JPS622428B2 - - Google Patents

Info

Publication number
JPS622428B2
JPS622428B2 JP53014973A JP1497378A JPS622428B2 JP S622428 B2 JPS622428 B2 JP S622428B2 JP 53014973 A JP53014973 A JP 53014973A JP 1497378 A JP1497378 A JP 1497378A JP S622428 B2 JPS622428 B2 JP S622428B2
Authority
JP
Japan
Prior art keywords
mercury
rare gas
discharge lamp
input
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53014973A
Other languages
Japanese (ja)
Other versions
JPS54108478A (en
Inventor
Takehiro Kira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP1497378A priority Critical patent/JPS54108478A/en
Publication of JPS54108478A publication Critical patent/JPS54108478A/en
Publication of JPS622428B2 publication Critical patent/JPS622428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水銀稀ガス放電灯とその点灯方法に関
するものである。 最近超LSIの関発に併せて、1ミクロン以下の
加工精度を持つ焼き付け技術、転写技術が要求さ
れるようになつた。 従来の技術、つまり1ミクロン以上の加工精度
で良い場合は、350nm〜450nmの紫外線を放射
する放電灯と、その波長に感度を備えた感光性樹
脂の利用によつて既に実用化されているが、1ミ
クロン以下の精度が要求されると、光干渉のた
め、従来技術は使用できない。このため、放電灯
に代つて、電子ビーム露光、X線露光の開発が急
速度で研究開発されたが、コンピユーターと併用
して焼付や転写が自動化、工程簡略化などができ
る長所のある反面、露光時間が長いと言う欠点が
致命的とされ、実用性が著しく低いとされてい
る。 このため、再度、放電灯と紫外線感光性樹脂と
の組み合せが検討されるに到つた。つまり300n
m以下の紫外線によつても感光する樹脂とその波
長の光を大多量放射する放電灯が得られるかどう
かが検討されるようになつた。 幸いにして、1974年に電子ビーム用感光性樹脂
PMMAが200nm以下で感光すること(Applied
Physics Letter Vol.25、451頁)、1975年に200n
m〜260nmの紫外線で同じくPMMAが転写に利
用できること(J.Vac.Sci Technol Vol.12、1317
頁)が次々に実験によつて明らかにされた。 そこで、発明者は、光干渉が生じないような波
長の紫外線を多量放出し、加工精度が良く、焼付
や転写作業時間の短いような光源を研究したとこ
ろ、 (イ) 焼付や転写に一番重要な波長は250nm以下
にあること、 (ロ) 放電発光には、水銀と稀ガスとが放電発光に
寄与する水銀稀ガス放電灯が良いこと、 (ハ) この放電灯において、バルブ内容積1c.c.当り
の水銀量(mg/c.c.)の値Xと稀ガスの圧力(気
圧)の値Yとした時、 1≦X≦13 2≦Y≦10 に規定すると、200nm〜250nmの放射の著し
く多いものが得られること、 などが分つた。 上記(ハ)については、昭和52年12月23日付特許願
(特願昭52−153515号「放電灯」(特開昭54−
86979号))に詳記した通りであるが、焼付方法と
関連して、更に改良しうる余地のあることが分つ
た。 普通、ICやLSI、更には最近研究されている超
LSIの焼付や転写に、光源と感光性樹脂の組み合
せ技術を利用したとき、焼付時間を短くしたい場
合には光源の発光出力の大きなものを使用しよう
とする。例えば、定格消費電力500Wの水銀稀ガ
ス放電灯を利用して、焼付時間が30秒かかるとこ
ろ、15秒にしたければ定格消費電力1KWのもの
を利用しようとする。 ところが、200nm〜250nmを多量放射する水
銀稀ガス放電灯においては、定格消費電力を2倍
にしても、200nm〜250nmの放射量は2倍には
ならず、せいぜい1.5倍であつて、焼付時間が必
ずしも半分にならないことが分つた。 そこで、単に定格消費電力を大きなものにする
と言うだけでなく、短時間で焼付けするに適した
水銀稀ガス放電灯とその点灯方法を研究したとこ
ろ、陽極の体積を所定の範囲に規定すると、
200nm〜250nmの放射量を多くしてもランプ寿
命が長くなること、また、所定の定格消費電力で
直流定電流点灯させておいたうえで、それに過入
力放電を重畳させると良いこと、を見い出して本
発明を完成したものである。 即ち、本発明は、短時間で半導体を焼付けるの
に適し、少ない消費電力で200nm〜250nmの紫
外線が多量に放射し、ランプ寿命も長い水銀稀ガ
ス放電灯とその点灯方法を提供することを目的と
し、その特徴とするところは、バルブ内容積1c.c.
当りの水銀量(mg/c.c.)の値をX、稀ガスの圧力
(気圧)の値をYとした時、1≦X≦13、0.1≦Y
≦10に規定し、最大300%の間欠過入力重畳電力
で点灯される水銀稀ガス放電灯の陽極を特許請求
の範囲第1項記載の如く規定し、更に、第2項記
載の方法で点灯することにある。 以下、図面を参照しながら本発明の実施例の一
つを説明する。 第1図は、水銀と稀ガスを封入した直流点灯用
短電弧型放電灯の説明図であつて、箔シール方式
の放電灯を示し、1は略ラグビーボール状の石英
バルブ、2と3は夫々気密封止部、4と5は夫々
気密封止部2,3に埋設された金属箔、6と7は
夫々金属箔4,5から石英バルブ内へ伸びる内導
線であり、一方の内導線6の先端部には陽極8が
取り付けられ、他方の内導線7のバルブ内に位置
する部分9(斜線部)が陰極として機能する。 第2図は、同様の放電灯の説明図であつて、ロ
ツドシール方式の放電灯を示し、陽極8、陰極9
は、夫々、気密封止部2,3を気密に貫通するリ
ード棒10に支持されている。 第1図の構造の放電灯において、データ採取の
ために設計されたものは、 定格消費電力 500ワツト 定格使用電圧 24.3ボルト 定格使用電流 20.5アンペア であつて、直流定電流点灯させておいた場合と、
これに、更に間欠過入力の放電を重畳させた場合
との比較検討を行なつた。こゝで「定格」とは、
一定電力で連続点灯してもランプ性能が一定範囲
におさまる使用規格で、この場合は、200nm〜
250nmの放射出力が初期値の70%になるのに400
時間の使用寿命を有する放電灯になるように、電
力、電圧、電流値を決め、それらを定格消費電
力、定格使用電圧、定格使用電流と称す。 第3図a,b,cは、夫々、間欠過入力の放電
を重畳させる場合の種々の方法の説明図であつ
て、aの場合は、定格消費電力を100%として、
その状態で点灯せしめておき、そのうえで、最大
300%、10秒間の間欠過入力の放電を、重畳間隔
を間欠過入力放電時間の2倍の20秒にとつて、重
畳したところであつて、定格消費電力の3倍であ
る1500Wを入力した例である。bの場合は、前記
aの場合において、間欠過入力の放電の「立上
り、立下り」をシヤープにするために、その前後
に、数ミリ秒間の低入力部t(ダーク部)を設け
たところ、cの場合は、映写機用キセノン光源装
置の点灯方式にみられるような、定格点灯より低
い消費電力で「待機点灯」せしめておき、そのう
えで、aの場合と同様な重畳放電を印加したとこ
ろであつて、いずれも、直流定電流点灯せしめて
おいたうえで、間欠過入力の放電を重畳せしめる
ところに特徴がある。 ところで、半導体の焼付時間は、使用する樹脂
材料によつて1秒以下から数十秒までと広い範囲
に及ぶが、一回の過入力の時間内で焼付を完了す
るのが原則である。そこで、過入力時間に対する
紫外線強度の増加の変化を調べ、最適の過入力の
放電時間を定めた。使用した放電灯は、前述の通
り定格500Wであつて、水銀封入量(X)は6.7
mg/c.c.(25℃)、稀ガス(キセノン)圧力(Y)
は3気圧(25℃)であり、入力が200%と300%の
場合の結果を第4図に示す。これから分る様に、
過入力の放電時間が0.1秒で紫外線強度は大きく
上昇し、以後60秒まではほゞ同一水準であり、そ
れ以後は漸減する。従つて、この放電時間を0.1
〜60秒に制御すると効率よく紫外線を放射でき
る。そして、入力が200%における増加率は80%
以上であり、従来の定格連続点灯では、単に消費
電力を2倍にした場合の増加率がせいぜい1.5倍
(50%増加)であるのに比べて効果的であること
が理解される。更に入力を300%にすると増加量
は200%にも及ぶ。しかし、入力の大きさが、定
格値の300%を超えると石英バルブの黒化現象や
破損が早期に発生するので好ましくない。 次に、バルブ内の水銀量(X)と稀ガス圧力
(Y)とが異る6種類の放電灯を用意し、XとY
が半導体の焼付時間に及ぼす影響を調査した。入
力を200%と300%の2水準とし、参考例として過
入力なしの定格電力で連続点灯したものを含め
て、その結果を第1表に示す。
The present invention relates to a mercury rare gas discharge lamp and a lighting method thereof. Recently, with the development of VLSI, printing and transfer technologies with processing accuracy of 1 micron or less have become required. Conventional technology, in which machining accuracy of 1 micron or more is sufficient, has already been put into practical use by using discharge lamps that emit ultraviolet rays of 350 nm to 450 nm and photosensitive resins that are sensitive to that wavelength. , if precision of 1 micron or less is required, the conventional techniques cannot be used due to optical interference. For this reason, research and development into electron beam exposure and X-ray exposure was carried out at a rapid pace to replace discharge lamps, but while they had the advantage of being able to automate printing and transfer and simplify processes when used in conjunction with a computer, The disadvantage of long exposure time is said to be fatal, making it extremely impractical. For this reason, a combination of a discharge lamp and an ultraviolet-sensitive resin has been considered again. That is 300n
Studies have begun to examine whether it is possible to obtain resins that are sensitive to ultraviolet rays of wavelengths below 500 m and discharge lamps that emit a large amount of light at that wavelength. Fortunately, in 1974, photosensitive resin for electron beams was developed.
PMMA is sensitive to light below 200nm (Applied
Physics Letter Vol. 25, p. 451), 200n in 1975
Similarly, PMMA can be used for transfer using ultraviolet light of m ~ 260 nm (J.Vac.Sci Technol Vol.12, 1317
Page) were clarified one after another through experiments. Therefore, the inventor researched a light source that emits a large amount of ultraviolet light at a wavelength that does not cause optical interference, has good processing accuracy, and shortens the time required for printing and transfer, and found that (a) it is the best light source for printing and transfer. (b) A mercury rare gas discharge lamp, in which mercury and a rare gas contribute to discharge luminescence, is suitable for discharge luminescence; (c) In this discharge lamp, the bulb internal volume is 1 c. When the value of the amount of mercury (mg/cc) per c. It was found that significantly more products were obtained. Regarding (c) above, please refer to the patent application dated December 23, 1978 (Patent Application No. 153515 ``Discharge Lamp'')
As detailed in No. 86979)), it was found that there is room for further improvement in relation to the printing method. Normally, IC, LSI, and even super
When using a technology that combines a light source and a photosensitive resin for printing or transferring LSI, if you want to shorten the printing time, you should use a light source with a high light output. For example, if you are using a mercury rare gas discharge lamp with a rated power consumption of 500W and it takes 30 seconds to bake, but you want to make it 15 seconds, you would use a mercury rare gas discharge lamp with a rated power consumption of 1KW. However, in mercury rare gas discharge lamps that emit a large amount of 200nm to 250nm, even if the rated power consumption is doubled, the amount of radiation in the 200nm to 250nm range is not doubled, but is at most 1.5 times, and the burnout time is It turns out that it is not necessarily halved. Therefore, in addition to simply increasing the rated power consumption, we researched a mercury rare gas discharge lamp suitable for burning in a short time and its lighting method, and found that when the volume of the anode is defined within a predetermined range,
We discovered that increasing the amount of radiation between 200nm and 250nm can prolong the lamp life, and that it is better to keep the lamp lit at a constant DC current with a predetermined rated power consumption, and then superimpose an over-input discharge on top of that. Thus, the present invention was completed. That is, the present invention provides a mercury rare gas discharge lamp that is suitable for baking semiconductors in a short time, emits a large amount of ultraviolet rays of 200 nm to 250 nm with low power consumption, and has a long lamp life, and a lighting method thereof. The purpose and characteristics of the valve are that the internal volume of the valve is 1 c.c.
When the value of the amount of mercury per unit (mg/cc) is X and the value of the rare gas pressure (atmospheric pressure) is Y, 1≦X≦13, 0.1≦Y
≦10, and the anode of a mercury rare gas discharge lamp that is lit with a maximum of 300% intermittent over-input superimposed power is defined as described in claim 1, and further lit by the method described in claim 2. It's about doing. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Fig. 1 is an explanatory diagram of a short electric arc discharge lamp for direct current lighting filled with mercury and rare gas, and shows a foil seal type discharge lamp, 1 is a quartz bulb roughly shaped like a rugby ball, 2 and 3 are 4 and 5 are metal foils embedded in the hermetic sealing parts 2 and 3, respectively; 6 and 7 are inner conductors extending from the metal foils 4 and 5 respectively into the quartz bulb; one of the inner conductors An anode 8 is attached to the tip of the inner conductor 6, and a portion 9 (shaded portion) of the other inner conductor 7 located inside the bulb functions as a cathode. FIG. 2 is an explanatory diagram of a similar discharge lamp, showing a rod seal type discharge lamp, with an anode 8 and a cathode 9.
are supported by lead rods 10 that hermetically pass through the hermetically sealed portions 2 and 3, respectively. The discharge lamp with the structure shown in Figure 1, designed for data collection, has a rated power consumption of 500 watts, a rated operating voltage of 24.3 volts, and a rated operating current of 20.5 amperes. ,
We also compared this with a case in which discharge due to intermittent over-input was further superimposed. Here, “rated” means
This is a usage standard in which the lamp performance remains within a certain range even if the lamp is lit continuously at a constant power.
400 to make the radiation output at 250nm 70% of the initial value.
The power, voltage, and current values are determined so that the discharge lamp has a service life of 1 hour, and these values are referred to as rated power consumption, rated operating voltage, and rated operating current. Figures 3a, b, and c are explanatory diagrams of various methods for superimposing discharges of intermittent over-input, respectively; in the case of a, the rated power consumption is assumed to be 100%;
Leave it on in that state, and then turn it on to the maximum
Example of superimposing a 10-second intermittent over-input discharge at 300% with a superimposition interval of 20 seconds, twice the intermittent over-input discharge time, and inputting 1500 W, which is three times the rated power consumption. It is. In case b, in order to sharpen the "rise and fall" of the discharge due to intermittent over-input in case a, a low input part t (dark part) of several milliseconds is provided before and after the intermittent over-input. In the case of , c, if the "standby lighting" is set at a power consumption lower than the rated lighting, as is the case with the lighting method of the xenon light source device for movie projectors, and then the superimposed discharge similar to the case of a is applied. Both are characterized by the fact that they are kept lit at a constant DC current and then discharged due to intermittent over-input. Incidentally, the baking time for semiconductors varies widely depending on the resin material used, from less than one second to several tens of seconds, but in principle baking should be completed within the time of one excessive input. Therefore, we investigated the change in the increase in ultraviolet light intensity with respect to the over-input time and determined the optimal over-input discharge time. The discharge lamp used has a rating of 500W as mentioned above, and the amount of mercury (X) filled is 6.7
mg/cc (25℃), rare gas (xenon) pressure (Y)
is 3 atm (25°C), and the results when the input is 200% and 300% are shown in Figure 4. As you will see,
The intensity of ultraviolet rays increases significantly when the discharge time of excessive input is 0.1 seconds, remains at almost the same level for the next 60 seconds, and then gradually decreases. Therefore, this discharge time is 0.1
Ultraviolet rays can be emitted efficiently by controlling the time to ~60 seconds. And the increase rate at 200% input is 80%
From the above, it is understood that conventional rated continuous lighting is more effective than simply doubling the power consumption, which increases the rate of increase by at most 1.5 times (50% increase). Furthermore, when the input is increased to 300%, the amount increases by 200%. However, if the magnitude of the input exceeds 300% of the rated value, it is undesirable because blackening and damage of the quartz bulb will occur at an early stage. Next, we prepared six types of discharge lamps with different amounts of mercury (X) and rare gas pressures (Y) in the bulbs, and
We investigated the influence of The results are shown in Table 1, with two levels of input, 200% and 300%, including a reference example in which the lamp was lit continuously at the rated power without excessive input.

【表】 バルブ内の水銀圧力と稀ガス圧力の和がほゞ一
定となるように封入されるので、一方の量が多く
なると他方の量が減少するが、放電灯No.1で
は、Yが0.1であつてもXが15と多いため露光せ
ず使用不能であつた。一方、放電灯No.6ではX
が1.0であつてもYが12と多いため、紫外線の放
射量が十分でなく、焼付時間が長くなつて実用的
でないことが判明した。これに対して、放電灯
No.2〜No.5は、1.0≦X≦13、0.1≦Y≦10である
が、放電灯のNo.によつて少しの差はあるもの
の、いずれも短時間で焼付が可能であり、十分実
用化可能であることが判明した。従つて、従来
は、1≦X≦13、2≦Y≦10が良いとされていた
ことと比べ、Yの値の下限値が広くなつている。
これは、普通の定格連続点灯では、Y<2では
200nm〜250nmの紫外線の放射が少なく、焼付
時間は短縮されないが、本願の如く、上記の制御
点灯によれば上記の紫外線が増加して、Y=0.1
までは焼付時間短縮に効果があることが分つた。 この様に、本願の放電灯では、間欠過入力の放
電を行うため、陽極に負担がかかり、従来の定格
連続点灯のものと同じ大きさの陽極では損傷が激
しくてランプ寿命が短かくなる問題点がある。そ
こで、定格消費電力当りの陽極体積(Z)を変化
させてランプ寿命を調査した。使用した放電灯
は、前記の過入力時間の影響調査に使用したもの
と同じであり、入力を200%と300%の2水準、過
入力時間を200msec、400msecの2水準(過入力
間隔はいずれも400msec)の条件で点灯したとき
の結果を第5図に示す。これから分かるように、
入力が大きい程、また、過入力時間が長い程電極
寿命が短くなる傾向があるが、いずれの水準にお
いても、Zが0.05×10-3c.c./Wから0.1×10-3c.c./
Wにかけて急激に寿命が長くなり、以降は漸増し
て0.6×10-3c.c./W以上はほゞ飽和する。そし
て、最も条件の厳しい入力300%において、過入
力時間がいずれであつてもZが0.1×10-3c.c./W
のときの寿命は約200時間であり、Z≧0.1×10-3
c.c./Wであれば実用に耐えるランプ寿命を得るこ
とができる。一方、Zの値をいたずらに大きくす
ると電極の表面積が大きくなつて赤外線の放射量
が大きくなる。例えば、体積が20%大きくなると
500nmより長い波長の放射エネルギーが約0.05W
増加するが、赤外線の放射エネルギーが増加する
と半導体ウエハーの温度が上昇して膨張し、この
ため露光精度が低下する問題点が生じる。更に
は、電極の重量増のために、箔シールタイプのラ
ンプではシール作業中に電極の芯がずれたり、は
なはだいときには箔が切断したりする問題点の生
じる。従つて、これらの問題点を派生させないた
めに、種々調査した結果、Zの上限は0.5×10-3
c.c./Wであることが判明した。 以上説明した様に、本発明の点灯方法は、Xと
Yを、1≦X≦13、0.1≦Y≦10に規定し、直流
定電流点灯させておいたうえで、更に間欠過入力
の放電を重畳させ、その過入力の放電時間を0.1
〜60秒に制御するため、200nm〜250nmの放射
量を効率的に発光せしめ、IC、LSI、超LSIなど
の半導体の焼付や転写作業において、その作業時
間を短縮できる利益がある。また、本発明の放電
灯も半導体の製造用として適しており、0.1×
10-3≦Z≦0.5×10-3に規定しているので、電極
が大き過ぎるための問題点が派生せず、かつ、過
入力を重畳させるにもかかわらずランプ寿命を長
くすることができる。
[Table] The bulb is sealed so that the sum of the mercury pressure and the rare gas pressure is almost constant, so if the amount of one increases, the amount of the other decreases.In discharge lamp No. 1, Y Even if it was 0.1, the number of X was as high as 15, so it was not exposed and could not be used. On the other hand, in discharge lamp No. 6,
Even when Y is 1.0, Y is as large as 12, so the amount of ultraviolet radiation is insufficient and the baking time becomes long, making it impractical. In contrast, discharge lamps
For No. 2 to No. 5, 1.0≦X≦13, 0.1≦Y≦10, and although there are slight differences depending on the discharge lamp No., all of them can burn out in a short time. It turned out that it is fully practical. Therefore, the lower limit of the value of Y has become wider than conventionally, where 1≦X≦13 and 2≦Y≦10 were considered good.
This is true for normal rated continuous lighting when Y < 2.
The radiation of ultraviolet rays in the range of 200 nm to 250 nm is small, and the baking time is not shortened, but if the above-mentioned controlled lighting is performed as in the present application, the above ultraviolet rays increase, and Y = 0.1.
It was found that this method was effective in shortening the printing time. In this way, the discharge lamp of the present application performs discharge with intermittent over-input, which places a burden on the anode, and an anode of the same size as a conventional rated continuous lighting model suffers from severe damage, shortening the lamp life. There is a point. Therefore, the lamp life was investigated by changing the anode volume (Z) per rated power consumption. The discharge lamp used was the same as the one used in the above-mentioned investigation of the influence of over-input time, with two levels of input, 200% and 300%, and two levels of over-input time, 200 msec and 400 msec (the over-input interval is both Figure 5 shows the results obtained when the light was turned on under the condition of 400 msec). As you will see,
The larger the input and the longer the overload time, the shorter the electrode life tends to be, but at any level, when Z is between 0.05×10 -3 cc/W and 0.1×10 -3 cc/
The life span rapidly increases as the temperature approaches W, and thereafter increases gradually until reaching saturation above 0.6×10 −3 cc/W. At 300% input, which is the most severe condition, Z is 0.1×10 -3 cc/W no matter what the overload time is.
The life is about 200 hours when Z≧0.1×10 -3
If it is cc/W, a lamp life that can withstand practical use can be obtained. On the other hand, if the value of Z is increased unnecessarily, the surface area of the electrode will increase, and the amount of infrared radiation will increase. For example, if the volume increases by 20%
Radiant energy for wavelengths longer than 500nm is approximately 0.05W
However, as the radiant energy of infrared rays increases, the temperature of the semiconductor wafer rises and expands, resulting in a problem that exposure accuracy decreases. Furthermore, due to the increased weight of the electrodes, foil-sealed lamps have problems in that the center of the electrodes may shift during the sealing process, or the foil may break if the sealing process is too severe. Therefore, in order to prevent these problems from arising, as a result of various investigations, the upper limit of Z is 0.5×10 -3
It turned out to be cc/W. As explained above, in the lighting method of the present invention, X and Y are defined as 1≦X≦13, 0.1≦Y≦10, and after lighting is performed at a constant DC current, further discharging due to intermittent over-input. is superimposed, and the discharge time of the excessive input is set to 0.1
Since it is controlled within ~60 seconds, it efficiently emits radiation in the range of 200 nm ~ 250 nm, which has the advantage of shortening the time required for printing and transferring semiconductors such as ICs, LSIs, and super LSIs. Further, the discharge lamp of the present invention is also suitable for semiconductor manufacturing, and has a 0.1×
Since it is specified as 10 -3 ≦Z≦0.5×10 -3 , problems due to the electrode being too large do not arise, and the lamp life can be extended despite superimposing excessive input. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は放電灯の説明図、第3図は放
電灯の点灯方法の説明図、第4図、第5図は実験
データの説明図である。 1……石英バルブ、8……陽極、9……陰極。
1 and 2 are explanatory diagrams of a discharge lamp, FIG. 3 is an explanatory diagram of a method of lighting a discharge lamp, and FIGS. 4 and 5 are explanatory diagrams of experimental data. 1...quartz bulb, 8...anode, 9...cathode.

Claims (1)

【特許請求の範囲】 1 バルブ内に、陽極と陰極が配設され、水銀
と、稀ガスとを含む水銀稀ガス放電灯であつて、
バルブ内容積1c.c.当りの水銀量(mg/c.c.)の値を
X、稀ガスの圧力(気圧)の値をYとした時、 1≦X≦13 0.1≦Y≦10 に規定されるとともに、最大300%の間欠過入力
重畳電力で点灯され、陽極の体積が、放電灯の定
格消費電力当りに対する値をZ(c.c./W)とした
時、 0.1×10-3≦Z≦0.5×10-3 に規定されてなることを特徴とする水銀稀ガス放
電灯。 2 バルブ内に、陽極と陰極が配設され、水銀
と、稀ガスとを含む水銀稀ガス放電灯に対して、
バルブ内容積1c.c.当りの水銀量(mg/c.c.)の値を
X、稀ガスの圧力(気圧)の値をYとした時、 1≦X≦13 0.1≦Y≦10 に規定し、直流定電流点灯させておいたうえで、
更に最大300%の間欠過入力の放電を重畳させ、 その間欠過入力の放電時間tを0.1秒〜60秒に
制御することを特徴とする水銀稀ガス放電灯の点
灯方法。
[Claims] 1. A mercury rare gas discharge lamp comprising an anode and a cathode disposed in a bulb and containing mercury and a rare gas,
When the amount of mercury (mg/cc) per 1 c.c. of valve internal volume is X, and the rare gas pressure (atmospheric pressure) is Y, it is defined as 1≦X≦13 0.1≦Y≦10 At the same time, the volume of the anode is 0.1×10 -3 ≦Z≦0.5× when the volume of the anode is Z (cc/W) relative to the rated power consumption of the discharge lamp, when the lamp is lit with a maximum of 300% intermittent over-input superimposed power. 10 -3 A mercury rare gas discharge lamp. 2. For a mercury rare gas discharge lamp, which has an anode and a cathode inside the bulb and contains mercury and a rare gas,
When the value of the amount of mercury (mg/cc) per 1 c.c. of valve internal volume is X, and the value of rare gas pressure (atmospheric pressure) is Y, specify 1≦X≦13 0.1≦Y≦10, After turning on the DC constant current light,
A method for lighting a mercury rare gas discharge lamp characterized by further superimposing discharge of an intermittent over-input of up to 300% and controlling the discharge time t of the intermittent over-input to 0.1 seconds to 60 seconds.
JP1497378A 1978-02-14 1978-02-14 Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription Granted JPS54108478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1497378A JPS54108478A (en) 1978-02-14 1978-02-14 Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1497378A JPS54108478A (en) 1978-02-14 1978-02-14 Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57067257A Division JPS57185663A (en) 1982-04-23 1982-04-23 Lighting of mercury rare-gas electric-discharge lamp

Publications (2)

Publication Number Publication Date
JPS54108478A JPS54108478A (en) 1979-08-25
JPS622428B2 true JPS622428B2 (en) 1987-01-20

Family

ID=11875911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1497378A Granted JPS54108478A (en) 1978-02-14 1978-02-14 Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Country Status (1)

Country Link
JP (1) JPS54108478A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185663A (en) * 1982-04-23 1982-11-15 Ushio Inc Lighting of mercury rare-gas electric-discharge lamp
JPS6070452A (en) * 1983-09-28 1985-04-22 Nippon Kogaku Kk <Nikon> Exposing device
JPS6120324A (en) * 1984-07-07 1986-01-29 Ushio Inc Method for exposing material of semiconductor wafer by mercury lamp
JPS6120325A (en) * 1984-07-07 1986-01-29 Ushio Inc Method for exposing material of semiconductor wafer by mercury lamp
JPS6120326A (en) * 1984-07-07 1986-01-29 Ushio Inc Method for exposing material of semiconductor wafer by mercury lamp
JPS6119940A (en) * 1984-07-07 1986-01-28 Mitsubishi Heavy Ind Ltd Method of introducing intake-air and discharging exhaust gas
JPS6120322A (en) * 1984-07-07 1986-01-29 Ushio Inc Method for exposing material of semiconductor wafer by mercury lamp
JPS6120323A (en) * 1984-07-07 1986-01-29 Ushio Inc Method for exposing material of semiconductor wafer by mercury lamp
JP2781555B2 (en) * 1987-08-21 1998-07-30 株式会社日立製作所 Ultra high pressure mercury lamp

Also Published As

Publication number Publication date
JPS54108478A (en) 1979-08-25

Similar Documents

Publication Publication Date Title
US4988918A (en) Short arc discharge lamp
CA1155905A (en) Low pressure gas discharge lamp with increased end illumination
EP0791950B1 (en) Discharge lamp of the short arc type
US4820906A (en) Long arc lamp for semiconductor heating
JPS622428B2 (en)
US5920152A (en) Mercury lamp of the short arc type and method for operation thereof
US5481159A (en) Metal vapor discharge lamp
Waymouth LTE and near-LTE lighting plasmas
JPH02256150A (en) Short arc mercury lamp for exposing semi-conductor wafer
US4704346A (en) Process for the exposure of semiconductor wafer
US2899583A (en) macksoud
JP2003257364A (en) Short arc mercury lamp
JP2730001B2 (en) Semiconductor wafer exposure method and mercury lamp for exposure
JP2006344383A (en) Light irradiation device
JP2915385B1 (en) Short arc mercury lamp
JP3371813B2 (en) Discharge lamp
JP2732457B2 (en) Short arc type mercury vapor discharge lamp
JPS62239533A (en) Housing for ultra-high pressure mercury lamp
US3073985A (en) Arc tube and method
JP2009230904A (en) Short arc discharge lamp
CN1041480A (en) Short arc discharge lamp
JP3060461B2 (en) Metal halide lamp
JP2991933B2 (en) Discharge lamp for semiconductor exposure
JP2863047B2 (en) Semiconductor exposure equipment
JPH04306553A (en) Short arc type high pressure mercury lamp