JPS62242968A - Forming device for electrostatic latent image for detecting image density - Google Patents

Forming device for electrostatic latent image for detecting image density

Info

Publication number
JPS62242968A
JPS62242968A JP61087354A JP8735486A JPS62242968A JP S62242968 A JPS62242968 A JP S62242968A JP 61087354 A JP61087354 A JP 61087354A JP 8735486 A JP8735486 A JP 8735486A JP S62242968 A JPS62242968 A JP S62242968A
Authority
JP
Japan
Prior art keywords
image
circuit
electrostatic latent
latent image
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61087354A
Other languages
Japanese (ja)
Other versions
JPH0668647B2 (en
Inventor
Masao Matsuki
正夫 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Original Assignee
Matsushita Graphic Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP61087354A priority Critical patent/JPH0668647B2/en
Publication of JPS62242968A publication Critical patent/JPS62242968A/en
Publication of JPH0668647B2 publication Critical patent/JPH0668647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To execute a stable process control by providing a temperature detecting means so as to contact or to be adjacent to a photosensitive body, and calculating the light quantity of a laser beam at the time of forming an electrostatic image for detecting an image density, in accordance with a detected temperature. CONSTITUTION:A timing control circuit 8 selects an image signal supplying circuit 9 and forms an electrostatic latent image on the surface of a photosensitive body 5. When the circuit 8 selects an image signal generating circuit 10, an electrostatic latent image for detecting an image density is formed on the surface of the photosensitive body 5, based on a signal from the circuit 10, developed and becomes a reference toner image 17. In this case, a laser beam quantity calculating circuit 13 calculates a laser beam quantity in accordance with a detected temperature from a temperature detecting circuit 12 and output is to the circuit 10. Accordingly, the surface potential of the electrostatic latent image for detecting the image density is kept constant irrespective of a temperature variation. The toner image 17 is irradiated by a light source 10, and a signal corresponding to the image density of the toner image 17 is supplied to a toner replenishment control circuit 23 by an image density detecting circuit 20. In this way, a stable process control can be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光走査により露光を行うレーザプリン
タにおいて、感光体上に画像濃度検出用の基準トナー像
を形成するための潜像を作成する画像濃度検出用静電潜
像作成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser printer that performs exposure by scanning a laser beam, and is used to create a latent image for forming a reference toner image for image density detection on a photoreceptor. The present invention relates to an electrostatic latent image creation device for density detection.

従来の技術 従来より、電子写真方式による複写機において、感光体
上に基準トナー像を形成し、その画像濃度を検出して記
録画像の濃度制御を行うことが知られている。この基準
トナー像の形成は、複写機の原稿台の一部にあらかじめ
基準濃度片を設けておき、この基準濃度片を原稿読取用
の光学系を利用して感光体表面に露光し、基準濃度片に
対応した静電潜像を形成し、次いで現像してトナー像と
することにより、行われている。ここで、使用する基準
濃度片としては、ペタ黒画像、光学的反射濃度が1.2
以下の灰色をしたもの、実公昭60−4188号に見ら
れるような、白色部と黒色部の組み合わせによるもの等
が知られている。
2. Description of the Related Art Conventionally, it has been known in an electrophotographic copying machine to form a reference toner image on a photoreceptor and detect the image density to control the density of a recorded image. To form this reference toner image, a reference density piece is provided in advance on a part of the document table of the copying machine, and this reference density piece is exposed onto the surface of the photoconductor using an optical system for reading the original. This is done by forming a corresponding electrostatic latent image on the strip and then developing it into a toner image. Here, the standard density piece used is a peta black image and an optical reflection density of 1.2.
The gray ones shown below, and those with a combination of white parts and black parts, as seen in Utility Model Publication No. 60-4188, are known.

最近、画信号に応じて点滅或いは変調されたレーザ光を
、ポリゴンミラーなどで感光体表面に走査させ、静電潜
像を形成し、次いでその潜像の現像、転写を行うレーザ
プリンタが開発、使用されている。このレーザプリンタ
においても画像濃度制御は必要であり、上記した複写機
におけるように、感光体表面に基・準トナー像を形成し
、その濃度を検出することが考えられる。この場合にお
いて、画像濃度検出用静電潜像を形成するに当たり、複
写機に使用されるような基準濃度片を用い、これを光源
で照明し、その反射光を光学装置を用いて感光体上に結
像させるという方法は、前記潜像を形成する目的のみの
ために光源や、レンズ、ミラーなどの多大な光学装置を
必要とし、実用的でない。そこで、複写機においては画
像形成用の光学装置を、画像濃度検出用静電潜像作成装
置の一部として利用していたことに鑑みて、レーザプリ
ンタにおいても、画像形成用のレーザ光走査装置を画像
濃度検出用静電潜像作成装置の一部として利用すること
が考えられる。
Recently, a laser printer has been developed that scans the surface of a photoreceptor with a flashing or modulated laser beam according to an image signal using a polygon mirror, forms an electrostatic latent image, and then develops and transfers the latent image. It is used. Image density control is also necessary in this laser printer, and it is conceivable to form a reference/reference toner image on the surface of a photoreceptor and detect its density, as in the above-described copying machine. In this case, to form an electrostatic latent image for image density detection, a reference density piece such as that used in copying machines is used, which is illuminated with a light source, and the reflected light is directed onto the photoreceptor using an optical device. The method of forming an image on the latent image requires a large amount of optical equipment such as a light source, lenses, and mirrors just for the purpose of forming the latent image, and is not practical. Therefore, in view of the fact that copying machines use an optical device for image formation as part of an electrostatic latent image creation device for detecting image density, laser printers also use a laser beam scanning device for image formation. It is conceivable to use this as part of an electrostatic latent image forming device for detecting image density.

さて、レーザ光走査装置を画像濃度検出用静電潜像作成
に使用するには、所望の画像の静電潜像が感光体上に形
成されるように、所定の信号を発生する画像信号発生回
路をレーザ発光回路に接続し、レーザ発光回路を制御す
ればよい。この方法で作成した静電潜像を現像すること
により、画像濃度検出用の基準トナー像が形成される。
Now, in order to use a laser beam scanning device to create an electrostatic latent image for image density detection, image signal generation is required to generate a predetermined signal so that an electrostatic latent image of the desired image is formed on the photoreceptor. The circuit may be connected to a laser emitting circuit to control the laser emitting circuit. By developing the electrostatic latent image created by this method, a reference toner image for image density detection is formed.

この場合に形成される基準トナー像としては、感光体上
を走査するレーザ光の光量を調整して作成した濃度の低
い、パターンのない基準トナー像と、レーザ光の点滅に
より形成した白色部と黒色部の組み合わせによってでき
るパターンを持った基準トナー像の二つがあり、後者の
例としては、特開昭60−49363がある。この二つ
の基準トナー像のうち、パターンをもった基準トナー像
を使用する場合には、所定のパターン像作成のために画
像信号発生回路により、複雑なパターン信号を発生せね
ばならず、その為に画像信号発生回路の構成が複雑とな
り、費用の増大が無視できない。従って、経済的な面よ
シ、パターンの無い、無地の濃度の低い基準トナー像を
使用することが好ましいと考えられる。
The reference toner images formed in this case include a low-density, non-patterned reference toner image created by adjusting the amount of laser light scanning the photoreceptor, and a white part formed by blinking the laser light. There are two reference toner images having patterns formed by combinations of black parts, and an example of the latter is JP-A-60-49363. Of these two reference toner images, when using a reference toner image with a pattern, a complex pattern signal must be generated by an image signal generation circuit in order to create a predetermined pattern image. In addition, the configuration of the image signal generation circuit becomes complicated, and the increase in cost cannot be ignored. Therefore, from an economic standpoint, it is considered preferable to use a patternless, plain, low density reference toner image.

発明が解決しようとする問題点 ところが、レーザ光の光量を記録時の光量よりも低い所
定の値に設定し、このレーザ光で画像濃度検出用静電潜
像を作成し基準トナー像を形成する場合には、制御対象
とする電子写真プロセス条件、例えば二成分現像剤中の
トナー濃度が一定であっても、現像後の基準トナー像の
光学的濃度が一定にならないという問題のあることが判
明した。
Problems to be Solved by the Invention However, the light intensity of the laser beam is set to a predetermined value lower than the light intensity during recording, and this laser light creates an electrostatic latent image for image density detection to form a reference toner image. In some cases, it has been found that even if the electrophotographic process conditions to be controlled are constant, such as the toner concentration in the two-component developer, the optical density of the reference toner image after development is not constant. did.

本発明者はこの原因を検討した結果、基準トナー像の濃
度が感光体の温度変化に起因して変化していることを見
出した。以下、その理由を説明する。
The inventor investigated the cause of this problem and found that the density of the reference toner image changes due to changes in the temperature of the photoreceptor. The reason for this will be explained below.

レーザプリンタ用光源として使用される半導体レーザは
、その発振波長が近赤外領域にあるために、レーザプリ
ンタに使用される感光体は、赤外増感処理がほどこされ
る。この赤外増感処理のために、従来の複写機用の感光
体と比較して、環境温度変化に対する感度の変化が大き
い。
Since semiconductor lasers used as light sources for laser printers have an oscillation wavelength in the near-infrared region, photoreceptors used in laser printers are subjected to infrared sensitization treatment. Because of this infrared sensitization treatment, the sensitivity changes significantly with respect to environmental temperature changes compared to conventional photoconductors for copying machines.

第5図は、感光体上を走査するレーザ光の光量と、レー
ザ光走査後の感光体表面電位との関係を示すグラフであ
る。レーザ光光量が増大するにつれて、表面電位は低下
するが、その低下の度合は感光体温度によって異なり、
同一光量の場合、低温時の方が大きい。画像記録時のレ
ーザ光としては、第5図における光量=PでレーザON
状態とし、これとOFF状態との2値が使われる。例え
ば−反転現像方式による黒色現像が行われている場合に
は、光量=Pが黒画部、光量ゼロ(即ちレーザ光0FF
)が白画像部に相当する。そして画像濃度検出用静電潜
像の作成は、画像記録時のレーザ光光量より低い値Qの
強さのレーザ光を走査するこさによって行われる。とこ
ろが、感度曲線が、低温時と高温時とで異なるために、
露光後の表面電位は、低温時ではvH1高温時ではVl
、となり、一定しない。
FIG. 5 is a graph showing the relationship between the amount of laser light scanning the photoreceptor and the surface potential of the photoreceptor after scanning with the laser light. As the amount of laser light increases, the surface potential decreases, but the degree of decrease varies depending on the temperature of the photoreceptor.
For the same amount of light, it is greater at low temperatures. As for the laser light during image recording, the laser is turned on when the light amount = P in Fig. 5.
state, and two values are used: this and the OFF state. For example, when black development is performed using the -reversal development method, the light amount = P is the black area, and the light amount is zero (that is, the laser beam is 0FF).
) corresponds to the white image area. The electrostatic latent image for image density detection is created by scanning a laser beam with an intensity Q lower than the amount of laser beam used during image recording. However, because the sensitivity curves differ between low and high temperatures,
The surface potential after exposure is vH at low temperature and Vl at high temperature.
, and is not constant.

第6図にこの様子を図示している。レーザ光光量=Pの
場合と光量ゼロ (レーザ発光せず)の場合は、感光体
温度変化による影響が少なく、表面電位はおおむね一定
値に保たれる。ところが、Pよりも少ない光量Qでは、
図示のように表面電位が低温では高く、高温では低くな
シ、これを反転現像して得られる基準トナー像の光学的
反射濃度は、低温では淡くなり、高温では濃くなるとい
う結果を生むために、制御対象とする電子写真プロセス
条件、例えば二成分系現像剤中のトナー濃度が正しく反
映されない。まだ、仮に反転現像でなく、正規現像が行
われる場合には、第5図の光量=Rの付近で基準トナー
像用の露光が行われるが、この場合にも第6図に点線で
示されるような表面電位となり、現像後の基準トナー像
の光学的反射濃度は、低温で濃くなり、高温では淡くな
るというように反転現像の場合とは逆の結果になるだけ
であり、やはり、制御対象とする電子写真プロセス条件
、例えば二成分系現像剤中のトナー濃度が正しく反映さ
れないという問題を生じることになる。
This situation is illustrated in FIG. When the amount of laser light is P and when the amount of light is zero (no laser emission), there is little influence from changes in the photoreceptor temperature, and the surface potential is maintained at a roughly constant value. However, when the amount of light Q is less than P,
As shown in the figure, the surface potential is high at low temperatures and low at high temperatures, and the optical reflection density of the reference toner image obtained by reversal development is lighter at lower temperatures and darker at higher temperatures. The electrophotographic process conditions to be controlled, such as the toner concentration in a two-component developer, are not reflected correctly. If regular development is performed instead of reversal development, exposure for the reference toner image will be performed near the light amount = R in Figure 5, but in this case also, it is shown by the dotted line in Figure 6. The optical reflection density of the reference toner image after development becomes darker at lower temperatures and lighter at higher temperatures, which is just the opposite of that in the case of reversal development. This results in a problem that the electrophotographic process conditions, such as the toner concentration in the two-component developer, are not correctly reflected.

本発明は、上述の問題点に鑑みて為されたもので、環境
温度変化等による感光体の感度変化に影響されることな
く、制御対象とする電子写真プロセス条件、例えば二成
分現像剤中のトナー濃度が適正に反映される基準トナー
像を形成することができる、画像濃度検出用静電潜像作
成装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is possible to control the electrophotographic process conditions to be controlled, for example, in a two-component developer, without being affected by changes in the sensitivity of the photoreceptor due to changes in environmental temperature, etc. It is an object of the present invention to provide an electrostatic latent image forming device for detecting image density, which can form a reference toner image that appropriately reflects toner density.

問題点を解決するだめの手段 本発明は上述の問題点を解決するため、画像濃度検出用
静電潜像を、画像記録時に必要とされる光量より少ない
光量に設定したレーザ光の走査によって形成する装置に
おいて、感光体に接触又は近接させて温度検出手段を設
け、この温度検出手段による検出温度に応じて、画像濃
度検出用静電潜像作成時における前記レーザ光の光量を
制御するという構成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms an electrostatic latent image for image density detection by scanning a laser beam whose light intensity is set to be lower than that required for image recording. In the apparatus, a temperature detecting means is provided in contact with or in close proximity to the photoreceptor, and the amount of the laser beam when creating an electrostatic latent image for image density detection is controlled according to the temperature detected by the temperature detecting means. It is equipped with the following.

作用 本発明は上述の構成によって、環境温度変化等によって
感光体感度が変化しても、感光体ないしはその近傍の温
度によって、画像濃度検出用静電潜像作成時におけるレ
ーザ光の光量の値が制御されるために、画像濃度検出用
静電潜像の表面電位が環境温度によらず二定に保たれる
。従って、現像後の基準トナー像の光学的反射濃度は、
制御対象とする電子写真プロセス条件、例えば二成分現
像剤中のトナー濃度を適正に反映するものとなシ、安定
したプロセス制御、例えばトナー濃度制御が可能となる
According to the above-described structure, the present invention allows the value of the light amount of the laser beam when creating an electrostatic latent image for image density detection to be adjusted depending on the temperature of the photoconductor or its vicinity even if the sensitivity of the photoconductor changes due to changes in environmental temperature or the like. Because of this control, the surface potential of the electrostatic latent image for image density detection is kept constant regardless of the environmental temperature. Therefore, the optical reflection density of the reference toner image after development is:
By properly reflecting the electrophotographic process conditions to be controlled, for example, the toner concentration in the two-component developer, stable process control, for example, toner concentration control, becomes possible.

実施例 以下、図面を参照して本発明の好適な実施例を説明する
Embodiments Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による画像濃度検出用静電潜
像作成装置の概略構成を示すものであって、1はレーザ
光源であるレーザダイオード、2はコリメータレンズ、
3はレーザ光を主走査方向に走査させるポリゴンミラー
、4はf・θレンズ、5は表面に感光層を備えた感光体
、6は反射ミラーである。レーザダイオード1にはレー
ザダイオード1を入力信号に応じて点滅させるレーザ発
光回路7が接続され、そのレーザ発光回路にはタイミン
グ制御回路8を介して画信号供給回路9及び画像信号発
生回路10が接続される。画信号供給回路9は記録すべ
き画像に関する信号を供給するものであり、画像信号発
生回路10は画像濃度検出用の静電潜像を作成するだめ
の信号を発生、供給するものである。これらの回路9.
10からの信号はタイミング制御回路8によって選択さ
れてレーザ発光回路7に供給され、感光体5の画像領域
には画信号供給回路9からの信号に基づく画像が形成さ
れ、感光体の画像領域外の位置には画像信号発生回路1
0からの信号に基づく画像濃度検出用静電潜像が形成さ
れる。感光体5の近傍には、温度検出器11が配置され
、温度検出器11には温度検出回路12が接続され、検
出された温度に応じた信号をレーザ光量算定回路13に
入力として与える。レーザ光量算定回路13は、この信
号を受けて、画像濃度検出用静電潜像作成時におけるレ
ーザ光量の適正値を算定し、画像信号発生回路10に出
力する。
FIG. 1 shows a schematic configuration of an electrostatic latent image forming device for image density detection according to an embodiment of the present invention, in which 1 is a laser diode as a laser light source, 2 is a collimator lens,
3 is a polygon mirror for scanning a laser beam in the main scanning direction, 4 is an f/θ lens, 5 is a photoreceptor having a photosensitive layer on its surface, and 6 is a reflecting mirror. A laser emitting circuit 7 that blinks the laser diode 1 according to an input signal is connected to the laser diode 1, and an image signal supply circuit 9 and an image signal generation circuit 10 are connected to the laser emitting circuit via a timing control circuit 8. be done. The image signal supply circuit 9 supplies signals related to images to be recorded, and the image signal generation circuit 10 generates and supplies signals for creating an electrostatic latent image for image density detection. These circuits9.
The signal from 10 is selected by the timing control circuit 8 and supplied to the laser emission circuit 7, and an image based on the signal from the image signal supply circuit 9 is formed in the image area of the photoreceptor 5. The image signal generation circuit 1 is located at the position of
An electrostatic latent image for image density detection is formed based on the signal from zero. A temperature detector 11 is arranged near the photoreceptor 5, a temperature detection circuit 12 is connected to the temperature detector 11, and a signal corresponding to the detected temperature is given as an input to a laser light amount calculation circuit 13. The laser light amount calculation circuit 13 receives this signal, calculates the appropriate value of the laser light amount when creating the electrostatic latent image for image density detection, and outputs the value to the image signal generation circuit 10.

感光体5の外周には、通常の電子写真プロセスを実行す
る帯電器15、現像器16、記録紙供給手段(図示せず
)、転写手段(図示せず)、定着手段(図示せず)、感
光体表面クリーニング手段(図示せず)等が配置されて
いる。更に、感光体5の近傍には、感光体5上に形成さ
れる画像濃度検出用の基準トナー像17を照射するLE
Dランプなどの光源18と基準トナー像17からの反射
光を受ける受光素子19が配置され、受光素子19には
画像濃度検出回路20が接続されている。一方、現像器
16にはトナー補給装置21とその駆動用のトナー補給
モータ22が設けられ、トナー補給モータ22は、画像
濃度検出回路′20からの信号を入力するトナー補給制
御回路23で制御されるようになっている。
On the outer periphery of the photoreceptor 5, a charging device 15 for performing a normal electrophotographic process, a developing device 16, a recording paper supplying means (not shown), a transfer means (not shown), a fixing means (not shown), Photoreceptor surface cleaning means (not shown) and the like are arranged. Further, near the photoconductor 5, there is an LE that irradiates a reference toner image 17 for image density detection formed on the photoconductor 5.
A light receiving element 19 that receives reflected light from a light source 18 such as a D lamp and a reference toner image 17 is arranged, and an image density detection circuit 20 is connected to the light receiving element 19. On the other hand, the developing device 16 is provided with a toner replenishment device 21 and a toner replenishment motor 22 for driving the toner replenishment device 21, and the toner replenishment motor 22 is controlled by a toner replenishment control circuit 23 which inputs a signal from an image density detection circuit '20. It has become so.

次に、上記構成になる装置の動作を説明する。Next, the operation of the apparatus having the above configuration will be explained.

タイミング制御回路8が画信号供給回路9を選択すると
、その画信号供給回路9からの画信号に応じてレーザ発
光回路7がレーザダイオード1を駆動して点滅するレー
ザ光を発射させ、このレーザ光はポリゴンミラー3の回
転により感光体表面を走査して画信号に応じた静電潜像
を形成する。この静電潜像は現像器16で現像され、記
録紙に転写され、その後記録紙に定着されて排出される
When the timing control circuit 8 selects the image signal supply circuit 9, the laser emission circuit 7 drives the laser diode 1 to emit blinking laser light in accordance with the image signal from the image signal supply circuit 9. scans the surface of the photoreceptor by rotating the polygon mirror 3 to form an electrostatic latent image in accordance with an image signal. This electrostatic latent image is developed by a developing device 16, transferred to recording paper, and then fixed on the recording paper and discharged.

一方、タイミング制御回路8が画像信号発生回路10を
選定した場合には、その画像信号発生回路10からの信
号に基づいて、感光体5表面に画像濃度検出用の静電潜
像が形成され、現像器16で現像されて基準トナー像1
7となる。この時のレーザ光の光量はレーザ光量算定回
路13によって定められるもので、画信号供給回路9か
らの画信号に基づいて記録を行う場合のレーザ光よシも
少ない光量となっている。なお、詳細は後述する。
On the other hand, when the timing control circuit 8 selects the image signal generation circuit 10, an electrostatic latent image for image density detection is formed on the surface of the photoreceptor 5 based on the signal from the image signal generation circuit 10. The reference toner image 1 is developed by the developing device 16.
It becomes 7. The amount of laser light at this time is determined by the laser light amount calculation circuit 13, and is smaller than the amount of laser light used when recording is performed based on the image signal from the image signal supply circuit 9. Note that details will be described later.

作成された基準トナー像17は感光体50回転に伴い、
光源18で照射され、その反射光が受光素子19に入射
し、受光素子19、画像濃度検出回路20は基準トナー
像17の画像濃度に応じた信号をトナー補給制御回路2
3に出力する。トナー補給制御回路23はこの信号から
トナーを補給すべきか否かを判定し、トナー補給モータ
22の回転と停止を制御し、トナー補給装置21による
トナー補給を制御する。これによって、現像器16内の
二成分現像剤中のトナー濃度が適正な範囲に保たれるこ
ととなる。
The created reference toner image 17 changes as the photoreceptor rotates 50 times.
The light is irradiated by the light source 18, and the reflected light enters the light receiving element 19, and the light receiving element 19 and the image density detection circuit 20 send a signal corresponding to the image density of the reference toner image 17 to the toner replenishment control circuit 2.
Output to 3. The toner replenishment control circuit 23 determines whether toner should be replenished based on this signal, controls rotation and stop of the toner replenishment motor 22, and controls toner replenishment by the toner replenishment device 21. As a result, the toner concentration in the two-component developer in the developing device 16 is maintained within an appropriate range.

次に、本実施例のレーザ光量算定回路13で算定される
基準トナー像作成用のレーザ光光量について詳しく説明
する。
Next, the amount of laser light for creating a reference toner image calculated by the laser light amount calculation circuit 13 of this embodiment will be explained in detail.

第2図は、第5図と同じく感光体上を走査するレーザ光
の光量と、レーザ走査後の感光体表面電位との関係を示
すグ・ラフである。いま、仮に画像濃度検出用静電潜像
の適正な表面電位がv□であったとする。この時、感光
体の表面電位をほぼ一定のVoに保つためには、感光体
ないしはその近傍の温度変化に応じて、レーザ光光量を
変えることが必要である。すなわち、感光体ないしはそ
の近傍の温度が高温(1H)の時にはレーザ光光量をQ
Lとし、低温(11)の時にはレーザ光光量をQHとす
ることが必要である。第3図は一定の表面電位■oを得
るためのレーザ光光量Q (t)と温度との関係を示す
ものである。第3図に示す関係は、レーザ光算定回路1
3にあらかじめ入力されている。レーザ光算定回路13
は温度検出回路12からの温度信号に応じて、レーザ光
光量Q (t)を演算し、その値を画像信号発生回路1
0に出力する。従って、画像濃度検出用静電潜像作成時
のレーザ光光景は、この演算したレーザ光光量Q(t)
に制御されており、感光体表面に形成される潜像の表面
電位は温度変化にかかわらず、常にVoに保たれる。
FIG. 2, like FIG. 5, is a graph showing the relationship between the amount of laser light scanning the photoreceptor and the surface potential of the photoreceptor after laser scanning. Assume now that the appropriate surface potential of the electrostatic latent image for image density detection is v□. At this time, in order to maintain the surface potential of the photoreceptor at a substantially constant Vo, it is necessary to change the amount of laser light depending on the temperature change of the photoreceptor or its vicinity. In other words, when the temperature of the photoreceptor or its vicinity is high (1H), the laser light intensity is
When the temperature is low (11), it is necessary to set the amount of laser light to QH. FIG. 3 shows the relationship between the amount of laser light Q (t) and temperature for obtaining a constant surface potential ■o. The relationship shown in FIG.
3 is pre-entered. Laser light calculation circuit 13
calculates the amount of laser light Q (t) according to the temperature signal from the temperature detection circuit 12, and sends the value to the image signal generation circuit 1.
Output to 0. Therefore, the laser light scene when creating an electrostatic latent image for detecting image density is based on the calculated laser light amount Q(t).
The surface potential of the latent image formed on the surface of the photoreceptor is always maintained at Vo regardless of temperature changes.

第4図は感光体温度と表面電位とレーザ光光量との関係
を示すグラフである。画信号供給回路9からの信号に基
づき画像記録を行う場合のレーザ光光量は、光量P (
レーザON) と光量ゼロ (レーザ0FF)である。
FIG. 4 is a graph showing the relationship between photoreceptor temperature, surface potential, and amount of laser light. The amount of laser light when recording an image based on the signal from the image signal supply circuit 9 is the amount of light P (
(laser ON) and light intensity zero (laser 0FF).

一方、画像濃度検出用静電潜像作成時のレーザ光光量は
、前記したようにレーザ光量算定回路13で演算された
光量Q (t)に制御されており、表面電位は常にvo
に保たれている。
On the other hand, the amount of laser light when creating an electrostatic latent image for image density detection is controlled to the amount of light Q (t) calculated by the laser light amount calculation circuit 13 as described above, and the surface potential is always vo
is maintained.

本実施例においては、レーザ光を走査する手段としてコ
リメータレンズ、ポリゴンミラー、f・0レンズの組み
合わせによる光学系の例を示したが、ガルバノメータミ
ラー、その他の光学系によっても良いことは自明である
。また、制御対象とする電子写真プロセス条件は、二成
分現像剤中のトナー濃度に限られるものでなく、他の電
子写真プロセス条件、例えば帯電器による帯電量等であ
っても、本実施例と同様の効果が得られる。
In this embodiment, an example of an optical system using a combination of a collimator lens, a polygon mirror, and an f.0 lens is shown as a means for scanning the laser beam, but it is obvious that a galvanometer mirror or other optical system may also be used. . Furthermore, the electrophotographic process conditions to be controlled are not limited to the toner concentration in the two-component developer, and may be other electrophotographic process conditions, such as the amount of charge by a charger, etc. A similar effect can be obtained.

発明の効果 以上の説明から明らかなように、本発明は、画像濃度検
出用静電潜像を、画像形成時に必要とされる光量よりも
少ない光量に設定したレーザ光の走査によって形成する
に際し、感光体に接触又は近接させて配置される温度検
出手段による検出温′度によって、前記レーザ光の光量
を制御するように構成したものであるので、環境温度変
化等によって感光体温度が変化して感度特性が変化して
も、画像濃度検出用静電潜像の表面電位を一定に保つこ
とができ、この静電潜像を現像して作成した基準トナー
像の光学的反射濃度は、制御対象とする電子写真プロセ
ス条件、例えば、二成分現像剤中のトナー濃度を適正に
反映するものとなり、安定したプロセス制御、例えばト
ナー濃度制御が可能となるという効果を有するものであ
る。
Effects of the Invention As is clear from the above description, the present invention provides the following advantages when forming an electrostatic latent image for detecting image density by scanning a laser beam with an amount of light set to be less than that required for image formation. The light intensity of the laser beam is controlled based on the temperature detected by a temperature detection means placed in contact with or close to the photoreceptor, so that the temperature of the photoreceptor does not change due to changes in environmental temperature, etc. Even if the sensitivity characteristics change, the surface potential of the electrostatic latent image for image density detection can be kept constant, and the optical reflection density of the reference toner image created by developing this electrostatic latent image can be controlled. This appropriately reflects the electrophotographic process conditions, for example, the toner concentration in the two-component developer, and has the effect of enabling stable process control, for example, toner concentration control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による画像濃度検出用静電潜
像作成装置を備えたレーザプリンタを概略的に示すブロ
ック図、第2図は上記実施例におけるレーザ光の光量と
レーザ走査後の感光体表面電位との関係を示すω 、第
3図は上記実施例における感光体表面電位と感光体温度
との関係をレーザ光光量をパラメータとして示した回 
、第4図は上記実施例において一定の表面電位を得るに
必要なレーザ光光量と感光体温度との関係を示す 1刀
、第5図は通常の感光体におけるレーザ光光量と感光体
表面電位との関係を示すn 、第6図は従来例における
感光体温度と表面電位との関係をレーザ光光量をパラメ
ータとして示した1辺  である。 1・・・レーザダイオード、3・・・ポリゴンミラー、
5、・・・感光体、7・・・レーザ発光回路、8・・・
タイミング制御回路、10・・・画像信号発生回路、1
1・・・温度検出器、12・・・温度検出回路、13・
・・レーザ光量算定回路、16・・・現像器、17・・
・基準トナー像、18・・・光源、19・・・受光素子
、21・・・トナー補給装置、22・・・トナー補給モ
ータ。 代理人の氏名 弁理士 中 尾 敏 男ほか1名第22 し−プ九た【−−チ ユ;丁 3  ン! lうζラセ;イニtシン1も一1!7 −(7A)第4
閲 ル尤晰5I!L痕−滴) 吊 59] L−力堕1□
FIG. 1 is a block diagram schematically showing a laser printer equipped with an electrostatic latent image forming device for detecting image density according to an embodiment of the present invention, and FIG. 2 shows the amount of laser light and after laser scanning in the above embodiment. Figure 3 shows the relationship between the surface potential of the photoreceptor and the temperature of the photoreceptor in the above embodiment using the amount of laser light as a parameter.
, Figure 4 shows the relationship between the amount of laser light necessary to obtain a constant surface potential and the temperature of the photoreceptor in the above example. Figure 5 shows the amount of laser light and the photoreceptor surface potential in a normal photoreceptor. Figure 6 shows one side of the relationship between the photoreceptor temperature and surface potential in a conventional example using the amount of laser light as a parameter. 1...Laser diode, 3...Polygon mirror,
5... Photoreceptor, 7... Laser emission circuit, 8...
Timing control circuit, 10... Image signal generation circuit, 1
1... Temperature detector, 12... Temperature detection circuit, 13.
...Laser light amount calculation circuit, 16...Developer, 17...
- Reference toner image, 18... Light source, 19... Light receiving element, 21... Toner replenishing device, 22... Toner replenishing motor. Name of agent: Patent attorney Satoshi Nakao and one other person 1 1! 7 - (7A) 4th
Review 5I! L trace - drop) hanging 59] L - power fall 1□

Claims (1)

【特許請求の範囲】[Claims] 感光体上にレーザ光を走査させて濃度検出用静電潜像を
形成する潜像形成手段と、前記感光体に接触又は近接さ
せて配置される温度検出手段と、この温度検出手段によ
る検出温度に応じて、前記濃度検出用静電潜像作成時の
レーザ光の光量を算定するレーザ光量算定手段とを有す
る画像濃度検出用静電潜像作成装置。
a latent image forming means that scans a laser beam on a photoreceptor to form an electrostatic latent image for density detection; a temperature detection means disposed in contact with or close to the photoreceptor; and a temperature detected by the temperature detection means. an electrostatic latent image creation device for image density detection, comprising a laser light amount calculation means for calculating the amount of laser light when creating the electrostatic latent image for image density detection.
JP61087354A 1986-04-16 1986-04-16 Electrostatic latent image creation device for image density detection Expired - Lifetime JPH0668647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087354A JPH0668647B2 (en) 1986-04-16 1986-04-16 Electrostatic latent image creation device for image density detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087354A JPH0668647B2 (en) 1986-04-16 1986-04-16 Electrostatic latent image creation device for image density detection

Publications (2)

Publication Number Publication Date
JPS62242968A true JPS62242968A (en) 1987-10-23
JPH0668647B2 JPH0668647B2 (en) 1994-08-31

Family

ID=13912542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087354A Expired - Lifetime JPH0668647B2 (en) 1986-04-16 1986-04-16 Electrostatic latent image creation device for image density detection

Country Status (1)

Country Link
JP (1) JPH0668647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124879A (en) * 1987-11-10 1989-05-17 Fuji Xerox Co Ltd Image forming method
JPH0219859A (en) * 1988-07-07 1990-01-23 Mita Ind Co Ltd Electrophotography device
JPH0387768A (en) * 1989-08-31 1991-04-12 Canon Inc Image forming device
US20110305468A1 (en) * 2010-06-09 2011-12-15 Toshiba Tec Kabushiki Kaisha Image forming apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239226B2 (en) 2001-07-10 2007-07-03 American Express Travel Related Services Company, Inc. System and method for payment using radio frequency identification in contact and contactless transactions
US7172112B2 (en) 2000-01-21 2007-02-06 American Express Travel Related Services Company, Inc. Public/private dual card system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127955A (en) * 1982-01-27 1983-07-30 Fuji Xerox Co Ltd Electrophotographic printer
JPS58152273A (en) * 1982-03-04 1983-09-09 Minolta Camera Co Ltd Transfer type electrophotographic copying machine
JPS59157663A (en) * 1983-02-28 1984-09-07 Canon Inc Image recording control method
JPS6049363A (en) * 1983-08-29 1985-03-18 Fuji Xerox Co Ltd Development density detector
JPS60146256A (en) * 1984-01-11 1985-08-01 Fuji Xerox Co Ltd Automatic density adjusting method of copying machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127955A (en) * 1982-01-27 1983-07-30 Fuji Xerox Co Ltd Electrophotographic printer
JPS58152273A (en) * 1982-03-04 1983-09-09 Minolta Camera Co Ltd Transfer type electrophotographic copying machine
JPS59157663A (en) * 1983-02-28 1984-09-07 Canon Inc Image recording control method
JPS6049363A (en) * 1983-08-29 1985-03-18 Fuji Xerox Co Ltd Development density detector
JPS60146256A (en) * 1984-01-11 1985-08-01 Fuji Xerox Co Ltd Automatic density adjusting method of copying machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124879A (en) * 1987-11-10 1989-05-17 Fuji Xerox Co Ltd Image forming method
JPH0219859A (en) * 1988-07-07 1990-01-23 Mita Ind Co Ltd Electrophotography device
JPH0387768A (en) * 1989-08-31 1991-04-12 Canon Inc Image forming device
US20110305468A1 (en) * 2010-06-09 2011-12-15 Toshiba Tec Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
JPH0668647B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4693592A (en) Patch generator for an electrophotographic device
JPS62242968A (en) Forming device for electrostatic latent image for detecting image density
JPH08327331A (en) Apparatus for measuring adhering amount of toner and apparatus for controlling density of image
US5148217A (en) Electrostatographic copier/printer densitometer insensitive to power supply variations
JPH04274463A (en) Image forming device
JP4685502B2 (en) Electrophotographic equipment
JPS59216165A (en) Controller for light exposure of optical printer
JP2000052590A (en) Image-forming apparatus
JP2004004919A (en) Image forming device and toner pattern image density detecting device used for same
JPS6122361A (en) Automatic image density contoller of dry electrophotographic copying machine
JPS6122362A (en) Automatic image density controller of dry electrophotographic copying machine
JP3060534B2 (en) Image quality detection apparatus and detection method for electrophotographic apparatus
JP3515246B2 (en) Density detection apparatus and density detection method used in image forming apparatus
JPH02110480A (en) Picture density controller
JPS59174862A (en) Stabilizing method of density of copy image
JPS5814168A (en) Controller for concentration of toner
JPS62288866A (en) Electrostatic latent image producing device for detecting picture density
JP2521947B2 (en) Development density control device
JPH0398064A (en) Image forming device by reversal development system
JPS59216166A (en) Controller for light exposure of optical printer
JPH05100554A (en) Laser printer
JPS63173068A (en) Adjusting method for copy density
JPS62196684A (en) Image density control device
JPH0315084A (en) Light quantity adjusting method for electrophotographic device
JPS61245173A (en) Reference latent image forming device of copying machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term