JPS58152273A - Transfer type electrophotographic copying machine - Google Patents

Transfer type electrophotographic copying machine

Info

Publication number
JPS58152273A
JPS58152273A JP57034768A JP3476882A JPS58152273A JP S58152273 A JPS58152273 A JP S58152273A JP 57034768 A JP57034768 A JP 57034768A JP 3476882 A JP3476882 A JP 3476882A JP S58152273 A JPS58152273 A JP S58152273A
Authority
JP
Japan
Prior art keywords
photoreceptor
image
value
optical system
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57034768A
Other languages
Japanese (ja)
Other versions
JPH0444270B2 (en
Inventor
Hiroshi Okamoto
洋 岡本
Koji Matsushita
松下 浩治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP57034768A priority Critical patent/JPS58152273A/en
Priority to US06/368,448 priority patent/US4502777A/en
Priority to DE19823214829 priority patent/DE3214829A1/en
Publication of JPS58152273A publication Critical patent/JPS58152273A/en
Publication of JPH0444270B2 publication Critical patent/JPH0444270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5037Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor the characteristics being an electrical parameter, e.g. voltage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00033Image density detection on recording member
    • G03G2215/00054Electrostatic image detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00071Machine control, e.g. regulating different parts of the machine by measuring the photoconductor or its environmental characteristics
    • G03G2215/00084Machine control, e.g. regulating different parts of the machine by measuring the photoconductor or its environmental characteristics the characteristic being the temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To maintain the image potential of a photoreceptor at a specified value and to increase the speed of copying by expressing the characteristics of the photoreceptor by a specified reference equation, determining the quantity of the light projected by an optical system for projecting an image and correcting the reference equation successively at every copying. CONSTITUTION:A pattern 4 for forming a reference latent image corresponding to the reflection density in the background part of original image is installed on the rear of a top plate 3 on the side where the scanning of glass 2 of an original platen starts, and a temp. detecting element 16 as an element for detecting the characteristics of the photoreceptor 1 is provided near the photoreceptor. The surface potential of the photoreceptor 1 is detected with a detecting element 14. The quantity of the light projected by an optical system 5 for projecting image (the value of the voltage applied on an exposure lamp 6) is determined approximately at the value expressed by a reference equation, and the surface potential and surface temp. from detecting circuits 15, 17 are conducted to a control means 18 for exposure in follow up to the change in the characteristics of the photoreceptor 1 according to a change in temp. or continuous copying, whereby the reference equation is corrected successively.

Description

【発明の詳細な説明】 技術分野 本発明は転写型電子写真複写機、特に画像投影光学系に
よる画像投影光量を最適値に維持するための構成に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a transfer type electrophotographic copying machine, and more particularly to a configuration for maintaining the amount of image projection light by an image projection optical system at an optimum value.

従来技術 一般に、転写型電子写真複写機において、複写画像中に
おけるカブリ発生を防止してその画質を安定化させるだ
め、電子写真感光体の画像露光後の電位、具体的には静
電潜像の背景部の電位と同等の電位を有する基準潜像を
形成し、その基準潜像の電位を使用条件、環境条件等に
拘わらず一定の値に維持することが重要な問題である。
BACKGROUND ART In general, in a transfer type electrophotographic copying machine, in order to prevent the occurrence of fog in a copied image and stabilize the image quality, the potential of the electrophotographic photoreceptor after image exposure, specifically, the potential of the electrostatic latent image is controlled. An important problem is to form a reference latent image having a potential equivalent to that of the background portion, and to maintain the potential of the reference latent image at a constant value regardless of usage conditions, environmental conditions, etc.

なぜならば、感光体の感度変化に応じて静電潜像の背景
部の電位が変動するからである。
This is because the potential of the background portion of the electrostatic latent image changes in response to changes in the sensitivity of the photoreceptor.

そこで、本発明者らは、前記基準潜像の電位と露光ラン
プ電圧との間に略一定の比例関係があることを利用し、
第1図に示される如き方法を−発した。なお、実験に使
用した感光体の種類はSe・Te合金感光体である。
Therefore, the present inventors took advantage of the fact that there is a substantially constant proportional relationship between the potential of the reference latent image and the exposure lamp voltage, and
A method as shown in FIG. 1 was developed. The type of photoreceptor used in the experiment was a Se/Te alloy photoreceptor.

第1図において、横軸には露光ランプ電圧(LV)を示
し、縦軸には基準潜像の形成されている部分の感光体ド
ラム表面の電位(IV)を示し、(VRE)は最終目標
電位である。直線^は標準的な使用条件、環境条件等に
おける感光体の特性を示す。直線(A’)は実際の使用
時における感光体の特性を示し、種々の使用条件、環境
条件等において種々異なる。
In FIG. 1, the horizontal axis shows the exposure lamp voltage (LV), the vertical axis shows the potential (IV) of the photosensitive drum surface in the area where the reference latent image is formed, and (VRE) is the final target. It is electric potential. The straight line ^ indicates the characteristics of the photoreceptor under standard usage conditions, environmental conditions, etc. The straight line (A') indicates the characteristics of the photoreceptor during actual use, which vary depending on various usage conditions, environmental conditions, etc.

前記最終目標電位(VRE)とは、複写画像にカブリが
発生しない程度の電位に設定されている。
The final target potential (VRE) is set to a potential that does not cause fogging on the copied image.

実際の複写には種々のコントラストの原稿が供されるの
で、望ましくは各種原稿の複写画像にカブリが発生しな
いようにさせる必要がある。この実験においては原稿画
像の背景部の反射濃度を0.25以下と想定して、基準
潜像形成用パターンとして反射濃度0.25のものを用
いると共に、最終目標電位(VRE)は、現像バイアス
を300Vに固定し、300■とされた。なお、この条
件下においては、原稿画像中反射濃度0.25以下の部
分に対応する静電潜像の部分、即ち静電潜像の背景部は
現像されない。
Since originals with various contrasts are used for actual copying, it is desirable to prevent fog from occurring in the copied images of the various originals. In this experiment, assuming that the reflection density of the background part of the original image is 0.25 or less, a pattern with a reflection density of 0.25 is used as the reference latent image forming pattern, and the final target potential (VRE) is set at the developing bias. was fixed at 300V, making it 300■. Note that under this condition, the portion of the electrostatic latent image corresponding to the portion of the original image with a reflection density of 0.25 or less, that is, the background portion of the electrostatic latent image, is not developed.

従って、直線(Aつのある条件下において、基準潜像形
成当初には露光ランプに対してまず(LVo)の値の電
圧が印加され、この表面電位の検出ffl(Ivm)に
対応して(Lvl) IVX−IVm なる補正電圧を印加し、以下同様の補正を表面電位の検
出値が最終目標電位(VRE)に達するまで繰返し、そ
の後複写工程を行う。
Therefore, under certain conditions of straight line (A), at the beginning of the formation of the reference latent image, a voltage of the value (LVo) is first applied to the exposure lamp, and in response to the detected surface potential ffl (Ivm), (Lvl ) A correction voltage of IVX-IVm is applied, and the same correction is repeated until the detected value of the surface potential reaches the final target potential (VRE), and then the copying process is performed.

ただし、前式における(IVX)は、第1図に示す様に
、露光ランプ電圧(tV)に対する標準的条件下での感
光体表面電位特性に卦いて、最終目標電位(VRE)上
での接線を引き伸ばし、この接線が縦軸と交わる点の表
面電位の値を便宜的に定数として設定したものである。
However, as shown in Figure 1, (IVX) in the above equation is the tangent on the final target potential (VRE), in addition to the photoreceptor surface potential characteristics under standard conditions with respect to the exposure lamp voltage (tV). , and the value of the surface potential at the point where this tangent intersects with the vertical axis is conveniently set as a constant.

しかしながら、この方法では露光ランプに対する電圧値
の補正ごとに感光体ドラムを露光位置から検出位置まで
距離(1)(第4図参照)だけ、都合1補正回数X(J
)’の距離だけ感光体ドラムを実質的な複写動作に関係
なく無駄に移動させねばならず、補正回数の増大に伴い
複写速度の低速化を招来する欠点を有している。
However, in this method, each time the voltage value for the exposure lamp is corrected, the photoreceptor drum is moved from the exposure position to the detection position by the distance (1) (see Figure 4), for a total of 1 correction number X (J
)', the photoreceptor drum must be moved needlessly by a distance of 0.00000000 0000000000000000000000000000000000000000000000000000000000000000000001001.001.002.

ところで、5eaTe合金感光体の特性に関して、前記
iMGA)(7)$1、正確K は(IVX−VRE)
/LVの値は、第2図に示す様に、感光体ドラムの温度
変化に応じて、かつ複写機使用開始当初(曲線B)と長
期使用後(曲線B′)とでは異なった曲線を描いて変化
し、これらの変化は温度が25°C以上では2次式 %式% (T P C−:感光体ドラムの表面温度)で近似でき
、また25°C以下では1次式%式% で近似できることが、本発明者らの実験で確認された。
By the way, regarding the characteristics of the 5eaTe alloy photoreceptor, the above iMGA) (7) $1, the exact K is (IVX-VRE)
As shown in Figure 2, the value of /LV draws different curves depending on the temperature change of the photoreceptor drum, between when the copying machine is first used (curve B) and after long-term use (curve B'). These changes can be approximated by the quadratic formula (T P C-: surface temperature of the photoreceptor drum) when the temperature is 25°C or higher, and the linear formula when the temperature is below 25°C. It was confirmed through experiments by the present inventors that it can be approximated by .

また、短時間内における連続複写繰返し回数に対しても
、第3図に示すように、繰返し初期(直線C)と多数回
繰返し後(直線(、/)とでは異った傾きで変化し、1
0回程度の繰返しでは1次式%式% で近似でき、また10回繰返し以上では1次式Kg @
l ogN +Kg で近似できることが確認された。
Furthermore, as shown in Fig. 3, the number of consecutive copies repeated within a short period of time changes with different slopes at the beginning of the repetition (straight line C) and after many repetitions (straight line (, /)). 1
When it is repeated about 0 times, it can be approximated by the linear formula % formula %, and when it is repeated 10 times or more, it can be approximated by the linear formula Kg @
It was confirmed that it can be approximated by logN +Kg.

目  的 そこで、本発明は前記の実験結果に着目してなされたも
ので、その目的は、前記補正回数を減らすことによシ複
写速度の低速化を解消し、感光体のイメージ電位を環境
条件や使用条件等感光体の特性に影響を与える条件に拘
らず、かつ迅速に一定の値に維持することのできる転写
型電子写真複写機を提供することにある。
Purpose Therefore, the present invention has been made by paying attention to the above-mentioned experimental results, and its purpose is to eliminate the slowdown in copying speed by reducing the number of times of correction, and to adjust the image potential of the photoreceptor to environmental conditions. It is an object of the present invention to provide a transfer type electrophotographic copying machine that can quickly maintain a constant value regardless of conditions that affect the characteristics of a photoreceptor such as photoreceptor and usage conditions.

要旨 前記の如く、最適画像投影光量は、環境条件等により依
存変化するのであるが、本発明においてはこの最適画像
投影光量を得るための条件を一定の基準式にて表わして
画像投影光学系による画像投影光量、即ち第1図に示し
た(’t、v)の値を近似的に決定するとともに、第2
図、第3図に示した様に、温度変化や連続複写に伴う感
光体の特性の変化に追随させて前記(LV)の値を精度
よく近似決定するために前記基準式を逐次修正するよう
にした。
Summary As mentioned above, the optimum image projection light amount varies depending on environmental conditions, etc., but in the present invention, the conditions for obtaining the optimum image projection light amount are expressed using a certain standard formula, and the image projection optical system is The image projection light quantity, that is, the value of ('t, v) shown in FIG. 1 is approximately determined, and the second
As shown in Figures 3 and 3, the standard equation is successively modified in order to accurately approximate the value of (LV) in accordance with changes in the characteristics of the photoreceptor due to temperature changes and continuous copying. I made it.

具体的には、繰返し静電潜像の形成に利用される電子写
真感光体と、この感光体の表面を均一にな 帯電する帯電手段と、原稿画像に対応する光像感△ 光体の表面に投影する画像投影光学系と、前記光学系に
よシ前記感光体の表面に基準潜像を形成する基準潜像形
成手段と、前記感光体の特性に影響を与える条件を検出
する条件検出手段と、基準式によって具体的に表わされ
る一定の相関関係を以って前記条件検出手段によって検
出された条件に応じて前記光学系による画像投影光量を
決定する決定手段と、前記感光体上の基準潜像表面電位
を検出する手段と、この検出手段によって検出された表
面電位が所望の値になる様に前記光学系によ・る画像投
影光量を補正する手段と前記条件検出手段によって検出
された使用条件と前記補正手段によって補正された光学
系による画像投影光量とから前記基準式を逐次修正する
手段とを備えたことを特徴とする転写型電子写真複写機
である。
Specifically, it includes an electrophotographic photoreceptor used to repeatedly form electrostatic latent images, a charging means for uniformly charging the surface of this photoreceptor, and a photoreceptor surface that corresponds to the original image. a reference latent image forming means for forming a reference latent image on the surface of the photoreceptor by the optical system; and a condition detection means for detecting conditions that affect the characteristics of the photoreceptor. a determining means for determining the amount of image projection light by the optical system according to the condition detected by the condition detecting means with a certain correlation specifically expressed by a reference formula; and a reference on the photoreceptor. a means for detecting a latent image surface potential; a means for correcting the amount of image projection light by the optical system so that the surface potential detected by the detection means has a desired value; and a latent image detected by the condition detection means. The transfer type electrophotographic copying machine is characterized by comprising means for successively correcting the reference equation based on usage conditions and the amount of image projection light by the optical system corrected by the correction means.

実施例 第4図は本発明に係る転写型電子写真複写機の概略内部
構造を示し、(1)は感光体ドラムで、図中反時計回多
方向に回転駆動可能である。(2)は透明な原稿台ガラ
ス′で、原稿画像走査開始側上板(3)の裏面には原稿
画像の背景部の反射濃度に対応する、反射濃度0.25
のハーフトーンの基準潜像形成用パターン(4)が設置
されている。
Embodiment FIG. 4 schematically shows the internal structure of a transfer type electrophotographic copying machine according to the present invention. (1) is a photosensitive drum, which can be rotated in multiple directions counterclockwise in the figure. (2) is a transparent original table glass', and the back side of the upper plate (3) on the original image scanning start side has a reflection density of 0.25, which corresponds to the reflection density of the background part of the original image.
A halftone reference latent image forming pattern (4) is installed.

(5)は画像投影光学系で、露光ランプ(6)。(5) is an image projection optical system and an exposure lamp (6).

反射鏡(7)、(8)、(9)、(10)、投影レンズ
(11)から構成され、画像投影時において露光ランプ
(6)1反射鏡(7)は感光体ドラム(1)の周速(v
)と同速で、反射鏡(8)、(9)は(”/2V)の速
度で図中左方に走査移動可能である。
It is composed of reflecting mirrors (7), (8), (9), (10), and a projection lens (11), and when projecting an image, the exposure lamp (6) and the reflecting mirror (7) are connected to the photoreceptor drum (1). Circumferential speed (v
), the reflecting mirrors (8) and (9) can scan leftward in the figure at a speed of (''/2V).

ハ 電位検出素子で、その検出出力は表面電位検出回路(1
5)に入力される。(16)は感光体近傍に設置した温
度検出素子で、その検出出力は表面温度検出回路(17
)に入力される。また、前記露光ランプ(6)に接続さ
れた露光ランプ電源(1g’)は露光制御手段(18)
にて制御され、この露光制御手段(18)には前記表面
電位検出回路(15)、表面温度検出回路(17)から
の出力が入力される様になっている。
(c) A potential detection element whose detection output is the surface potential detection circuit (1
5). (16) is a temperature detection element installed near the photoreceptor, and its detection output is the surface temperature detection circuit (17
) is entered. Further, an exposure lamp power source (1g') connected to the exposure lamp (6) is connected to an exposure control means (18).
The exposure control means (18) receives outputs from the surface potential detection circuit (15) and the surface temperature detection circuit (17).

(19)は磁気ブラシ式の現像装置で、マグネットロー
ラ(21)を内蔵した現像スリーブ(20)上を現像剤
が時計回多方向に移動することにより感固定された現像
バイアスが印加される。従って、300■以下の電位の
静電潜像は現像されない。
Reference numeral (19) denotes a magnetic brush type developing device, in which a fixed developing bias is applied by moving the developer in multiple clockwise directions on a developing sleeve (20) containing a magnet roller (21). Therefore, an electrostatic latent image with a potential of 300 Å or less is not developed.

また、(22)は転写チャージャ、(23)は複写紙の
分離チャージャ、(24)は残留トナーのクリーナ、(
25)は残留電荷のイレーザランプである。
Also, (22) is a transfer charger, (23) is a copy paper separation charger, (24) is a residual toner cleaner, (
25) is a residual charge eraser lamp.

一方、(26)は給紙カセット、(27)は給紙口。On the other hand, (26) is a paper feed cassette, and (27) is a paper feed slot.

−ラ、(28)は搬送ローラ、(29)は搬送ベルト、
(30)は熱ローラ式の定着装置、(31)は排出ロー
ラ、(32)は排出トレイである。
-La, (28) is a conveyance roller, (29) is a conveyance belt,
(30) is a heat roller type fixing device, (31) is a discharge roller, and (32) is a discharge tray.

なお、環境条件の検出対象としては、温度、湿度、絶対
湿度等がある。本実施例においては感光体としてSe*
Te合金感光体が用いられておシ、この感光体の特性は
温度依存性が大であるので、本実施例ではその表面温度
を検出する様になっている。勿論、環境条件は数種類検
出される様にしてもよいが、検出対象が多い程以下に詳
述する基準式が複雑になるので、一般的には最も依存性
の高い条件のみ検出することが望ましい。例えば、Cd
S樹脂感光体の場合には湿度検出が望ましい。
Note that the environmental conditions to be detected include temperature, humidity, absolute humidity, and the like. In this example, Se* was used as the photoreceptor.
A Te alloy photoreceptor is used, and since the characteristics of this photoreceptor are highly temperature dependent, the surface temperature of the photoreceptor is detected in this embodiment. Of course, several types of environmental conditions may be detected, but the more objects to be detected, the more complex the standard equations detailed below will be, so it is generally desirable to detect only the most highly dependent conditions. . For example, Cd
In the case of an S resin photoreceptor, humidity detection is desirable.

つぎに、基準式の決定に関する原理を説明する。Next, the principle of determining the reference formula will be explained.

第5図に示される如く、(X1e、yt ) 、(X2
 * yz )−(xn* yn)のn組のデータから
Xとyとの相関関係を最小二乗法に基づき、 y=αX+β      ・・・・・・・・・■という
式で近似させる場合、前記α、βは、下記のSの値を最
小にする様な値でなければならない。
As shown in FIG. 5, (X1e,yt), (X2
* When approximating the correlation between X and y from n sets of data of α and β must be values that minimize the value of S below.

−11記Sの値が最小になる条件は、 であり、この様な条件を満すα、βは、下記の連立方程
式の解として導き出され得る。
-11 The condition for the minimum value of S is as follows, and α and β that satisfy such conditions can be derived as solutions of the following simultaneous equations.

即ち、前記α、βは、下記の行列式から導き出されるの
である。
That is, α and β are derived from the following determinant.

一方、第6図に示される如く、(X□、y□)、(x2
.y2)・・・(”yl+YJ  のn組のデータから
Xとyとの相関関係を最小二乗法に基づき、 y−αζ+βχ+γ    01101091.■Iと
いう式で近似させる場合、前記0式を導き出したのと同
一の理由により前記α、β、rは、下記の行列式から導
き出される。
On the other hand, as shown in Fig. 6, (X□, y□), (x2
.. y2)...("If the correlation between X and y is approximated by the formula y-αζ+βχ+γ 01101091.■I based on the least squares method from n sets of data of yl+YJ, then For the same reason, α, β, and r are derived from the following determinant.

なお、3次式以上の近似も前記と同様にして可能である
が、本実施例では1次式、2次式を取扱う。   ・ 続いて、本実施例において画像投影光学系(5)による
画像投影光量〔露光ランプ(6)に対する印加電圧値〕
を決定するプロセスを第7図ないし第11図のフローチ
ャートを参照して説明する。
Note that approximation of cubic or higher order equations is also possible in the same manner as described above, but in this embodiment, linear equations and quadratic equations are handled.・Subsequently, in this embodiment, the image projection light amount by the image projection optical system (5) [voltage value applied to the exposure lamp (6)]
The process for determining the value will be explained with reference to the flowcharts shown in FIGS.

概略は、第7図に示すように、メインスイッチのON後
にチャートA(第8図)、チャー)B(第9図)、チャ
ートC(第10図)と進み、このサイクルをm回繰返す
。このサイクルは定着装!(30)のヒータ等のウオー
ムアツプ時の初期安定を図るだめの時間を有効に利用し
て、基準式を環境条件に適合すべく修正しておくだめの
もので、前記1m′は任意にとってよい。
Briefly, as shown in FIG. 7, after the main switch is turned on, the process proceeds to chart A (FIG. 8), chart B (FIG. 9), and chart C (FIG. 10), and this cycle is repeated m times. This cycle is fixed! (30) This is to make effective use of the time left for initial stabilization during warm-up of heaters, etc., and to modify the standard formula to suit the environmental conditions, and the above 1 m' can be set arbitrarily. .

なお、チャートAのステップの直前に(メインスイッチ
ON、プリントスイツ4ON後ともに又はいずれかに)
帯電コントロールを行うプロセスを挿入してもよい。
In addition, immediately before the step in chart A (both after turning on the main switch and turning on the print switch 4, or either one)
A process for controlling charging may be inserted.

そして、プリントスイッチをONするごとに、今度はチ
ャートA、チャートB′(第11図)、チャートCと進
み、前記基準式を逐次修正し、画像露光を開始して周知
の複写動作を行う。
Then, each time the print switch is turned on, the flow advances to chart A, chart B' (FIG. 11), and chart C, the reference equation is successively corrected, image exposure is started, and a well-known copying operation is performed.

なお、チャートB′はチャートBと同じであってもよい
が、感光体ドラムを交換するとか、かなりの長期複写機
を休止させておいだ場合等は、あらかじめ記憶されてい
る基準式で近似される感光体の特性と実際の感光体の特
性とが著しくずれることもあり得るので、目標値への収
束時間がかかり過ぎて複写速度が低下することがない様
に耐用するため、敢えてチャートBと異らされている=
ただし、メインスイッチON後m回繰返されるサイクル
に関しては複写機のウオームアツプ時間中に処理される
ため、収束時間が多少延びても問題はない。このため、
敢えてチャートB′の如き処理は行われない。
Note that chart B' may be the same as chart B, but if the photosensitive drum is replaced or the copying machine is stopped for a long period of time, it may be approximated by a pre-stored reference formula. There may be a significant difference between the characteristics of the photoreceptor and the characteristics of the actual photoreceptor, so we purposely used Chart B to ensure durability and avoid slowing down the copying speed due to excessive convergence time to the target value. Being different =
However, since the cycle repeated m times after the main switch is turned on is processed during the warm-up time of the copying machine, there is no problem even if the convergence time is slightly extended. For this reason,
Processing as shown in chart B' is intentionally not performed.

前記収束時間を短縮する具体的な手法としてチャー)B
で行われる処理は、チャー) B 、 B/に示す様に
、前回の制御収束値を別途記憶しておき、プリントスイ
・シチON後、その記憶値と最新のデータの演算値との
加重平均須を次回の露光ランプへの印加電圧(LV)と
するようにしている。なお、要因の寄与係数である(γ
1)は、0.1〜10の範囲で選択され、本実施例では
1程度が適当である。
As a specific method for shortening the convergence time, Char)B
As shown in Figure 3), the previous control convergence value is stored separately, and after the print switch is turned on, a weighted average of the stored value and the calculated value of the latest data is calculated. is set as the voltage (LV) to be applied to the next exposure lamp. Note that the contribution coefficient of the factor (γ
1) is selected in the range of 0.1 to 10, and in this embodiment, approximately 1 is appropriate.

詳しくは、これらの制御はマイクロコンピュータによυ
シーケンス制御される様になっている。
In detail, these controls are performed by a microcomputer.
It is designed to be sequence controlled.

第8図に示すように、マイクロコンピュータのランダム
アクセスメモリ(RAM)には、あらかじめ感光体ドラ
ムの表面温度(TPC)がTPC≧25℃の条件下にお
ける0回の複写実験の結果得られた基準式決定用のデー
タ3〜h及びTPC(25℃の条件下における0回の複
写実験の結果得られた基準式決定用のデータi−mのそ
れぞれの値が記憶させられている。
As shown in Fig. 8, the random access memory (RAM) of the microcomputer is stored in a standard that has been previously obtained as a result of 0 copying experiments under the condition that the surface temperature (TPC) of the photoreceptor drum is TPC≧25°C. The respective values of the data 3 to h for formula determination and the data i-m for determining the standard formula obtained as a result of 0 copying experiments under the condition of TPC (25° C.) are stored.

なお、前記実験は感光体ドラムの温度(TPC)を変化
させ、その際、基準潜像表面電位を最終目標電位(V 
RE)、具体的には300V (負極性)になるのに適
した露光ランプ電圧(LV)を求めることによって行わ
れた。なお、この際の前記定数(IVX)は1180と
した。また、感光体ドラムの帯電電位は600V(負極
性)である。この結果、(TPCl。
In addition, in the above experiment, the temperature (TPC) of the photoreceptor drum was changed, and at that time, the reference latent image surface potential was changed to the final target potential (V
RE), specifically by determining the exposure lamp voltage (LV) suitable for achieving 300V (negative polarity). Note that the constant (IVX) at this time was set to 1180. Further, the charging potential of the photoreceptor drum is 600V (negative polarity). As a result, (TPCl.

LV+) ・−・・−(TPCn、LVn)のn組のデ
ータが得られている。
LV+) . . . -(TPCn, LVn) n sets of data are obtained.

aymの値は具体的には下記のとおりである。Specifically, the value of aym is as follows.

a −ETPCL(1,155X109)【=1 b=ΣTPC,”    (3,411X10)1=1 c =;TPC,”   (1,027X10 ’)t
=1 d=ΣTPC,(3,163X ] O’)L==1 e =n       (1,0X103)f−Σφ、
・TPCt(1,759X107)【=1 g−Σφ1・TPO,(5,374X105)【=1 h=Σφ’t     (1,684X10’)t=1 以上、TPCと25°Cただし、 i−ΣTPC(3,4033X105)【 −1 j−ETPCL   (1,767X10)(=1 に=n        (1,0X103)l−Σφ、
・TPC,(2,695X105)【=1 【=1 以上、TPC(25°に のような3〜mの値がランダムアクセスメモリ(RAM
)に記憶された後は、メインスイッチのON後に、ある
いはプリントスイッチのONによる複写サイクルごとに
前記温度(TPC)、露光ランプ電圧(LV)のデータ
が得られる様になっている。
a - ETPCL (1,155X109) [=1 b=ΣTPC," (3,411X10)1=1 c =;TPC,"(1,027X10')t
=1 d=ΣTPC, (3,163X] O')L==1 e =n (1,0X103)f-Σφ,
・TPCt (1,759X107) [=1 g-Σφ1・TPO, (5,374X105) [=1 h=Σφ't (1,684X10')t=1 Above, TPC and 25°C However, i-ΣTPC (3,4033X105) [ -1 j-ETPCL (1,767X10) (=1 to = n (1,0X103)l-Σφ,
・TPC, (2,695
), the temperature (TPC) and exposure lamp voltage (LV) data can be obtained after turning on the main switch or every copying cycle by turning on the print switch.

即ち、メインスイッチのONの後、ステップ■でランタ
ムアクセスメモリ(RAM)に記憶されているa−mの
値を読出し、ステップ■でに1〜に5を演算し、ステッ
プ■で基準式を決定する。
That is, after turning on the main switch, the values of a-m stored in the random access memory (RAM) are read out in step (2), 1 to 5 are calculated in step (2), and the reference formula is calculated in step (3). decide.

ステップ■で感光体温度(TPC)を検出・記憶し、ス
テップ■で感光体温度(TPC)が25°Cより高いか
否かを判定する。「YEsJであればステップ■で0式
に感光体温度(TPC)の値を代入し、露光ランプ電圧
(LV)を決定する。「NO」であればステップ■で0
式に、感光体温度(Tpc)の値を代入し、露光ランプ
電圧(LV)を決定する。。
In step (2), the photoconductor temperature (TPC) is detected and stored, and in step (2) it is determined whether the photoconductor temperature (TPC) is higher than 25°C. "If YESJ, substitute the value of the photoconductor temperature (TPC) into the 0 equation in step ■, and determine the exposure lamp voltage (LV). If "NO," in step ■
By substituting the value of the photoreceptor temperature (Tpc) into the equation, the exposure lamp voltage (LV) is determined. .

次に、第9図のチャートBに移り、ステップ■でステッ
プ■で決定された露光ランプ電圧(LV)をメモリ(M
l)に記憶し、ステップ[相]で露光ランプに対して前
記(’LV )の値の電流を流すとともに、それに若干
先立ちステップ■で感光体ドラムの回転駆動を開始する
。次に、ステップf@で感光体表面電位(vpc )を
検出し、ステップ0で1 vpc−VREI≦εか否か
、即ち検出された感光体表面電位(vpc )と最終目
標電位(VRE)の差が許容誤差(ε)の範囲内か否か
を判定する。
Next, move to chart B in FIG.
1), and in step [phase], a current having the value of ('LV) is applied to the exposure lamp, and slightly prior to this, in step 2, rotational driving of the photosensitive drum is started. Next, in step f@, the photoconductor surface potential (vpc) is detected, and in step 0, it is determined whether 1 vpc-VREI≦ε, that is, the difference between the detected photoconductor surface potential (vpc) and the final target potential (VRE). It is determined whether the difference is within the tolerance (ε).

なお、ステップ@における感光体表面電位(vpc)の
検出は、第4図に示した様に、露光ラン(6) プ電圧(LV)が露光ランプに印加された際に露光△ された感光体ドラム(1)の(a)点が距離(J)移1
Jシて表面電位検出素子(14)に対向する位置に達し
たときに行われる様にタイミングがとられている。
The photoreceptor surface potential (vpc) in step @ is detected when the exposure lamp (6) voltage (LV) is applied to the exposure lamp, as shown in FIG. Point (a) of drum (1) moves distance (J) 1
The timing is set so that the detection is performed when the surface potential detection element (14) is opposed to the surface potential detection element (14).

ステップ[相]で「YESJと判定されれば、画像露光
を開始して複写動作を行うとともに、第9図のチャート
Cに移行する。一方「NO」と判定されれば、ステップ
■で前記メモIJ(Ml)に記憶された印加電圧(LV
)の値を、この値にIVX−VRE IVX−VPC の鎮を乗じた値に修正し、前記ステップ■に戻シ、ステ
ップ[相]で「NO」と判定される限システップ■〜■
を繰返す。ただし、所定回数以上繰返された場合には、
露光ランプ切れ、感光体ドラム(等 れる。よって、所定回数以上繰返された場合には複写機
本体の表示パネルにその旨の表示がなされるとともに、
複写機の作動が停止されるようになっている。
If it is determined as "YESJ" in step [phase], image exposure is started and copying operation is performed, and the process moves to chart C in FIG. 9.On the other hand, if it is determined as "NO", in step The applied voltage (LV
) to the value obtained by multiplying this value by the value of IVX-VRE IVX-VPC, and return to the step ■.As long as it is determined to be "NO" in step [phase], step ■~■
Repeat. However, if it is repeated more than the specified number of times,
Exposure lamp burns out, photoconductor drum (etc.). Therefore, if the exposure lamp burns out, the photosensitive drum (etc.
The copy machine is now deactivated.

一方、プリントスイッチON後では、第11図に示す様
に、チャートAの処理後は、ステップ■で露光ランプ電
圧(LV)の値を前記メモリ(Ml)とは別のメモリ(
M2)に記憶させ、ステップOでメモ!J (Ml)に
記憶されている先回の収束値との加重平均値によシ、次
回の露光ランプ電圧(LV)を決定する様にしている。
On the other hand, after the print switch is turned on, as shown in FIG.
M2) and memo it in step O! The next exposure lamp voltage (LV) is determined based on the weighted average value of the previous convergence value stored in J (Ml).

この場合、ステップ■でメモリ(Ml ) 、 (M2
 )に記憶された印加電圧(LV)の値を、この値に IVX  VRE IVX−VPC の値を乗じた値に修正する。従って、このステップ0を
1回通過するごとに、メモリ(Mx)、(Mg)の値は
等しくなる。
In this case, in step ■, memories (Ml), (M2
) is corrected to the value obtained by multiplying this value by the value of IVX VRE IVX-VPC. Therefore, each time step 0 is passed, the values of memories (Mx) and (Mg) become equal.

次に、第10図のチャー)Cによって新たな3′〜dの
値が演算され、前記基準式が逐次修正されていく。
Next, new values of 3' to d are calculated by Char)C in FIG. 10, and the reference equation is successively corrected.

即ち、ステップ[相]で感光体温度(TPC)が25°
Cよシ高いか否かを判定し、「YESJであればステッ
プ[相]で前記3〜hの値と記憶されている(TPC)
、(LV)の値を0式に代入してa′〜h′を演算し、
ステップ0でランダムアクセスメモリ(RAM)に記憶
されている3〜hの値を3′〜h′の値に置換・修正し
、第7図中(*4)又は(*5)に戻る。また、「NO
」であればステップ[相]で前記ixmの値と記憶され
ている(TPC)、(LV)の値を0式に代入してi′
〜m′を演算し、ステップ[相]でランダムアクセスメ
モリ(RAM)に記憶されているixmの値をi′〜m
′の値に置換・修正し、第7図中(*4)又は(*5)
に戻る。
That is, the photoreceptor temperature (TPC) is 25° in step [phase].
Determine whether it is higher than C, and if YES, the value of 3 to h is stored in step [phase] (TPC).
, (LV) are substituted into the 0 formula to calculate a' to h',
In step 0, the values 3 to h stored in the random access memory (RAM) are replaced and modified with the values 3' to h', and the process returns to (*4) or (*5) in FIG. Also, “NO
”, then in step [phase], substitute the value of ixm and the stored values of (TPC) and (LV) into the equation 0 to obtain i'
~m' is calculated, and in step [phase], the value of ixm stored in the random access memory (RAM) is calculated as i'~m
'Replace and modify the value of (*4) or (*5) in Figure 7.
Return to

このチャートCにおいて、3′〜m′の値を求める際に
、armの値に(1−1/N)を乗じているのは、ただ
し本実施例でN=1000とされる、最新の(TPC,
LV)のデータをそれ以前のデータとする寄与率を低く
するとともに、3〜mの値が無限大に大きくなシ、ラン
ダムアクセスメモリ(RAM)の記憶容量をオーバする
のを防ぐためである。
In this chart C, when finding the values 3' to m', the value of arm is multiplied by (1-1/N). However, in this example, N=1000, which is the latest ( TPC,
This is to reduce the contribution rate of the data of LV) to previous data, and to prevent the value of 3 to m from exceeding the storage capacity of the random access memory (RAM) if it is infinitely large.

前記実施例では、露光ランプ電圧の決定要因として感光
体温度のみに注目して制御したが、他の要因、例えば連
続複写繰返し回数、休止時間等もデータとして記憶し、
これらに対する感光体の特性変化も加味した制御が行わ
れれば、よシ正確かつ迅速な制御が可能である。
In the embodiment described above, only the photoreceptor temperature was focused on and controlled as a determining factor of the exposure lamp voltage, but other factors such as the number of continuous copying repetitions, pause time, etc. are also stored as data.
If control is performed that also takes into account changes in the characteristics of the photoreceptor, more accurate and rapid control will be possible.

そこで、他の実施例として、感光体温度(TPC)の1
也に、連続複写繰返し回数(N)を決定要因とした場合
について説明する。
Therefore, as another example, 1 of the photoreceptor temperature (TPC)
Also, a case will be explained in which the number of consecutive copy repetitions (N) is used as a determining factor.

第12図は前記第7図に準じて露光ランプに対する印加
電圧値を決定するプロセスを示し、チャートA、B、B
’、Cはそれぞれ前記第8図、第9図、第11図、第1
0図に示されておシ、チャー況Al 、 Ctは第13
図、第14図に示す。
FIG. 12 shows the process of determining the applied voltage value to the exposure lamp according to FIG. 7, and charts A, B, B
', C are the figures 8, 9, 11, and 1, respectively.
As shown in Fig. 0, C, C, and Ct are the 13th
14.

基本的には、感光体の温度特性による基準式を逐次修正
して得た予測値LV (TPC)と、連続複写繰返し回
数特性による基準式を逐次修正して得た予測値LV(N
)との加重平均により印加する露光ランプ電圧(LV)
を決定する様にしている。なお、ここでの加重平均とは
、各要因の感光体特性変化に対する寄与の割合を設定し
、要因ごとに適当な係数を乗じることを意味する。
Basically, the predicted value LV (TPC) obtained by successively modifying the reference formula based on the temperature characteristics of the photoreceptor, and the predicted value LV (N
) and the exposure lamp voltage (LV) applied by the weighted average of
I am trying to decide. Note that the weighted average here means setting the contribution ratio of each factor to the change in photoreceptor characteristics, and multiplying each factor by an appropriate coefficient.

詳しくは、チャートA′は、ステップ[相]でランダム
アクセスメモリ(RAM)に記憶されているP〜2の値
を読出し、ステップ[相]で休止時間(TR)がOか否
かを判定する。この休止時間(TR)は複写サイクルご
との間の時間を意味する。即ち、ステップ[相]は連続
複写であるか否かを確認するもので、複写動作をしない
休止時間も感光体の特性変化の要因として確認されてい
るからである。ステップ[相]が[YESJであればス
テップ[相]で繰返し回数(N)に「1」を加算する。
Specifically, in chart A', in step [phase], the value of P~2 stored in the random access memory (RAM) is read out, and in step [phase], it is determined whether the rest time (TR) is O or not. . This rest time (TR) refers to the time between each copy cycle. That is, the step [phase] is for checking whether or not continuous copying is being performed, and the downtime during which no copying operation is performed has also been confirmed as a factor in changing the characteristics of the photoreceptor. If step [phase] is [YESJ], "1" is added to the number of repetitions (N) in step [phase].

次に、ステップ[相]で繰返し回数(N)が10よシ小
さいか否かを判定する。[YESJであればステップ[
相]でに6゜K7を演算し、ステップ[相]で基準式を
決定する。
Next, in step [phase], it is determined whether the number of repetitions (N) is smaller than 10 or not. [If YESJ, step [
6°K7 is calculated in step [phase], and a reference formula is determined in step [phase].

また、「NO」であればステップ[相]でに8 、K。Also, if “NO”, step [phase] is 8, K.

を演算し、ステップ[相]で基準式を決定する。ステッ
プ[相]で前記チャー)Aで得た露光ランプ電圧LV(
TPC)とステップ[相]、[相]のいずれかで得た露
光ランプ電圧LV(N)を加重平均し、印加電圧(LV
)を決定する。なお、要因の寄与係数である(γ2)は
0.1〜10の範囲で選択され、本実施例では1程度が
適当である。
is calculated, and the reference formula is determined in step [phase]. In step [phase], the exposure lamp voltage LV (
The applied voltage (LV
) to determine. Note that (γ2), which is the contribution coefficient of the factor, is selected in the range of 0.1 to 10, and approximately 1 is appropriate in this embodiment.

一方、チャートC′は、ステップ[相]で繰返し回数(
N)が10よシ小さいか否かを判定し、「YES」であ
ればステップ[相]で前記p −y uの値と記憶され
ている(TPC)、(LV)の値を0式に代入してP′
〜U′を演算し、ステップ[相]でランダムアクセスメ
モIJ(RAM)に記憶されているp−uの値をト。
On the other hand, chart C' shows the number of repetitions (
Determine whether N) is smaller than 10, and if YES, in step [phase], convert the values of (TPC) and (LV) stored as the value of p −y u into the 0 formula. Substitute P′
~U' is calculated, and the value of p-u stored in the random access memory IJ (RAM) is calculated in step [phase].

〜U′の値に置換・修正する。また、[NOJであれば
ステップ[相]で前記v−zの値と記憶されている(T
PC)、(LV)の値を0式に代入してV′〜Z’ヲ演
算L、ステップ[有]でランダムアクセスメモIJ(R
AM)に記憶されているV 1%−Zの値をV′〜2′
の値に置換・修正する。
~Replace/correct with the value of U'. In addition, [if NOJ, the value of v-z is stored in step [phase] (T
Substitute the values of PC) and (LV) into the formula 0 and calculate V'~Z'.
The value of V 1%-Z stored in
Replace or modify the value.

なお、本発明において、画像投影光学系による画像投影
光量の制御は、前記各実施例に示した様に露光ランプへ
の印加電圧を制御する方式以外に、電子写真感光体への
露光中を規制するスリットの巾寸法を制御する等の方式
を使用してもよい。
In addition, in the present invention, the amount of image projection light by the image projection optical system is controlled by regulating the amount of light applied to the electrophotographic photoreceptor during exposure, in addition to controlling the voltage applied to the exposure lamp as shown in the above embodiments. A method such as controlling the width of the slit may also be used.

効果 以上の説明で明らかなように、本発明によれば、感光体
の特性を一定の基準式にて表わして画像投影光学系によ
る画像投影光量を決定するとともに、実際の使用時にお
ける感光体、の感度変化等に応じて複写ごとに前記基準
式を逐次修正していくようにしたために、静電潜像の背
景部の電位を使用条件、環境条件等に拘わらず、かつ迅
速に一定の値に維持できるばかシか、画像投影光学系の
最適な画像投影光量が精度よく近似決定されるため、第
1図に示した方法の様に一回の複写ごとに何回も補正を
繰返す必要がなく、複写速度の低速化を招来することは
ない。しかも、前記基準式自体は使用条件、環境条件等
に適応するだけでなく、感光体の製造ロフトに伴う特性
のばらつきや画像投影光学系の設置位置のばらつき、光
学系の汚れ、露光ランプの劣化による光量減少等にも効
果的に適応することとなるため、各複写機番々に適した
画像投影光量の制御が可能である。
Effects As is clear from the above explanation, according to the present invention, the characteristics of the photoreceptor are expressed using a certain reference formula to determine the amount of light projected by the image projection optical system, and the characteristics of the photoreceptor during actual use are determined. Since the reference formula is successively corrected for each copy according to changes in the sensitivity of the Since the optimal image projection light intensity of the image projection optical system is determined accurately, it is not necessary to repeat the correction many times for each copy, as in the method shown in Figure 1. Therefore, the copying speed will not be slowed down. Moreover, the above-mentioned reference formula itself not only adapts to usage conditions and environmental conditions, but also varies in characteristics due to the production loft of the photoconductor, variations in the installation position of the image projection optical system, dirt on the optical system, and deterioration of the exposure lamp. Therefore, it is possible to effectively control the image projection light amount suitable for each copying machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明者らの実験にて得られ
た感光体の感度特性を示すグラフ、第4図は本発明に係
る転写型電子写真複写機の概略図、第5図、第6図は基
準式の決定を説明するだめのグラフ、第7図ないし第1
1図は一実施例の作動を説明するフローチャート図、第
12図ないし第14図は他の実施例の作動を説明するフ
ローチャート図である。 (1)・・・感光体ドラム、(4)・・・基準潜像形成
用パターン、(5)・・・画像投影光学系、(6)・・
・露光ランプ、(14)・・・表面電位検出素子、(1
5)・・・表面電位検出回路、(16)・・・温度検出
素子、(17)・・・表面温度検出回路、(18)・・
・露光制御手段、  (18’)・・・露光ランプ電源
。 特許出願人  ミノルタカメラ株式会社代 理 人  
弁理士青白 葆ほか2名第5図 第6図 第7図 第8図 4−、−1A                東1會
] 宜2 。−6 w59図 宜つ 第10図 衷3or京7 寡。or”5 第11 図           手マートδ′6 本7″ (すで−1−BorB’) 手続補正書(自発) 昭和57年9月2日 特許庁長官 殿 1 事件の表示 昭和57年特許願第  34768    号2発明の
名称 転写型電子写真複写機 3補正をする者 事件との関係 特許出願人 住所 大阪市東区安土町2丁目f番地;山i局i、S 
ミル4代理人 図面中温8図および第11図を別紙のとおり補正致しま
す。 第8図 xl 冨2orπ6 第11図 χ6
1, 2, and 3 are graphs showing the sensitivity characteristics of the photoreceptor obtained through experiments by the present inventors, and FIG. 4 is a schematic diagram of a transfer type electrophotographic copying machine according to the present invention. Figures 5 and 6 are graphs for explaining the determination of the reference formula, Figures 7 to 1.
FIG. 1 is a flowchart explaining the operation of one embodiment, and FIGS. 12 to 14 are flowcharts explaining the operation of other embodiments. (1)...Photosensitive drum, (4)...Reference latent image forming pattern, (5)...Image projection optical system, (6)...
・Exposure lamp, (14)...Surface potential detection element, (1
5)...Surface potential detection circuit, (16)...Temperature detection element, (17)...Surface temperature detection circuit, (18)...
- Exposure control means, (18')...Exposure lamp power supply. Patent applicant Minolta Camera Co., Ltd. Agent
Patent attorney Seihaku Ao and two others Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 4-, -1A East 1 meeting] Gi 2. -6 w59 figure 10th figure 3 or Kyo 7 small. or"5 Figure 11 Temart δ'6 Book 7"(Sude-1-BorB') Procedural amendment (spontaneous) September 2, 1980 Commissioner of the Japan Patent Office 1 Indication of the case 1988 Patent Application No. 34768 No. 2 Name of the invention Transfer type electrophotographic copying machine 3 Relationship with the case of the person making the amendment Patent applicant address 2-f, Azuchi-cho, Higashi-ku, Osaka City; Yama i station i, S
We will correct the Mill 4 representative drawings Medium Temperature Diagrams 8 and 11 as shown in the attached sheet. Figure 8xl Tomi 2 or π6 Figure 11 χ6

Claims (1)

【特許請求の範囲】[Claims] 1、繰返し静電潜像の形成に利用される電子写面に投影
する画像投影光学系と、前記光学系により前記感光体の
表面に基準潜像を形成する基準潜像形成手段と、前記感
光体の特性に影響を与える条件を検出する条件検出手段
と、基準式によって具体的に表わされる一定の相関関係
を以って前記条件検出手段によって検出された条件に応
じて前記光学系による画像投影光量を決定する決定手段
と、前記感光体上の基準潜像表面電位を検出する手段と
、この検出手段によって検出された表面電位が所望の値
になる様に前記光学系による画像投影光縁を補正する手
段と、前記条件検出手段によって検出された使用条件と
前記補正手段によって補正された光学系による画像投影
光量とから前記基準式を遂次修正する手段とを備えたこ
とを特徴とする転写型電子写真複写機。
1. an image projection optical system that projects an image onto an electrophotographic surface used to repeatedly form an electrostatic latent image; a reference latent image forming means that forms a reference latent image on the surface of the photoreceptor by the optical system; condition detection means for detecting conditions that affect body characteristics; and image projection by the optical system according to the conditions detected by the condition detection means with a certain correlation specifically expressed by a reference formula. determining means for determining the amount of light; means for detecting a reference latent image surface potential on the photoreceptor; and controlling the image projection light edge by the optical system so that the surface potential detected by the detecting means becomes a desired value. A transfer device characterized by comprising: means for correcting; and means for successively correcting the reference formula based on the usage conditions detected by the condition detecting means and the amount of image projection light by the optical system corrected by the correcting means. Model electrophotographic copying machine.
JP57034768A 1981-05-02 1982-03-04 Transfer type electrophotographic copying machine Granted JPS58152273A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57034768A JPS58152273A (en) 1982-03-04 1982-03-04 Transfer type electrophotographic copying machine
US06/368,448 US4502777A (en) 1981-05-02 1982-04-14 Transfer type electrophotographic copying apparatus with substantially constant potential control of photosensitive member surface
DE19823214829 DE3214829A1 (en) 1981-05-02 1982-04-21 ELECTROPHOTOGRAPHIC COPIER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034768A JPS58152273A (en) 1982-03-04 1982-03-04 Transfer type electrophotographic copying machine

Publications (2)

Publication Number Publication Date
JPS58152273A true JPS58152273A (en) 1983-09-09
JPH0444270B2 JPH0444270B2 (en) 1992-07-21

Family

ID=12423480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034768A Granted JPS58152273A (en) 1981-05-02 1982-03-04 Transfer type electrophotographic copying machine

Country Status (1)

Country Link
JP (1) JPS58152273A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291967A (en) * 1985-10-18 1987-04-27 Fuji Xerox Co Ltd Controller for copying machine
JPS62242968A (en) * 1986-04-16 1987-10-23 Matsushita Graphic Commun Syst Inc Forming device for electrostatic latent image for detecting image density
JPS63191161A (en) * 1987-02-04 1988-08-08 Konica Corp Copying device compensating for fatigue of photosensitive body
EP0606067A2 (en) * 1993-01-07 1994-07-13 Sharp Kabushiki Kaisha Process control apparatus of electrophotographic apparatus
EP0768580A2 (en) * 1995-10-12 1997-04-16 Sharp Kabushiki Kaisha Image quality stabilizer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106129A (en) * 1977-02-28 1978-09-14 Canon Inc Recording electrostatic device
JPS53119038A (en) * 1977-03-26 1978-10-18 Canon Inc Forming method of image
JPS5450329A (en) * 1977-09-28 1979-04-20 Ricoh Co Ltd Copier control device using plural micro-computers
JPS5529857A (en) * 1978-08-24 1980-03-03 Canon Inc Electrostatic recorder
JPS5726858A (en) * 1980-07-23 1982-02-13 Canon Inc Electrostatic recorder
JPS5784463A (en) * 1980-11-13 1982-05-26 Canon Inc Image former
JPS57130063A (en) * 1981-02-06 1982-08-12 Canon Inc Electrostatic recorder
JPS57130062A (en) * 1981-02-06 1982-08-12 Canon Inc Electrostatic recorder
JPS57158851A (en) * 1981-03-27 1982-09-30 Canon Inc Image recording controller
JPS57163241A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recording controller
JPS57163242A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recordig controller
JPS57163240A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recording controller

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106129A (en) * 1977-02-28 1978-09-14 Canon Inc Recording electrostatic device
JPS53119038A (en) * 1977-03-26 1978-10-18 Canon Inc Forming method of image
JPS5450329A (en) * 1977-09-28 1979-04-20 Ricoh Co Ltd Copier control device using plural micro-computers
JPS5529857A (en) * 1978-08-24 1980-03-03 Canon Inc Electrostatic recorder
JPS5726858A (en) * 1980-07-23 1982-02-13 Canon Inc Electrostatic recorder
JPS5784463A (en) * 1980-11-13 1982-05-26 Canon Inc Image former
JPS57130063A (en) * 1981-02-06 1982-08-12 Canon Inc Electrostatic recorder
JPS57130062A (en) * 1981-02-06 1982-08-12 Canon Inc Electrostatic recorder
JPS57158851A (en) * 1981-03-27 1982-09-30 Canon Inc Image recording controller
JPS57163241A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recording controller
JPS57163242A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recordig controller
JPS57163240A (en) * 1981-04-01 1982-10-07 Canon Inc Picture recording controller

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291967A (en) * 1985-10-18 1987-04-27 Fuji Xerox Co Ltd Controller for copying machine
JPS62242968A (en) * 1986-04-16 1987-10-23 Matsushita Graphic Commun Syst Inc Forming device for electrostatic latent image for detecting image density
JPS63191161A (en) * 1987-02-04 1988-08-08 Konica Corp Copying device compensating for fatigue of photosensitive body
EP0606067A2 (en) * 1993-01-07 1994-07-13 Sharp Kabushiki Kaisha Process control apparatus of electrophotographic apparatus
EP0606067A3 (en) * 1993-01-07 1994-09-21 Sharp Kk Process control apparatus of electrophotographic apparatus.
US5532794A (en) * 1993-01-07 1996-07-02 Sharp Kabushiki Kaisha Electrophotographic image stabilization control apparatus
EP0858008A2 (en) * 1993-01-07 1998-08-12 SHARP Corporation Process control apparatus of electrophotographic apparatus
EP0858008A3 (en) * 1993-01-07 2000-04-26 Sharp Kabushiki Kaisha Process control apparatus of electrophotographic apparatus
EP0768580A2 (en) * 1995-10-12 1997-04-16 Sharp Kabushiki Kaisha Image quality stabilizer
EP0768580A3 (en) * 1995-10-12 2000-09-13 Sharp Kabushiki Kaisha Image quality stabilizer

Also Published As

Publication number Publication date
JPH0444270B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US5857131A (en) Image forming condition control device and method for an image forming apparatus
JPH0343620B2 (en)
US4502777A (en) Transfer type electrophotographic copying apparatus with substantially constant potential control of photosensitive member surface
JPS58152273A (en) Transfer type electrophotographic copying machine
JPH11167230A (en) Image forming device, and method for adjusting image density thereof
JP3033986B2 (en) Image forming device
JPS60189766A (en) Image density controller
JPH047510B2 (en)
JPH0364866B2 (en)
JPH05224495A (en) Image quality correction controller
JP3033075B2 (en) Toner density control device
JPH031664B2 (en)
JP2703651B2 (en) Optical system controller for copier
JP3037977B2 (en) Copy image density stabilization method
JP2947821B2 (en) Image control device
JPH0158509B2 (en)
JPH0610370Y2 (en) Copier photoconductor potential control device
JPH073611B2 (en) Image recording control method
JPH0326835B2 (en)
JPS58181070A (en) Method for controlling developing bias voltage in electrophotographic copying machine
JPH0786709B2 (en) Copy density adjustment method
JPH04110865A (en) Picture quality control method of image formation device
JPS60184267A (en) Image forming device
JPS60119580A (en) Image forming device
JPS6232474A (en) Positive and negative image forming device