JPS62243252A - Sealed alkaline manganese secondary battery - Google Patents

Sealed alkaline manganese secondary battery

Info

Publication number
JPS62243252A
JPS62243252A JP61085384A JP8538486A JPS62243252A JP S62243252 A JPS62243252 A JP S62243252A JP 61085384 A JP61085384 A JP 61085384A JP 8538486 A JP8538486 A JP 8538486A JP S62243252 A JPS62243252 A JP S62243252A
Authority
JP
Japan
Prior art keywords
cadmium
zinc
alloy
active material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085384A
Other languages
Japanese (ja)
Inventor
Masatsugu Kondo
近藤 正嗣
Kazuhiro Imazawa
今沢 計博
Kenji Fuji
藤 建治
Tadashi Sawai
沢井 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61085384A priority Critical patent/JPS62243252A/en
Publication of JPS62243252A publication Critical patent/JPS62243252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase voltage characteristics by forming a negative active material with an alloy of zinc, mercury, and cadmium, and specifying the content of cadmium in the alloy. CONSTITUTION:A negative active material is formed with an alloy of zinc, mercury, and cadmium, and the content of cadmium is specified to 5-20wt.% based on the alloy. By alloying this content range of cadmium with zinc serving as negative active material, oxygen gas generated in a positive electrode can be effectively absorbed in the zinc alloy. If the content of cadmium is controlled within this range, the reaction efficiency of zinc is not decreased. Although zinc has oxygen absorbing capability, cadmium has larger absorbing capability. Therefore, oxygen gas evolved in the positive electrode is efficiently absorbed in this negative electorde.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉型アルカリマンガン二次電池の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed alkaline manganese secondary batteries.

従来の技術 従来まで、この種の密閉型二次電池で充放電サイクル特
性の向上については数多くの提案があるが、定電圧で長
時間充電された場合の耐圧特性向上については、負極活
物質である亜鉛に、酸化亜鉛を加えるなどのわずかな提
案しかなされていない0 発明が解決しようとする問題点 この種の二次電池は一般に耐圧試験中に、電解液の水分
解が生じ、正極より酸素ガスが、また負極より水素ガス
が発生する。そのために電池膨張が生じ、ひどい時には
電池の破裂を生じる。前述したように負極より発生する
水素ガスに対しては、負極に酸化亜鉛を混入させるなど
の方法によりかなシの改良がなされてきたが、それでも
不充分であり、正極から発生する酸素ガスによる電池膨
張もあり、現在まで広く実用化されるには至っていない
Conventional Technology Until now, there have been many proposals for improving the charge-discharge cycle characteristics of this type of sealed secondary battery, but it has been proposed that negative electrode active materials be used to improve the voltage resistance characteristics when charged at a constant voltage for long periods of time. Only a few proposals have been made, such as adding zinc oxide to a certain type of zinc.0 Problems to be Solved by the Invention In this type of secondary battery, water decomposition occurs in the electrolyte during a pressure test, and oxygen is removed from the positive electrode. Hydrogen gas is also generated from the negative electrode. This causes the battery to expand and, in severe cases, cause the battery to explode. As mentioned above, improvements have been made to the hydrogen gas generated from the negative electrode by methods such as mixing zinc oxide into the negative electrode, but this is still insufficient, and batteries using oxygen gas generated from the positive electrode have been improved. Due to expansion, it has not been widely put into practical use until now.

本発明は、従来のガス発生による電池膨張、破裂といっ
た問題点を解決することによって、耐圧特性に優れた密
閉型アルカリマンガン二次電池を提供することを目的と
するものである。
An object of the present invention is to provide a sealed alkaline manganese secondary battery with excellent pressure resistance by solving the conventional problems of battery expansion and rupture due to gas generation.

問題点を解決するだめの手段 この問題点を解決するために本発明は、負極活物質を亜
鉛と水銀とカドミウムの合金とし、かつカドミウム含有
量を、合金の5〜20重量%としたものである。
Means to Solve the Problem In order to solve this problem, the present invention uses an alloy of zinc, mercury, and cadmium as the negative electrode active material, and sets the cadmium content to 5 to 20% by weight of the alloy. be.

作用 この範囲の量のカドミウムを負極活物質である亜鉛と合
金化することにより、正極より発生する酸素ガスを亜鉛
合金に効率良く吸収させることができ、かつカドミウム
量がこの範囲であれば亜鉛の反応効率を劣化させること
もない。また、水銀は亜鉛の腐食防止のために一般によ
く用いられており、本発明においても数%が必要である
。元来、亜鉛も酸素ガスを吸収する能力は有しているが
、カドミウムはさらにその能力が高いため、この合金化
によって正極で発生する酸素ガスを、負極で効率良く吸
収することができ、電池膨張のない耐圧特性の優れた密
閉型アルカリマンガン二次電池を得ることができる。
Effect By alloying cadmium in an amount within this range with zinc, which is an active material for the negative electrode, oxygen gas generated from the positive electrode can be efficiently absorbed into the zinc alloy. There is no deterioration in reaction efficiency. Further, mercury is generally often used to prevent corrosion of zinc, and in the present invention, several percent is required. Zinc originally has the ability to absorb oxygen gas, but cadmium has an even higher ability, so by alloying it, the oxygen gas generated at the positive electrode can be efficiently absorbed at the negative electrode. A sealed alkaline manganese secondary battery that does not expand and has excellent pressure resistance characteristics can be obtained.

実施例 以下図を用いて、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

図は本発明のボタン型アルカリマンガン二次電池の断面
図である。本実施例では直径11.6ff、高さ3.O
ffの大きさの電池を用いた。
The figure is a sectional view of a button-type alkaline manganese secondary battery of the present invention. In this example, the diameter is 11.6 ff and the height is 3. O
A battery of size ff was used.

図において、1は鉄にニッケルメッキした正極ケース、
2は主として二酸化マンガンよりなる正極、3は鉄にニ
ッケルメッキした正極リング、4はポリエチレンのグラ
フト重合膜よケなるセノくレータ、6はセルロースより
なる電解液含浸材、6はナイロンよりなる封口リング、
7は本発明のカドミウム含有率が10重量%水銀含有量
9重量%の亜鉛粒子よりなる負極活物質、8はニッケル
ーステンレス鋼−銅の三層クラツド材よりなる負極端子
を兼ねる封口板である。
In the figure, 1 is a positive electrode case made of nickel-plated iron;
2 is a positive electrode mainly made of manganese dioxide, 3 is a positive electrode ring made of nickel plated iron, 4 is a cenolator made of a polyethylene graft polymer film, 6 is an electrolyte-impregnated material made of cellulose, and 6 is a sealing ring made of nylon. ,
7 is a negative electrode active material of the present invention made of zinc particles having a cadmium content of 10% by weight and a mercury content of 9% by weight, and 8 is a sealing plate which also serves as a negative electrode terminal and is made of a three-layer cladding material of nickel-stainless steel-copper. .

このような本発明の実施例の電池と、従来の電池の比較
を以下に示す。なお試験は第1表に示すカドミウム量を
含む亜鉛合金の負極を用いた電池で行った。
A comparison between the battery according to the embodiment of the present invention and a conventional battery will be shown below. The test was conducted using a battery using a zinc alloy negative electrode containing the amount of cadmium shown in Table 1.

第1表 ただし水銀は9重量% ここで、電池ムは従来のカドミウムを含まない電池であ
る。これらの電池を用いて耐圧テストを行った結果を第
2表に示す。この値は電池の膨張量を示し、単位はnで
ある。
Table 1 However, mercury is 9% by weight. Here, the battery is a conventional cadmium-free battery. Table 2 shows the results of voltage resistance tests conducted using these batteries. This value indicates the amount of expansion of the battery, and its unit is n.

(以 下 余 白) 第2表より明らかなように電池の膨張は耐圧テストの電
圧に依存するが、一般にこの樵の二次電池で必要とされ
ている耐圧テス)1.75V〜1.90 Vで2000
時間の基準で判断する時、電池ムおよびBでは2000
時間以内で電池の膨張が認められる。一方カドミウムの
含有量が6重量%以上である電池0 、D 、IC、F
では膨張は認められなかった。このことは、合金中のカ
ドミウムの含有量が6重量%以上であれば、負極として
の酸素ガス吸収が効率良く行なわれたことを意味してい
ると考えられる。次に第3表は第1表のムからFの電池
で同一亜鉛重量になるように合金量を調整した場合の放
電容量を示す。放電は15にΩ。
(Left below) As is clear from Table 2, the expansion of the battery depends on the voltage of the withstand voltage test, but the withstand voltage test (generally required for this woodcutter's secondary battery) is 1.75V to 1.90V. 2000 in V
When judging on the basis of time, 2000 for battery and B
Battery expansion is observed within hours. On the other hand, batteries 0, D, IC, F with a cadmium content of 6% by weight or more
No swelling was observed. This is considered to mean that when the cadmium content in the alloy was 6% by weight or more, oxygen gas absorption as a negative electrode was performed efficiently. Next, Table 3 shows the discharge capacity when the alloy amount is adjusted to have the same zinc weight in batteries M to F in Table 1. The discharge is 15Ω.

20℃で終止電圧は1.30 Vの条件である。The final voltage is 1.30 V at 20°C.

第3表 第3表より明らかなように、Fのカドミウムの含有量が
30重量%になると、亜鉛の放電利用率が急速に低くな
ることがわかる。
As is clear from Table 3, when the content of cadmium in F reaches 30% by weight, the discharge utilization rate of zinc rapidly decreases.

発明の効果 以上のように亜鉛と水銀とカドミウムよりなる合金にお
いて、合金に対するカドミウム含有量を5〜20重量%
にすることによって、放電容量の大きな耐圧特性に優れ
た密閉型アルカリマンガン二次電池が得られた。
Effects of the Invention As described above, in an alloy consisting of zinc, mercury, and cadmium, the cadmium content in the alloy is 5 to 20% by weight.
By doing so, a sealed alkaline manganese secondary battery with a large discharge capacity and excellent withstand voltage characteristics was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における密閉型アルカリマ′ ンガ
ン二次電池の縦断面図である。 1・・・・・・正極ケース、2・・・・・・正極、3・
山・・正極リング、4・・・・・・セパレータ、6・川
・・含浸材、6・・・・・・封口リング、7・・・・・
・負極、8・・・・・・封口板。
The figure is a longitudinal sectional view of a sealed alkaline manganese secondary battery in an embodiment of the present invention. 1...Positive electrode case, 2...Positive electrode, 3.
Mountain: Positive electrode ring, 4: Separator, 6: Impregnating material, 6: Sealing ring, 7...
・Negative electrode, 8...Sealing plate.

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンを主正極活物質、亜鉛を主負極活物質、
アルカリ水溶液を電解液とした密閉型電池であって、前
記負極活物質が、亜鉛と水銀とカドミウムの合金であり
、かつカドミウム含有量が合金の5〜20重量%である
ことを特徴とする密閉型アルカリマンガン二次電池。
Manganese dioxide is the main positive electrode active material, zinc is the main negative electrode active material,
A sealed battery using an alkaline aqueous solution as an electrolyte, wherein the negative electrode active material is an alloy of zinc, mercury, and cadmium, and the cadmium content is 5 to 20% by weight of the alloy. type alkaline manganese secondary battery.
JP61085384A 1986-04-14 1986-04-14 Sealed alkaline manganese secondary battery Pending JPS62243252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085384A JPS62243252A (en) 1986-04-14 1986-04-14 Sealed alkaline manganese secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085384A JPS62243252A (en) 1986-04-14 1986-04-14 Sealed alkaline manganese secondary battery

Publications (1)

Publication Number Publication Date
JPS62243252A true JPS62243252A (en) 1987-10-23

Family

ID=13857242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085384A Pending JPS62243252A (en) 1986-04-14 1986-04-14 Sealed alkaline manganese secondary battery

Country Status (1)

Country Link
JP (1) JPS62243252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042704A (en) * 1995-10-06 2000-03-28 Ceramatec, Inc. Storage-stable, fluid dispensing device using a hydrogen gas generator
US6060196A (en) * 1995-10-06 2000-05-09 Ceramtec, Inc. Storage-stable zinc anode based electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042704A (en) * 1995-10-06 2000-03-28 Ceramatec, Inc. Storage-stable, fluid dispensing device using a hydrogen gas generator
US6060196A (en) * 1995-10-06 2000-05-09 Ceramtec, Inc. Storage-stable zinc anode based electrochemical cell

Similar Documents

Publication Publication Date Title
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
KR900702588A (en) Rechargeable alkaline manganese dioxide-zinc cell with improved measuring capacity
JPS62287568A (en) Manufacture of alkaline storage battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPS61156639A (en) Enclosed type alkaline storage battery
JPS62243252A (en) Sealed alkaline manganese secondary battery
JPS61165956A (en) Sealed type lead acid battery
US3418166A (en) Alkaline storage cell having silicate dissolved in the electrolyte
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH08279355A (en) Button type alkaline battery
JPH11162474A (en) Alkaline battery
CA2267715A1 (en) Sealed alkaline-zinc storage battery
JPS5968168A (en) Manufacture of positive plate for alkaline battery
JPH028419B2 (en)
JPS62143367A (en) Enclosed type alkali manganese secondary battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS62246261A (en) Enclosed alkaline manganese secondary cell
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH01315962A (en) Alkali secondary battery
JPS6180771A (en) Enclosed type metallic oxide/hydrogen storage battery
JPS6369153A (en) Sealed alkaline manganese secondary battery
JPH06181067A (en) Nickel-cadmium battery
JPS5916394B2 (en) Zinc alkaline secondary battery
JPS6324553A (en) Enclosed type alkaline manganese secondary cell
JPS5814027B2 (en) Nickel↓-zinc storage battery