumulates In the second volume 7〇7. The other electrolyte component has a lower permeability through the separation member 703 than the halogen 149813.doc • 31·201112468 and is preferentially retained in the first volume 705. Thus, the concentration difference described above is established and maintained with the aid of the separation element 7〇3. In the charging mode illustrated in Figure 8, the remaining electrolyte component of the first volume 7〇5 is fed to the liquid by filling the pump inlet 6〇6 in the first volume 705 above the separation element 7〇3. In the flow loop. The concentrated nitrite in the second volume 7〇7 is preferably excluded from being drawn into the liquid flow circuit or minimized from being drawn into the liquid flow circuit. After flowing through the battery and undergoing a reaction therein, the fluid is discharged back into the reservoir 119. Preferably, the fluid is discharged from the exhaust system inlet/outlet 605 into the first volume 7〇5. However, a different independent outlet can be used to discharge the fluid from the flow loop into the volume 705. The discharged fluid is separated by a separating element 703, and the halogen reactant selectively permeates into the second volume 707, thereby maintaining the concentration of the electrolyte component in the first volume 7〇5 higher than the second volume 7〇7 The concentration of the electrolyte component. Third Embodiment of Separating Element Figure 9 illustrates another embodiment of a reservoir 119 having a separating element 903. The health collectors 1-9 of the embodiment of Figure 9 can be used in the systems and methods of the embodiments described above. The separation element 903 as shown is configured to separate the electrolyte from the recombination and the lighter component of the vehicle using one of the mechanisms of each of the various mechanisms: mechanical separation using a mesh or perforated plate; Flow velocity (since the separation element 903 can also act as a baffle); centrifugal force due to the use of axisymmetric geometry (eg, a funnel or truncated cone 903 that is generally symmetrical about the axis (such as the vertical axis); and gravity . 149813.doc •32- 201112468 Separation element 903 ώ A 甘甘丨 e* I s ^___

圓形水平橫截面形狀且第一端(例如, 圖9中之上端)上之開 下力而)上之開口大的大小。圖9 t自第二端至第一端之橫截面 口具有比相對第二端(例如,下端)上 中所不之截頭圓錐形狀可具有自第二 大小的穩定增加及一相對恆定地傾斜之側壁(例如,具有 朝儲集器119之下方部分漸尖的大體上圓雜之形狀)。漏斗 形未圖示)可具有自第二端至第一端之橫截面大小的非 穩定增加(亦即,跳躍)及傾斜側壁中之__或多個n > 離元件903將儲集器1 η劃分為兩個容積9〇5、907,其中第 一容積905經提供以用於聚積電解質之較輕組份,且第二 容積907經提供以用於聚積較重組份(諸如氯水)。 排放液流909/91 1、913/915可在鄰近於分離元件903之上 表面處形成流體之旋轉液流,如藉由在大體上沿分離元件 903之%曲表面的方向上彎曲的出口 8〇5A、8〇5B所促進。 出口 805A及805B面向截頭圓錐狀薄板9〇3之内容積中且在 薄板903之曲率的方向上彎曲以向出口流體液流提供角分 ϊ,以使得流體液流在薄板903之上表面周圍盤旋。所得 離心力連同重力幫助該流體中之較重組份沈降至第二容積 907中。穿孔板、網或篩9〇3中之孔隙9丨7不僅使較重組份 進入第二容積907中,而且幫助減慢該流體之液流。 入口 /出口 805A及805B可類似於可逆地操作之系統中之 先前實施例的圖6至圖8中的入口及出口 605、606起作用。 149813.doc •33· 201112468 如關於先前實施例所描述,當系統在放電模式下操作時, 返回(亦即’排放或出口)液流913將自該堆疊行進穿過放電 模式返回管道822(類似於圖1中之管道122)且作為液流91 5 自出口 805B離開而進入至截頭圓錐形狀之分離元件9〇3内 部的第一容積905中。來自下方第二容積9〇7的氣饋送(亦 即,吸取)921穿過放電模式饋送管道815(類似於圖丨中之管 道Π5)自饋送管線8 07提供至該堆疊中。同樣地,來自上 方第一容積905的電解質饋送(亦即,吸取)穿過管道815自 入口 805A提供至該堆疊中。氯及電解質在入口 8〇5A上方 的^道815中混合。為清晰起見未展示提供吸取之泵。在 圖9中所示之非限制性組態中,放電模式饋送管道81 $沿著 截碩圓錐薄板903之中心軸垂直延伸且在截頭圓錐薄板9〇3 之底部開口下方延伸的管道815之底部部分充當氣饋送管 線807。至管道815中之入口 8〇5A位於截頭圓錐薄板9〇3之 頂部開口與底部開口之間。放電模式返回管道822可遠離 薄板903之中心軸垂直延伸且終止於板表面9〇3上方之圓錐 體内部的開口 805B處。當該系統在充電模式下操作時,出 口液流909將自該堆疊行進穿過管道815(其現充當充電模 式出口管道)且作為液流911自出口 805A(其在放電模式下 充當入口)離開而進入截頭圓錐形狀分離元件903内部之第 —容積905中。位於分離元件903上方之充電模式饋送管道 822中的弓丨入開口 8〇6可用以在充電模式下將流體919提供 至°玄堆曼’其類似於圖8中之入口 606。開口 805B亦可在充 電模式下用作入口。在此實施例中,分離元件9〇3使用現 149813.doc -34· 201112468 有之流體液流動力性質及重力以促進分離電解質組份,且 不存在額外的移動部分,藉此降低額外之固定成本及操作 成本。 分離元件之第四實施例 圖i〇s兒明具有分離元件1003之儲集器119的另一實施 . 例。圖10中之實施例之儲集器119可用於上文所描述之實 施例中之任一者的系統及方法。如圖所示之分離元件1 經組態以利用類似於上文參看圖9所描述之機制(除了圖ι〇 中所示之截頭圓錐或漏斗狀板1 自圖9中之薄板9〇3之定 向翻轉180度(亦即,顛倒)之外)的機制來分離電解質之較 重組份及較輕組份。 在一實施例中,分離元件1〇03包含在一些組態中在其侧 壁中含有開口的彎曲薄板(諸如網篩或多孔篩或者脊曲穿 孔板)。較佳地,如上文所描述,薄板具有截頭圓錐或漏 斗形狀。在其他組態中,薄板1003在其側壁中缺乏開口。 如圖10中所示,元件1003具有朝儲集器U9之頂部部分漸 尖的截頭圓錐形狀(亦即,第一端(例如,圖1 〇中之上端)上 之開口具有比相對第二端(例如,下端)上之開口小的大 . 小)。分離元件1003將儲集器119劃分為兩個容積1〇〇5、 1007’其中第一容積1〇〇5經提供以用於聚積電解質之較輕 組伤’且第一谷積1 〇 〇 7經提供以用於聚積較重組份(諸如 氯水)。 排放液流911、91 5可在鄰近於分離元件1003之下表面處 形成流體之旋轉液流’如藉由位於鄰近於薄板1 〇〇3之底表 1498I3.doc •35- 201112468 面(而非圖9十之薄板903之上表面)之處的出口 8〇5入及8〇5]8 所促進。出口 805A、805B在大體上沿分離元件1〇〇3之彎 曲下表面的方向上·彎曲。所得離心力連同重力幫助流體中 之車乂重組伤較好地沈降至第二容積丨〇〇7中。因此,在圖工〇 之貫靶例中,藉由電解質自容積1〇〇7向上流動至容積 中而發生將電解質及氯分別分離至容積1〇〇5及1〇〇7中。相 反,在圖9之實施例中,藉由氣自容積9〇5向下流動至容積 907中而發生分離。 有利地,分離元件實現具有簡化之單一液流迴路管道設 计、閥設計、泵佈局等的架構。替代液流電池組設計通常 需要兩個獨立液流系統,其較複雜、成本較高且較傾向於 發生交又洩漏等。 儘管上述内容參考特定較佳實施例,但應理解,本發明 不限於此。一般熟習此項技術者將瞭解,可對所揭示之實 施例作出各種修改且此等修改意欲在本發明之範疇内。本 文中所引用之所有公開案、專利申請案及專利以全文引用 的方式併入本文中。 【圖式簡單說明】 圖1說明電化學系統之一實施例之側視橫截面圖,該電 化學系統具有一含有電化學電池之堆疊的密封容器。 圖2說明水平定位型電池之堆疊中之液流路徑的側視橫 截面圖。 圖3說明可用於電化學系統之某些實施例中之電池框架 的三維視圖。 149813.doc -36· 201112468 圖4為如美國專利第%94〇,283號中所呈現之分子氣的先 前技術相位圖。 圖5不思性地說明在放電模式下之電化學系統中之液流 路控的三維視圖。 圖6示意性地說明儲集器之側視橫截面圖,該儲集器具 有集液板分離元件及隔板。 圖7示意性地說明在電化學系統之放電操作中的具有分 離元件之儲集器的側視橫截面圖。 圖8示意性地說明在電化學系統之充電操作中的具有分 離兀件之儲集器的側視橫截面圖。 圖9說明根據本發明之一實施例之儲集器的三維剪切 圖’ β亥健集器具有安置於其中之分離元件。 圖10說明根據本發明之另一實施例之儲集器的三維剪切 圖’ 6亥儲集器具有安置於其中之分離元件。 【主要元件符號說明】 21 饋送管或歧管 22 分佈區 23 多孔亂電極 24 零件 25 金屬電極 26 收集區 27 返回歧管 29 返回管 30 障壁 149813.doc -37- 201112468 100 電化學系統 101 密封容器/器1 102 内容積 103 堆疊 115 饋送管或歧管 119 儲集器 120 返回管或歧管 121 向上延伸區段 122 向下延伸區段 123 排放泵 124 充填泵 125 上方部分 126 下方部分 127 饋送管線 128 零件 129 區域/空間 130 區域/空間 131 區域/空間 132 管或管道 331 饋送歧管 334 旁路管道零件 335 間隔物突出部分 338 返回歧管零件 340 第一級分裂節點 149813.doc -38- 201112468 341 子液流 342 子液流 343 第二級分裂節點 344 第二級分裂節點 345 子液流 346 子液流 347 子液流 348 子液流 349 第三級分裂節點 350 第三級分裂節點 351 第三級分裂節點 352 第三級分裂節點 353 分離路徑 354 分離路徑 355 分離路徑 356 分離路徑 357 分離路徑 358 分離路徑 359 分離路徑 360 分離路徑 361 液流路徑 362 液流路徑 363 液流路徑 364 液流路徑 149813.doc ·39· 201112468 365 液流路徑 366 液流路徑 367 液流路徑 368 液流路徑 369 第一級合併節點 370 第一級合併節點 371 第一級合併節點 372 第一級合併節點 373 第二級液流路徑 374 第二級液流路徑 375 第二級液流路徑 376 第二級液流路徑 377 第二級合併節點 378 第二級合併節點 381 第三級液流路徑 382 第三級液流路徑 383 第三級節點 384 單一液流 501 電極 502 負電極 503 負電極 504 正電極 505 正電極 506 反應區 149813.doc -40- 201112468 507 反應區 509 零件 510 零件 518 導電間隔物 519 導電間隔物 520 部分 521 電池 522 電池 523 導電間隔物 524 導電間隔物 525 部分 603 分離元件 604 隔板 605 泵入口 606 泵出口 607 饋送管線 608 線 703 分離元件 705 容積 707 容積 805Α 出口 805Β 出口 806 引入開口 807 饋送管線 149813.doc •41 · 201112468 815 放電模式饋送管道 822 放電模式返回管道 903 截頭圓錐薄板 905 第一容積 907 容積 909 排放液流 911 排放液流 913 排放液流 915 排放液流 917 孔隙 919 流體 921 氯饋送 1003 分離元件 1005 第一容積 1007 第二容積 149813.doc -42-The circular horizontal cross-sectional shape and the opening on the first end (e.g., the upper end in Fig. 9) has a large opening. Figure 9 t cross-sectional port from the second end to the first end having a frustoconical shape that is less than the opposite of the opposite second end (e.g., the lower end) may have a steady increase from the second size and a relatively constant tilt The side walls (e.g., have a generally rounded shape that tapers toward the lower portion of the reservoir 119). The funnel shape (not shown) may have an unsteady increase in cross-sectional size from the second end to the first end (ie, jump) and __ or multiple n > in the inclined sidewalls; 1 η is divided into two volumes 9〇5, 907, wherein a first volume 905 is provided for accumulating a lighter component of the electrolyte, and a second volume 907 is provided for accumulating a more recombinant component (such as chlorine water). . The effluent stream 909/91 1, 913/915 can form a swirling fluid flow of fluid adjacent the upper surface of the separating element 903, such as by an outlet 8 that is curved in a direction generally along the % curved surface of the separating element 903. Promoted by 〇5A, 8〇5B. The outlets 805A and 805B are oriented in the inner volume of the frustoconical sheet 9〇3 and are curved in the direction of the curvature of the sheet 903 to provide angular distribution to the outlet fluid flow such that fluid flows around the upper surface of the sheet 903. Hovering. The resulting centrifugal force, along with gravity, helps the more recombinant components of the fluid settle into the second volume 907. The apertures 9丨7 in the perforated plate, mesh or screen 9〇3 not only allow the relatively recombined portion to enter the second volume 907, but also help slow down the flow of the fluid. The inlets/outlets 805A and 805B can function similarly to the inlets and outlets 605, 606 of Figures 6-8 of the previous embodiment in a reversibly operational system. 149813.doc • 33· 201112468 As described in relation to the previous embodiment, when the system is operating in the discharge mode, the return (ie, 'drain or outlet') flow 913 will travel from the stack through the discharge mode return conduit 822 (similar The conduit 122) in Fig. 1 and exits as the liquid stream 915 from the outlet 805B into the first volume 905 inside the frustoconical separating element 9〇3. A gas feed (i.e., suction) 921 from the lower second volume 9〇7 is supplied through the discharge mode feed pipe 815 (similar to the pipe Π 5 in the drawing) from the feed line 807 to the stack. Likewise, an electrolyte feed (i.e., suction) from the upper first volume 905 is supplied through conduit 815 from inlet 805A into the stack. The chlorine and electrolyte are mixed in a channel 815 above the inlet 8〇5A. Pumps for suction are not shown for clarity. In the non-limiting configuration shown in Figure 9, the discharge mode feed conduit 81$ extends vertically along the central axis of the truncated conical sheet 903 and extends below the bottom opening of the frustoconical sheet 9〇3. The bottom portion acts as a gas feed line 807. The inlet 8〇5A into the pipe 815 is located between the top opening and the bottom opening of the frustoconical thin plate 9〇3. The discharge mode return conduit 822 can extend perpendicularly away from the central axis of the thin plate 903 and terminate at an opening 805B inside the cone above the plate surface 9〇3. When the system is operating in the charging mode, the outlet stream 909 will travel from the stack through conduit 815 (which now acts as a charge mode outlet conduit) and exit as outlet 805A (which acts as an inlet in discharge mode) as stream 911 It enters the first volume 905 inside the frustoconical separating element 903. The bow-in opening 8 〇 6 in the charging mode feed conduit 822 above the separating element 903 can be used to provide the fluid 919 to the oscillating weight in the charging mode, which is similar to the inlet 606 in FIG. The opening 805B can also be used as an inlet in the charging mode. In this embodiment, the separation element 9〇3 uses the fluid fluid flow properties and gravity of 149813.doc -34· 201112468 to facilitate separation of the electrolyte components, and there is no additional moving portion, thereby reducing the additional fixation. Cost and operating costs. Fourth Embodiment of Separating Element Figure 1A shows another embodiment of a reservoir 119 having a separating element 1003. The reservoir 119 of the embodiment of Figure 10 can be used in any of the systems and methods of any of the embodiments described above. The separating element 1 as shown is configured to utilize a mechanism similar to that described above with reference to Figure 9 (except for the frustoconical or funnel plate 1 shown in Figure ι from the thin plate 9 〇 3 in Figure 9 The orientation is reversed by a mechanism that is 180 degrees (ie, reversed) to separate the relatively reconstituted and lighter components of the electrolyte. In one embodiment, the separation element 1〇03 comprises a curved sheet (such as a mesh or perforated screen or a ridged perforated plate) having openings in its side walls in some configurations. Preferably, as described above, the sheet has a frustoconical or funnel shape. In other configurations, the sheet 1003 lacks an opening in its sidewall. As shown in Figure 10, element 1003 has a frustoconical shape that tapers toward the top portion of reservoir U9 (i.e., the opening on the first end (e.g., the upper end in FIG. 1) has a second relative orientation The opening on the end (for example, the lower end) is small and small. The separating element 1003 divides the reservoir 119 into two volumes 1〇〇5, 1007' where the first volume 1〇〇5 is provided for the lighter group injury of the accumulated electrolyte' and the first grain product 1 〇〇7 Provided for accumulating more recombinant components (such as chlorine water). The effluent streams 911, 91 5 may form a swirling fluid flow of fluid adjacent the lower surface of the separating element 1003 as by a surface located adjacent to the bottom plate 1 I 3 498. The outlets at the top surface of the thin plate 903 of Fig. 9 are 8〇5 in and 8〇5]8. The outlets 805A, 805B are curved in a direction substantially along the curved lower surface of the separating member 1〇〇3. The resulting centrifugal force, together with gravity, helps the rutting recombination in the fluid settle better into the second volume 丨〇〇7. Therefore, in the target example of the drawing, the electrolyte and chlorine are separated into the volumes 1〇〇5 and 1〇〇7, respectively, by the electrolyte flowing upward from the volume 1〇〇7 into the volume. In contrast, in the embodiment of Fig. 9, separation occurs by gas flowing downward from the volume 9〇5 into the volume 907. Advantageously, the separation element implements an architecture with a simplified single flow circuit piping design, valve design, pump layout, and the like. Alternative flow battery designs typically require two separate flow systems that are more complex, costly, and more prone to crossover and leakage. Although the above is referred to a particular preferred embodiment, it should be understood that the invention is not limited thereto. It will be appreciated by those skilled in the art that various modifications may be made to the disclosed embodiments and such modifications are intended to be within the scope of the invention. All publications, patent applications and patents cited herein are hereby incorporated by reference in their entirety. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a side cross-sectional view of one embodiment of an electrochemical system having a sealed container containing a stack of electrochemical cells. Figure 2 illustrates a side cross-sectional view of a flow path in a stack of horizontally positioned cells. Figure 3 illustrates a three dimensional view of a battery frame that can be used in certain embodiments of an electrochemical system. 149813.doc -36· 201112468 Figure 4 is a prior art phase diagram of the molecular gas as presented in U.S. Patent No. 94,283. Figure 5 graphically illustrates a three-dimensional view of the flow path control in an electrochemical system in a discharge mode. Fig. 6 schematically illustrates a side cross-sectional view of a reservoir having a header separation element and a separator. Figure 7 is a schematic illustration of a side cross-sectional view of a reservoir having discrete elements in a discharge operation of an electrochemical system. Figure 8 is a schematic illustration of a side cross-sectional view of a reservoir with separate elements in a charging operation of an electrochemical system. Figure 9 illustrates a three-dimensional shear diagram of a reservoir having a separate element disposed therein in accordance with an embodiment of the present invention. Figure 10 illustrates a three-dimensional shear diagram of a reservoir in accordance with another embodiment of the present invention. The 6-well reservoir has separate elements disposed therein. [Main component symbol description] 21 Feed tube or manifold 22 Distribution area 23 Porous disorder electrode 24 Part 25 Metal electrode 26 Collection area 27 Return manifold 29 Return tube 30 Barrier 149813.doc -37- 201112468 100 Electrochemical system 101 Sealed container / 1 1 internal volume 103 stack 115 feed tube or manifold 119 reservoir 120 return tube or manifold 121 upwardly extending section 122 downwardly extending section 123 drain pump 124 filling pump 125 upper portion 126 lower portion 127 feed line 128 Part 129 Area/Space 130 Area/Space 131 Area/Space 132 Pipe or Pipe 331 Feed Manifold 334 Bypass Pipe Part 335 Spacer Projection 338 Return Manifold Part 340 First Stage Split Node 149813.doc -38- 201112468 341 sub-liquid stream 342 sub-liquid stream 343 second-stage splitting node 344 second-stage splitting node 345 sub-liquid stream 346 sub-liquid stream 347 sub-liquid stream 348 sub-liquid stream 349 third-stage splitting node 350 third-stage splitting node 351 Three-level split node 352 third-stage split node 353 split path 354 split path 355 split path 356 separation path 357 separation path 358 separation path 359 separation path 360 separation path 361 liquid flow path 362 liquid flow path 363 liquid flow path 364 liquid flow path 149813.doc ·39· 201112468 365 liquid flow path 366 liquid flow path 367 liquid flow path 368 Flow path 369 First stage merge node 370 First stage merge node 371 First stage merge node 372 First stage merge node 373 Second stage liquid flow path 374 Second stage liquid flow path 375 Second stage liquid flow path 376 Second stage flow path 377 Second stage merge node 378 Second stage merge node 381 Third stage liquid flow path 382 Third stage liquid flow path 383 Third stage node 384 Single stream 501 Electrode 502 Negative electrode 503 Negative electrode 504 Positive electrode 505 Positive electrode 506 Reaction zone 149813.doc -40- 201112468 507 Reaction zone 509 Part 510 Part 518 Conductive spacer 519 Conductive spacer 520 Portion 521 Battery 522 Battery 523 Conductive spacer 524 Conductive spacer 525 Part 603 Separation element 604 Separator 605 pump inlet 606 pump outlet 607 feed line 608 line 703 Offset element 705 Volume 707 Volume 805 Α Outlet 805Β Outlet 806 Lead into opening 807 Feed line 149813.doc •41 · 201112468 815 Discharge mode feed line 822 Discharge mode Return line 903 Frustum thin plate 905 First volume 907 Volume 909 Drain flow 911 Emission Flow 913 Drain Flow 915 Drain Flow 917 Pore 919 Fluid 921 Chlorine Feed 1003 Separation Element 1005 First Volume 1007 Second Volume 149813.doc -42-

Claims (1)

201112468 七、申請專利範圍: 丨.一種電化學系統,其包含一器皿,其中該器皿含有: (a) 至少一電池,其包含: 一第一電極; • 一第二電極;及 • 一位於該第一電極與該第二電極之間的反應區; (b) —儲集器,其含有一經組態以選擇性地聚積金屬 鹵化物電解質組份的第一容積及一經組態以選擇性地聚 積一液化_素反應物的第二容積; (c) —分離元件,其將該第一容積與該第二容積分 離;及 (d) —液流環路,其經組態以在該儲集器與該至少一 电池之間傳遞s玄齒素反應物及該金屬齒化物電解質。 2·如請求項1之系統,其中該分離元件對該液化函素反應 物之一滲透率高於對該金屬齒化物電解質組份之一滲透 率 Ο 3. 如請求項2之系統,其中該分離元件包含一分子篩或/ 選擇性多孔隔膜。 4. 如凊求項3之系統,其中該分子篩或選擇性多孔隔膜包 含一選自以下各者中之至少一者的分子篩:粒狀天然或 合成一氧化>5夕-氧化紹材料或一中孔碳材料。 5 -如請求項3之系統’其中該分離元件包含一多孔容器或 托盤,其具有位於其中或其上之該分子篩。 6.如清求項2之系統,其中對該液化函素反應物之一滲透 149813.doc 201112468 率高於對該金屬蟲化物電解質組份之一滲透率的該分離 元件係基於一分子大小或一電荷中之至少一者。 7,如請求項2之系統,進一步包含電極或導電板,該等電 極或導電板電接觸該分離元件以將一電壓施加至該分離 凡件,以促進該液化齒素反應物選擇性地穿過該分離元 件而擴散。 8_如請求項1之系統,其中該分離元件包含一集液板。 9.如求項1之系統,其中該分離元件包含一具有至少兩 個開口之彎曲薄板。 1〇·如請求項9之系統,其中: β玄奢曲薄板包含一截頭圓錐或漏斗狀彎曲薄板,其在 其上端具有一第一開口且在其下端具有一第二開口; 該彎曲薄板經組態以使用一離心力促進該分離; 該第—容積位於該彎曲薄板上方;且 該第二容積位於該彎曲薄板下方。 11.如叫求項1 〇之系統,其中該彎曲薄板朝該儲集器之一下 方部分漸尖。 士清求項11之系統’其中該彎曲薄板包含一在其側壁中 含有開口之網、篩或穿孔板。 13. 如凊求項12之系統,其中該液流環路包含一返回管道之 至少—出口’其大體上沿該彎曲薄板之一上表面彎曲。 14. 如請求項13之系統,其中: °玄液流環路進一步包含至少一饋送管道,該至少一饋 送官道沿著該彎曲薄板之一中心軸垂直延伸;且 149813.doc 201112468 該至少一饋送管道之一底部部分穿過該彎曲薄板之該 第二開D延伸,並在該第二開口下方延伸至該第二容積 中以充當一画素反應物饋送管線。 15. 如請求項1〇之系統,其中該彎曲薄板朝該儲集器之一上 方部分漸尖。 16. 如請求項15之系統,其中該液流環路包含一返回管道之 至少—出口’其大體上沿該彎曲薄板之一下表面彎曲。 17·如請求項1之系統,其中該第一容積之該金屬鹵化物電 解質組份的濃度高於該第二容積之該金屬齒化物電解質 組份的濃度。 18. 如請求項17之系統,其中該第二容積之該函素反應物的 濃度高於該第一容積之該_素反應物的濃度。 19. 如請求項18之系統,其中該第二容積位於該儲集器中之 該第—容積下方。 20. 如請求項19之系統,其中該液流環路為一迴路環路,其 經組態以將該金屬鹵化物電解質組份及該_素反應物分 別自該第一容積及該第二容積傳遞至該至少一電池,及 自該至少一電池傳遞至該儲集器。 21. 如請求項20之系統,其中該液流環路包含: 一饋送歧管,其經組態以將該金屬_化物電解質組份 及該鹵素反應物分別自該第一容積及該第二容積傳遞至 該至少一電池;及 -返回歧管,其經組態以將該函素反應物及該金屬齒 化物電解質組份自該至少一電池傳遞至該儲集器。 149813.doc 201112468 22.如請求項21之系統,其中該饋送歧管包含: 一位於該第一容積中之第一入口;及 一位於該第二容積中之第二入口。 23. 如請求項1之系統,其中該器皿之一内容積中之—屙力 高於該自素反應物之一液化壓力。 24. 如請求項1之系統,其中該液流環路包含: 一第—循環泵,其經組態以在一第一方向上輸送一液 流穿過該液流環路;及 一第二循環泵,其經組態以在一與該第—方向相反之 第二方向上輸送一液流穿過該液流環路。 25.如請求項丨之系統,其中該儲集器含有經組態以減少該 儲集器中之渦流的一或多個隔板。 26·如請求項1之系統,其中該儲集器位於該至少一電池下 方。 27_如請求項i之系統,其中該第一電極包含一多孔材料, a亥第一電極包含一金屬,該金屬_化物電解質組份包含 氣化辞’該電解質包含一含水電解質,該液化鹵素反應 物包含一液化氣反應物,且該至少一電池包含串聯連接 之水平電池之一垂直堆疊。 28. —種操作一電化學系統之方法,其包含: (A)提供一包含一器皿之系統,該器皿含有: (a)至少一電池,其包含: 一第一電極; 一第二電極;及 149813.doc 201112468 一位於該第一電極與該第二電極之間的反應 區,及 (b) —儲集器,其含有由一分離元件分離之一第 一容積及一第二容積; (B) 將來自β玄第一谷積之一金屬鹵化物電解質組份與 來自該第二容積之一液化齒素反應物混合以形成一電解 質混合物; (C) 在一放電模式下將該電解質混合物提供至該至少 一電池以產生電;及 (D) 使δ亥電解質混合物自該至少一電池返回至該儲集 器中之s亥第一容積,使得來自該返回之電解質混合物的 未用液化ii素反應物自該第一容積穿過該分離元件滲透 至該第二容積。 29. 如請求項28之方法,其中該第一容積之該金屬鹵化物電 解質組份的濃度高於該第二容積之該金屬鹵化物電解質 組份的濃度’且該第二容積之鹵素反應物的濃度高於該 第一容積之函素反應物的濃度。 30. 如請求項29之方法,進—步包含: (E) 在一充電模式下,將該金屬鹵化物電解質組份自 該第一容積提供至該至少一電池,以對該電化學系統充 電;及 (F) 使該電解質自該至少一電池返回至該儲集器中之 該第一容積’使得在該返回之電解質中之該任何液化鹵 素反應物選擇性地自該第一容積穿過該分離元件而至該 149813.doc 201112468 第二容積》 31.如請求項28之方法’其申該分離元件包含一分子篩或一 選擇性多孔隔膜,該第一電極包含一多孔含碳材料,該 第二電極包含鋅,該金屬_化物電解質組份包含氣化 辞’該電解質混合物包含一含水電解質混合物,該液化 鹵素反應物包含一液化氯反應物,且該至少一電池包含 串聯連接之水平電池之一垂直堆疊。 32·如請求項31之方法,其中該液化鹵素反應物基於以下各 者中之至少一者而選擇性地自該第一容積穿過該分離元 件滲透至該第二容積:具有一小於該金屬齒化物電解質 組伤之分子大小的分子大小或一不同於該金屬齒化物電 解質組份之電荷的電荷。 33,如請求項28之方法’其中該分離元件包含一集液板。 34·如請求項28之方法,其中該分離元件包含一具有至少兩 個開口之彎曲薄板。 35·如請求項34之方法,其中: 該彎曲薄板包含一截頭圓錐或漏斗狀彎曲薄板,其在 其上端具有一第一開口,且在其下端具有一第二開口; 該弯曲薄板經組態以使用一離心力促進該分離; 該第一容積位於該彎曲薄板上方;且 δ亥第二容積位於該彎曲薄板下方。 36.種電化學系統,其包含一器皿,其中該器皿含有: (a)至少一電池,其包含: 一第一電極; I49813.doc -6· 201112468 一第二電極;及 一位於該第一電極與該第二電極之間的反應區; (b) —儲集器’其含有一經組態以選擇性地聚積一金 屬鹵化物電解質組份的第一容積,及一經組態以選擇性 地聚積一液化_素反應物的第二容積;及 (c) 液流環路,其經組態以在該儲集器與該至少一電 池之間傳遞該鹵素反應物及該金屬函化物電解質,其中 該液流環路包含: (i) 一饋送歧管’其經組態以將該金屬鹵化物電 解質組份及該齒素反應物分別自該第一容積及該第二 容積傳遞至該至少一電池,該饋送歧管包含一位於該 第一容積中之第一入口及一位於該第二容積中之第二 入口;及 (ii) 一返回歧管’其經組態以將該函素反應物及 該金屬鹵化物電解質組份自該至少一電池傳遞至該儲 集器。 37.如請求項36之系統,其中該第一容積位於該儲集器中之 該第二容積上方,該第一電極包含一多孔材料,該第二 電極包含一金属’該金屬_化物電解質組份包含氣化 鋅’該電解質包含一含水電解質,該液化_素反應物包 含一液化氯反應物,該至少一電池包含串聯連接之水平 電池之一垂直堆疊’且s亥堆疊位於該器皿中之該儲集琴 上方。 3 8 _ —種電化學系統,其包含一密封器皿’該密封器皿含 149813.doc 201112468 有: (a) 至少一電池,其包含: 一第一金屬電極; 一第二多孔電極;及 一位於該第一電極與該第二電極之間的反應區; (b) —液化氯反應物; (c) 至少一金屬氣化物電解質;及 (d) —封閉迴路液流環路,其經組態以將該氣反應物 及該至少一金屬氣化物電解質傳遞至該反應區,及自該 反應區傳遞該氣反應物及該至少一金屬氣化物電解質, 其中該氣反應物及該金屬齒化物反應物在該至少一電池 中之該封閉迴路液流環路中具有同一液流路徑。’ 39· —種金屬鹵素電化學系統,其包含: (A)-壓力圍阻器皿,其含有·· ⑷水平定位型電池之—垂直堆疊,其中該堆叠 中之每一電池包含: 至少一正電極; 至少一負電極;及 一位於該正電極與該負電極之間的反應 區;及 κ (b) —電解質混合物,其包含⑴至少一含水電解 質’其包含一金屬及一鹵素;及(ii)—加壓鹵素反 應物;及 ()循環泵,其經組態以輸送該電解質混合物之一 149813.doc 201112468 液流穿過該反應區,使得該齒素反應物在該正電極處被 還原以形成一富含函素離子之電解質混合物,該富含鹵 素離子之電解質混合物繞過該負電極。 40. —種電化學系統,其包含: • 一加壓密封器孤,其具有一内容積,該内容積包含一 ' 第一壓力區及一包圍該第一壓力區之第二壓力區,其 中: (A) 該第一壓力區含有: (a) 至少一電池,其包含: 一第一電極; 一第二電極;及 一位於該第一電極與該第二電極之間的反 應區; (b) —液化_素反應物; (c) 至少一金屬函化物電解質;及 (d) —液流環路,其經組態以將該齒素反應物及 該至少—電解質傳遞至該至少—電池;且 (B) 該第一壓力區中之一壓力高於該函素反應物之一 . 液化壓力,而該第二壓力區中之一壓力高於該第一壓力 區中之該壓力。 4 1 · 一種電化學系統,其包含·· 一加壓密封器蓝,其含有: (a)至少一電池,其包含: 一第一電極; 149813.doc 201112468 一第二電極;及 一位於該第一電極與該第二電極之間的反應 區; (b) —液化画素反應物; (c) 至少一金屬鹵化物電解質; (d) —儲集器,其含有該至少一金屬鹵化物電解質 及該液化齒素反應物;及 (e) —液流環路,其經組態以在該儲集器與該至少 一電池之間傳遞該鹵素反應物及該金屬齒化物電解 質; 其中該器皿之一内容積中之一壓力高於該_素反應 物之一液化壓力;且 其中該電池之該反應區不含有不能滲透該_素反應 物的隔膜或分離器。 42. 如請求項41之系統,其中該系統不包含一壓縮器。 43. 如請求項41之系統,其中該鹵素反應物位於該儲集器中 之該至少一金屬鹵化物電解質下方。 44. 如請求項41之系統,其中該液流環路為一迴路環路,其 經組態以將該齒素反應物及該至少一電解質自該儲集器 傳遞至該至少一電池’及自該至少一電池傳遞至該儲集 器。 ~ 45. 如請求項44之系統,其中該液流環路包含:— 鏆运歧 管’其經組態以將該i素反應物及該至少一電解質自兮 儲集器傳遞至該至少一電池;及一返回歧管, 丹經組態 149813.doc •10· 201112468 46. 47. 48. 49. 50. 51. 52. 53. 以將該南素反應物及該至少一電解質自該至少一電池傳 遞至該儲集器》 如請求項45之系統,其中該饋送歧管包含一第一引入管 線及—與該第一引入管線分離之第二引入管線,其中該 第一引入管線經組態以引入該金屬鹵化物電解質,且該 第二引入管線經組態以引入該鹵素反應物。 如請求項46之系統,其中該鹵素反應物藉由重力而被至 少部分地分離於該儲集器中之該至少一金屬函化物電解 質下方。 如叫求項47之系統,其中該第二引入管線在該儲集器中 之§亥第一引入管線下方延伸。 如叫求項46之系統’其中該返回歧管為一向上行進之返 回歧管。 如叫求項44之系統,其中該液流環路包含至少一循環 泵,忒至少一循環泵經組態以輸送該齒素反應物及該至 少一電解質穿過該電池之該反應區。 士月求項50之系統,其中該液流環路包含:一第一循環 泵八絰組態以在一第一方向上輸送一液流穿過該液流 環路;及-第二循環果,其經組態以在—與該第一方向 相反的第_方向上輸送―液流穿過該液流環路。 如請求項50之系統’其中該至少-循環泉之-入口為一 突出於該儲集器之-壁外的水平入口。 如請f項44之系統,其中該儲集器含有至少-水平集液 板亥水平集液板在該儲集器中將該函素反應物與該電 1498l3.doc 201112468 解質分離》 如請求項44之系統, 儲集器中之渦流的一 如睛求項4 3之系統, 方。 54. 55. 56. 57. 58. 59. 60. 61. 62. 其·中該儲集器含有經組態以減少該 或多個隔板。 其中該儲集器位於該至少一電池下 如請求項43之系統,其中該密封器皿具有:U力 區,其含有該儲集器及該至少一電池;及一包封該第一 壓力區之第二壓力區 第一區中之一壓力。 其中該第二區中之一壓力高於該 如請求項56之系統,JL中兮笛 r L 卜 八干5亥第一壓力區中之該壓力之範 圍為75psi至4〇〇pSi,且該坌一 °茨弟一壓力區中之該壓力之範 圍為100 psi至600 psi。 如5青求項5 6之系統,其φ兮·货 _ 、 再中°亥第二壓力區含有一惰性氣體 或用於該函素反應物之中和劑中的至少一者。 清求項41之系統,其中該第—電極包含一多孔含碳材 如請求項59之系統’其中該至少一電池包含一水平電 池,且其中一用於該函素反應物及該至少一電解質之入 、亥第電極上方,且一用於該齒素反應物及該至 夕電解質之出口位於該第一電極下方。 求項59之系統,其中該第一電極進一步包含一或多 個導電間隔物。 女。月求項59之系統,其中該第二電極包含辞,其中該電 ^3氣化鋅;且其中該函素反應物包含一液化氣反 1498I3.doc •12- 201112468 應物。 63. 64. 65. 66. 67. :::項62之系統’其中該電解質進一步包含氣化鈉及 氣化鉀中之至少一者。 :明求項41之系統’其中該至少一電池包含複數個電 池。 如咕求項64之系統’其中該至少—電池包含串聯 複數個電池。 如請求項64之系統,其中該至少一電池包含串聯連接之 水平電池之一垂直堆疊。 種电化學系統,其包含一器皿,其中該器皿含有: (a) 串聯連接之水平電池之一垂直堆疊; (b) —儲集器,其經組態以聚積一金屬鹵化物電解質 組份及一液化_素反應物;及 (c) 一液流環路,其經組態以在該儲集器與該堆疊之 間傳遞該函素反應物及該金屬_化物電解質; 其中: (i) 該堆疊中之一第一電池包含: 一多孔電極; 一金屬電極;及 一位於該多孔電極與該金屬電極之間的反應 區; (ii) 該堆疊中之一第二電池包含: 一多孔電極; 一金屬電極;及 149813.doc • 13- 201112468 一位於該多孔電極與該金屬電極之間的反應 區; (III) 導電間隔物,其電接觸該第一電池之該多孔電 極及該第二電池之該金屬電極;及 (IV) 該等導電間隔物經組態使得該画素反應物及該 金屬||化物電解質在一位於該等導電間隔物之間 的空間中流動,穿過該第一電池之該多孔電極, 並流動至該第一電池之該反應區中。 68. 如請求項67之系統,其中該第一電池及該第二電池之該 等反應區不含有不能滲透該液化_素反應物的隔膜或分 離器,該金屬鹵化物電解質組份包含氣化鋅,該電解質 包含一含水電解質,該液化齒素反應物包含一液化氣反 應物。 69. 如請求項67之系統,其中該第一電池與該第二電池之間 之一電池間距離比該第一電池之該多孔電極與該第一電 池之該金屬電極之間之—電極間距離大至少三倍。 M9813.doc •14·201112468 VII. Patent application scope: 电化学 An electrochemical system comprising a vessel, wherein the vessel comprises: (a) at least one battery comprising: a first electrode; a second electrode; and a reaction zone between the first electrode and the second electrode; (b) a reservoir comprising a first volume configured to selectively accumulate the metal halide electrolyte component and configured to selectively a second volume accumulating a liquefied reactant; (c) a separating element that separates the first volume from the second volume; and (d) a liquid flow loop configured to be in the reservoir The concentrator and the metal dentate electrolyte are transferred between the collector and the at least one battery. 2. The system of claim 1, wherein the separation element has a permeability to the liquefaction element reactant that is higher than a permeability of the metal hydride electrolyte component. 3. The system of claim 2, wherein The separation element comprises a molecular sieve or a selective porous membrane. 4. The system of claim 3, wherein the molecular sieve or the selective porous membrane comprises a molecular sieve selected from at least one of the group consisting of: granular natural or synthetic mono-oxidation> Medium pore carbon material. 5. The system of claim 3 wherein the separating element comprises a porous container or tray having the molecular sieve located therein or thereon. 6. The system of claim 2, wherein the permeating one of the liquefaction reactants is 149813.doc 201112468 is higher than the permeability of one of the metal insect electrolyte components based on a molecular size or At least one of a charge. 7. The system of claim 2, further comprising an electrode or a conductive plate electrically contacting the separating element to apply a voltage to the separating member to facilitate selective penetration of the liquefied dentate reactant Spread through the separating element. 8) The system of claim 1, wherein the separation element comprises a liquid collection plate. 9. The system of claim 1 wherein the separating element comprises a curved sheet having at least two openings. 1. The system of claim 9, wherein: the β 玄玄曲板 comprises a frustoconical or funnel-shaped curved sheet having a first opening at an upper end thereof and a second opening at a lower end thereof; the curved sheet It is configured to promote the separation using a centrifugal force; the first volume is above the curved sheet; and the second volume is below the curved sheet. 11. The system of claim 1 wherein the curved sheet tapers toward a lower portion of the reservoir. The system of claim 11 wherein the curved sheet comprises a web, screen or perforated sheet having openings in its side walls. 13. The system of claim 12, wherein the flow loop comprises at least an outlet of a return conduit that is generally curved along an upper surface of the curved sheet. 14. The system of claim 13, wherein: the culvert flow loop further comprises at least one feed conduit extending perpendicularly along a central axis of the curved sheet; and 149813.doc 201112468 the at least one A bottom portion of one of the feed conduits extends through the second opening D of the curved sheet and extends below the second opening into the second volume to serve as a pixel reactant feed line. 15. The system of claim 1 wherein the curved sheet tapers toward an upper portion of the reservoir. 16. The system of claim 15 wherein the flow loop comprises at least an outlet of a return conduit that is generally curved along a lower surface of the curved sheet. 17. The system of claim 1, wherein the concentration of the metal halide electrolyte component of the first volume is higher than the concentration of the metal toothed electrolyte component of the second volume. 18. The system of claim 17, wherein the concentration of the elementary reactant of the second volume is higher than the concentration of the elemental reactant of the first volume. 19. The system of claim 18, wherein the second volume is below the first volume in the reservoir. 20. The system of claim 19, wherein the flow loop is a loop of a loop configured to separate the metal halide electrolyte component and the reactant from the first volume and the second The volume is transferred to the at least one battery and from the at least one battery to the reservoir. 21. The system of claim 20, wherein the flow loop comprises: a feed manifold configured to separate the metal-based electrolyte component and the halogen reactant from the first volume and the second A volume is transferred to the at least one battery; and a return manifold configured to transfer the elementary reactant and the metalized tooth electrolyte component from the at least one battery to the reservoir. 22. The system of claim 21, wherein the feed manifold comprises: a first inlet located in the first volume; and a second inlet located in the second volume. 23. The system of claim 1 wherein the volume of the inner volume of the vessel is greater than the liquefaction pressure of one of the self-reacting reactants. 24. The system of claim 1, wherein the flow loop comprises: a first-circulating pump configured to deliver a flow through the flow loop in a first direction; and a second A circulation pump configured to deliver a flow through the flow path in a second direction opposite the first direction. 25. The system of claim 1, wherein the reservoir includes one or more baffles configured to reduce eddy currents in the reservoir. 26. The system of claim 1, wherein the reservoir is located below the at least one battery. The system of claim i, wherein the first electrode comprises a porous material, the first electrode of the ahai comprises a metal, and the metal-electrolyte component comprises a gasification word, the electrolyte comprises an aqueous electrolyte, the liquefaction The halogen reactant comprises a liquefied gas reactant and the at least one battery comprises a vertical stack of one of the horizontal cells connected in series. 28. A method of operating an electrochemical system, comprising: (A) providing a system comprising a vessel, the vessel comprising: (a) at least one battery comprising: a first electrode; a second electrode; And 149813.doc 201112468 a reaction zone between the first electrode and the second electrode, and (b) a reservoir comprising a first volume and a second volume separated by a separating element; B) mixing a metal halide electrolyte component from the β-first grain product with a liquefied dentate reactant from the second volume to form an electrolyte mixture; (C) the electrolyte mixture in a discharge mode Providing to the at least one battery to generate electricity; and (D) returning the delta-electrolyte mixture from the at least one battery to the first volume of the reservoir such that unused liquefaction from the returned electrolyte mixture ii The prime reactant permeates from the first volume through the separation element to the second volume. 29. The method of claim 28, wherein the concentration of the metal halide electrolyte component of the first volume is higher than the concentration of the metal halide electrolyte component of the second volume and the halogen reactant of the second volume The concentration is higher than the concentration of the first volume of the pixel reactant. 30. The method of claim 29, wherein the step comprises: (E) supplying the metal halide electrolyte component from the first volume to the at least one battery in a charging mode to charge the electrochemical system And (F) returning the electrolyte from the at least one battery to the first volume in the reservoir such that any liquefied halogen reactant in the returned electrolyte selectively passes through the first volume 31. The method of claim 28, wherein the separation element comprises a molecular sieve or a selective porous membrane, the first electrode comprising a porous carbonaceous material, The second electrode comprises zinc, the metal-oxide electrolyte component comprises a gasification word, the electrolyte mixture comprises an aqueous electrolyte mixture, the liquefied halogen reactant comprises a liquefied chlorine reactant, and the at least one battery comprises a level of series connection One of the batteries is stacked vertically. The method of claim 31, wherein the liquefied halogen reactant selectively permeates from the first volume through the separation element to the second volume based on at least one of: having a smaller than the metal The molecular size of the molecular size of the toothed electrolyte group injury or a charge different from the charge of the metal toothed electrolyte component. 33. The method of claim 28, wherein the separating element comprises a liquid collecting plate. The method of claim 28, wherein the separating element comprises a curved sheet having at least two openings. 35. The method of claim 34, wherein: the curved sheet comprises a frustoconical or funnel-shaped curved sheet having a first opening at an upper end thereof and a second opening at a lower end thereof; The state promotes the separation using a centrifugal force; the first volume is above the curved sheet; and the second volume is below the curved sheet. 36. An electrochemical system comprising a vessel, wherein the vessel comprises: (a) at least one battery comprising: a first electrode; I49813.doc -6. 201112468 a second electrode; and one located at the first a reaction zone between the electrode and the second electrode; (b) a reservoir comprising a first volume configured to selectively accumulate a metal halide electrolyte component, and configured to selectively a second volume of a liquid liquefied reactant; and (c) a liquid flow loop configured to transfer the halogen reactant and the metal complex electrolyte between the reservoir and the at least one battery, Wherein the flow loop comprises: (i) a feed manifold configured to transfer the metal halide electrolyte component and the dentate reactant from the first volume and the second volume, respectively, to the at least a battery, the feed manifold including a first inlet in the first volume and a second inlet in the second volume; and (ii) a return manifold 'which is configured to use the element The reactant and the metal halide electrolyte component are from the at least A battery is delivered to the reservoir. 37. The system of claim 36, wherein the first volume is above the second volume in the reservoir, the first electrode comprises a porous material, and the second electrode comprises a metal 'the metal-based electrolyte The component comprises zinc oxide, the electrolyte comprising an aqueous electrolyte, the liquefied reactant comprising a liquefied chlorine reactant, the at least one battery comprising one of the horizontal cells connected in series vertically stacked and the stack is located in the vessel The reservoir is above the piano. 3 8 _ an electrochemical system comprising a sealed vessel 'The sealed vessel containing 149813.doc 201112468 has: (a) at least one battery comprising: a first metal electrode; a second porous electrode; a reaction zone between the first electrode and the second electrode; (b) a liquefied chlorine reactant; (c) at least one metal vapor electrolyte; and (d) a closed loop flow loop Transmitting the gas reactant and the at least one metal vapor electrolyte to the reaction zone, and transferring the gas reactant and the at least one metal vapor electrolyte from the reaction zone, wherein the gas reactant and the metal toothing The reactant has the same flow path in the closed loop flow loop in the at least one battery. A 39. metal halogen electrochemical system comprising: (A) a pressure containment vessel containing (4) a horizontally positioned battery - vertically stacked, wherein each of the cells in the stack comprises: at least one positive An electrode; at least one negative electrode; and a reaction zone between the positive electrode and the negative electrode; and a κ (b)-electrolyte mixture comprising (1) at least one aqueous electrolyte comprising a metal and a halogen; Ii) a pressurized halogen reactant; and () a circulation pump configured to deliver one of the electrolyte mixtures 149813.doc 201112468 a liquid stream passing through the reaction zone such that the dentate reactant is at the positive electrode The reduction is performed to form an electrolyte mixture rich in a halide ion, the halogen ion-rich electrolyte mixture bypassing the negative electrode. 40. An electrochemical system comprising: • a pressurization sealer having an inner volume, the inner volume comprising a first pressure zone and a second pressure zone surrounding the first pressure zone, wherein : (A) the first pressure zone comprises: (a) at least one battery comprising: a first electrode; a second electrode; and a reaction zone between the first electrode and the second electrode; b) - a liquefied _ _ reactant; (c) at least one metal complex electrolyte; and (d) - a liquid flow loop configured to transfer the dentate reactant and the at least - electrolyte to the at least - a battery; and (B) one of the pressures in the first pressure zone is higher than one of the hydroxyl reactants, and one of the pressures in the second pressure zone is higher than the pressure in the first pressure zone. 4 1 · An electrochemical system comprising: a pressurized sealer blue comprising: (a) at least one battery comprising: a first electrode; 149813.doc 201112468 a second electrode; and a a reaction zone between the first electrode and the second electrode; (b) a liquefied pixel reactant; (c) at least one metal halide electrolyte; (d) a reservoir containing the at least one metal halide electrolyte And the liquefied dentate reactant; and (e) a liquid flow loop configured to transfer the halogen reactant and the metal toothed electrolyte between the reservoir and the at least one battery; wherein the vessel One of the internal volume pressures is higher than one of the liquefaction reactants; and wherein the reaction zone of the battery does not contain a membrane or separator that is impermeable to the reactant. 42. The system of claim 41, wherein the system does not include a compressor. 43. The system of claim 41, wherein the halogen reactant is located below the at least one metal halide electrolyte in the reservoir. 44. The system of claim 41, wherein the flow loop is a loop of a loop configured to transfer the dentate reactant and the at least one electrolyte from the reservoir to the at least one battery' and The at least one battery is delivered to the reservoir. The system of claim 44, wherein the flow loop comprises: - a manifold that is configured to deliver the i-reactant and the at least one electrolyte to the at least one Battery; and a return manifold, Danjing configuration 149813.doc •10· 201112468 46. 47. 48. 49. 50. 51. 52. 53. The Nansu reactant and the at least one electrolyte from the at least A battery is delivered to the reservoir, the system of claim 45, wherein the feed manifold includes a first introduction line and a second introduction line separate from the first introduction line, wherein the first introduction line is grouped State to introduce the metal halide electrolyte, and the second introduction line is configured to introduce the halogen reactant. The system of claim 46, wherein the halogen reactant is at least partially separated by gravity below the at least one metallization electrolyte in the reservoir. The system of claim 47, wherein the second introduction line extends below the first introduction line in the reservoir. The system of claim 46 wherein the return manifold is an upward return manifold. The system of claim 44, wherein the flow loop comprises at least one circulation pump, at least one circulation pump configured to deliver the dentate reactant and the at least one electrolyte passing through the reaction zone of the battery. The system of claim 50, wherein the flow loop comprises: a first circulation pump gossip configuration to deliver a flow through the flow loop in a first direction; and - a second cycle And configured to deliver a liquid flow through the flow loop in a first direction opposite the first direction. The system of claim 50 wherein the at least - the inlet of the spring is a horizontal inlet that protrudes beyond the wall of the reservoir. For example, the system of item f, wherein the reservoir contains at least a horizontal collector plate level collector plate in the reservoir to separate the device reactant from the electricity 1498l3.doc 201112468. The system of item 44, the eddy current in the reservoir is as good as the system of the system 4, square. 54. 55. 56. 57. 58. 59. 60. 61. 62. The reservoir is configured to reduce the or a plurality of baffles. Wherein the reservoir is located under the at least one battery, such as the system of claim 43, wherein the sealed vessel has: a U-force region containing the reservoir and the at least one battery; and an envelope of the first pressure zone One of the pressures in the first zone of the second pressure zone. Wherein the pressure in one of the second zones is higher than the system of claim 56, the pressure in the first pressure zone of the L r L L 八 干 5 亥 亥 为 为 为 , , , , , , , , , The pressure in the pressure zone of the 坌 ° 茨 is in the range of 100 psi to 600 psi. For example, in the system of 5 Qing, the second pressure zone of φ兮·goods _, zhonghehai contains an inert gas or at least one of the neutralizer for the element reactant. The system of claim 41, wherein the first electrode comprises a porous carbonaceous material, such as the system of claim 59, wherein the at least one battery comprises a horizontal battery, and one of the cells is used for the elementary reactant and the at least one An electrolyte is introduced above the first electrode, and an outlet for the dentate reactant and the electrolyte is located below the first electrode. The system of claim 59, wherein the first electrode further comprises one or more conductive spacers. Female. The system of claim 59, wherein the second electrode comprises a word, wherein the electricity is zinc sulfide; and wherein the elementary reactant comprises a liquefied gas anti- 1498I3.doc • 12-201112468. 63. 65. 65. 66. 67. ::: The system of item 62 wherein the electrolyte further comprises at least one of sodium carbonate and potassium vapor. The system of claim 41 wherein the at least one battery comprises a plurality of batteries. For example, the system of claim 64 wherein the battery comprises a plurality of cells in series. The system of claim 64, wherein the at least one battery comprises one of horizontal cells stacked in series vertically stacked. An electrochemical system comprising a vessel, wherein the vessel comprises: (a) one of a series of horizontal cells connected in series; (b) a reservoir configured to accumulate a metal halide electrolyte component and a liquefied reactant; and (c) a flow loop configured to transfer the functional reactant and the metal-based electrolyte between the reservoir and the stack; wherein: (i) One of the first batteries in the stack comprises: a porous electrode; a metal electrode; and a reaction zone between the porous electrode and the metal electrode; (ii) one of the second cells in the stack comprises: a hole electrode; a metal electrode; and 149813.doc • 13-201112468 a reaction zone between the porous electrode and the metal electrode; (III) a conductive spacer electrically contacting the porous electrode of the first battery and the The metal electrode of the second battery; and (IV) the conductive spacers are configured such that the pixel reactant and the metal electrolyte are flowing in a space between the conductive spacers The first battery Hole electrode, and the flows to the first reaction zone in a battery. 68. The system of claim 67, wherein the reaction zones of the first cell and the second cell do not contain a membrane or separator that is impermeable to the liquefied reactant, the metal halide electrolyte component comprising gasification Zinc, the electrolyte comprising an aqueous electrolyte, the liquefied dentate reactant comprising a liquefied gas reactant. 69. The system of claim 67, wherein a distance between the battery between the first battery and the second battery is greater than between the porous electrode of the first battery and the metal electrode of the first battery The distance is at least three times larger. M9813.doc •14·
TW099124405A 2009-07-24 2010-07-23 Electrochemical system having a device for separating reactants TWI491094B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/458,853 US8114541B2 (en) 2007-01-16 2009-07-24 Electrochemical energy generation system
US36463110P 2010-07-15 2010-07-15

Publications (2)

Publication Number Publication Date
TW201112468A true TW201112468A (en) 2011-04-01
TWI491094B TWI491094B (en) 2015-07-01

Family

ID=43499649

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099124405A TWI491094B (en) 2009-07-24 2010-07-23 Electrochemical system having a device for separating reactants

Country Status (2)

Country Link
TW (1) TWI491094B (en)
WO (1) WO2011011533A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202641B2 (en) 2010-09-08 2012-06-19 Primus Power Corporation Metal electrode assembly for flow batteries
CN103262336B (en) * 2010-09-08 2016-03-16 普里默斯电力公司 For the metal electrode assembly of flow battery
US8450001B2 (en) 2010-09-08 2013-05-28 Primus Power Corporation Flow batter with radial electrolyte distribution
US8137831B1 (en) 2011-06-27 2012-03-20 Primus Power Corporation Electrolyte flow configuration for a metal-halogen flow battery
US9478803B2 (en) * 2011-06-27 2016-10-25 Primus Power Corporation Electrolyte flow configuration for a metal-halogen flow battery
US20130045399A1 (en) * 2011-08-16 2013-02-21 Primus Power Corporation Flow Battery with Reactant Separation
US9130217B2 (en) 2012-04-06 2015-09-08 Primus Power Corporation Fluidic architecture for metal-halogen flow battery
US8928327B2 (en) 2012-11-20 2015-01-06 Primus Power Corporation Mass distribution indication of flow battery state of charge
JP6431856B2 (en) 2013-03-08 2018-11-28 プリマス パワー コーポレイション Multiphase electrolyte flow control reservoir
CN103311485B (en) * 2013-05-06 2015-09-23 北京鼎能开源电池科技股份有限公司 The method of lithium ion battery separator surface ceramic deposition
US10290891B2 (en) 2016-01-29 2019-05-14 Primus Power Corporation Metal-halogen flow battery bipolar electrode assembly, system, and method
US10847823B2 (en) * 2017-10-04 2020-11-24 Fuelcell Energy, Inc. Fuel cell stack inlet flow control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR722101A0 (en) * 2001-08-24 2001-09-13 Skyllas-Kazacos, Maria Vanadium chloride/polyhalide redox flow battery
CA2478575C (en) * 2002-04-23 2011-01-04 Sumitomo Electric Industries, Ltd. Method of designing redox flow battery system
AUPS192102A0 (en) * 2002-04-23 2002-05-30 Unisearch Limited Vanadium bromide redox flow battery

Also Published As

Publication number Publication date
TWI491094B (en) 2015-07-01
WO2011011533A2 (en) 2011-01-27
WO2011011533A3 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
TW201112468A (en) Electrochemical system having a device for separating reactants
US8450001B2 (en) Flow batter with radial electrolyte distribution
TWI501454B (en) Metal electrode assembly for flow batteries
KR101871203B1 (en) Electrolyte flow configuration for a metal-halogen flow battery
US8202641B2 (en) Metal electrode assembly for flow batteries
US8268480B1 (en) Electrochemical energy system
US8956745B2 (en) Metal halogen electrochemical cell system
US9130217B2 (en) Fluidic architecture for metal-halogen flow battery
US20130045399A1 (en) Flow Battery with Reactant Separation
US20200411932A1 (en) Device architectures for metal-air batteries
JP2021168296A (en) Electrode assembly and flow battery with improved electrolyte distribution
AU2014225947A1 (en) Reservoir for multiphase electrolyte flow control
US8273472B2 (en) Shunt current interruption in electrochemical energy generation system
CN110112439B (en) Dynamic circulating and filtering device for electrolyte of metal-air battery
RO120939B1 (en) Electrochemical redox cell, process for making the same and process for the regeneration of electrolyte solutions