JPS62242512A - Injection molding control method - Google Patents

Injection molding control method

Info

Publication number
JPS62242512A
JPS62242512A JP8510486A JP8510486A JPS62242512A JP S62242512 A JPS62242512 A JP S62242512A JP 8510486 A JP8510486 A JP 8510486A JP 8510486 A JP8510486 A JP 8510486A JP S62242512 A JPS62242512 A JP S62242512A
Authority
JP
Japan
Prior art keywords
temperature
mold
cooling time
time
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8510486A
Other languages
Japanese (ja)
Inventor
Akira Yokota
明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP8510486A priority Critical patent/JPS62242512A/en
Publication of JPS62242512A publication Critical patent/JPS62242512A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a product stabilized not only an a short-term basis but also on a long-term basis, even if temperature of mold varies, by correcting cooling time by means of a corrected time calculated from the difference between the temperature of mold for each molding cycle and preset standard temperature. CONSTITUTION:The temperature of mold Tm under pressure is sensed by a temperature sensor 2 installed to a mold 1, and the sensed value signal is led to a deviation arithmetic unit 4 through an amplifier 3, compares the preset standard mold temperature To and the actual mold temperature Tm and operates the deviation value DELTAT. Then, said deviation value DELTAT is multiplied by the constant value alpha/beta preset in a coefficient setter 7 in an arithmetic unit 6 to calculate a corrected time DELTAS, a result of multiplication. The signal of said corrected time is sent to an adder 8 for operating addition of standard cooling time preset in a cooling time setter 9 and the corrected time. The signal is transferred to a sequencer 10 of injection molding machine, by which the actual cooling time is set and controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、射出成形機により成形品を射出成形するとき
の制御方法に関するもので、特に。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control method when a molded article is injection molded by an injection molding machine, and particularly relates to a control method when a molded article is injection molded by an injection molding machine.

金型温度に応じて成形条件を変化させるようにした射出
成形制御方法に関するものである。
The present invention relates to an injection molding control method in which molding conditions are changed according to mold temperature.

(従来の技術) 射出成形機による成形品の成形は、型閉じ。(Conventional technology) When molding a molded product using an injection molding machine, the mold is closed.

溶融樹脂の射出、保圧、冷却、型開きという成形サイク
ルによって行われる。精密成形品が得られるようにする
ためには、それら成形サイクルの各過程における種々の
条件が正確に設定されなければならない。
This is done through a molding cycle that includes injection of molten resin, holding pressure, cooling, and opening the mold. In order to obtain precision molded products, various conditions in each step of the molding cycle must be accurately set.

そこで、従来は、射出圧力、樹脂温度等を一定に制御す
るとともに、成形サイクルの各時間を一定に制御すると
いうことが行われていた。
Therefore, in the past, injection pressure, resin temperature, etc. were controlled to be constant, and each time period of the molding cycle was controlled to be constant.

(発明が解決しようとする問題点) しかしながら、成形サイクルの各時間を一定としても、
金型の温度を一定に制御することはできない0例えば、
連続成形時には、成形を繰り返すことによって金型温度
が徐々に上昇する。したがって、金型から取り出すとき
の成形品の温度は、連続成形の初期と後半とでは異なる
ものとなる。そのように取り出し時の成形品の温度に差
があると、取り出し後の放冷による熱収縮量に差が生じ
ることになり、成形品の最終寸法がばらつくなど1品質
の安定した成形品を得ることができなくなる。
(Problem to be solved by the invention) However, even if each molding cycle time is constant,
It is not possible to control the temperature of the mold at a constant level. For example,
During continuous molding, the mold temperature gradually increases as molding is repeated. Therefore, the temperature of the molded product when taken out from the mold is different between the initial stage and the latter half of continuous molding. If there is a difference in the temperature of the molded product at the time of removal, there will be a difference in the amount of heat shrinkage due to cooling after removal, and the final dimensions of the molded product may vary, making it difficult to obtain a stable molded product of one quality. I won't be able to do that.

このようなことから、金型温度を検出し、その温度変化
に伴って保圧圧力を変化させる適応制御方法も行われて
いる。しかしながら、そのような制御方法は、成形品の
内部圧力を変化させるものであるので、成形後の短期間
は成形品の寸法や重量等の品質を一定に保つことができ
るとしても、長期的に見ると、経時変化により成形品に
クラックやクレージングが生じるなど、品質が変動する
ことは避けられないものとなっている。
For this reason, an adaptive control method is also used in which the mold temperature is detected and the holding pressure is changed in accordance with the temperature change. However, such control methods change the internal pressure of the molded product, so even if the quality of the molded product, such as dimensions and weight, can be kept constant for a short period of time after molding, it will not affect the quality of the molded product in the long term. As you can see, it is inevitable that the quality will change over time, such as cracks and crazing in molded products.

本発明は、このような問題に鑑みてなされたものであっ
て、その目的は、連続成形時のように金型の温度が変動
する場合にも、短期間のみならず長期的にも安定した品
質の精密成形品が得られるようにすることである。
The present invention was made in view of these problems, and its purpose is to maintain stability not only in the short term but also in the long term, even when the temperature of the mold fluctuates as during continuous molding. The objective is to obtain high quality precision molded products.

(問題点を解決するための手段) この目的を達成するために、本発明では、金型の温度に
応じて、成形サイクル中の冷却時間、を変化させるよう
にしている。
(Means for solving the problem) In order to achieve this object, the present invention changes the cooling time during the molding cycle depending on the temperature of the mold.

すなわち、射出成形の各成形サイクルごとに金型の温度
を検出して、その検出温度とあらかじめ設定された基準
温度との偏差から補正時間を算出し、その補正時間によ
り冷却時間を補正するようにしている。その補正時間は
、検出温度と基準温度との偏差に、あらかじめ設定され
た定数値を乗することによって得られるものである。
In other words, the temperature of the mold is detected for each molding cycle of injection molding, the correction time is calculated from the deviation between the detected temperature and a preset reference temperature, and the cooling time is corrected using the correction time. ing. The correction time is obtained by multiplying the deviation between the detected temperature and the reference temperature by a preset constant value.

(作用) このように構成することにより、金型温度が高いときに
は冷却時間が増加され、成形品が金型内で十分に冷却さ
れるので、金型から取り出して放冷したときの熱変形量
が小さくなる。一方、金型温度が低いときには冷却時間
が短くされ、成形品が比較的高温のうちに金型から取り
出されるので、放冷による熱変形量が大きくなる。した
がって、はぼ一定の品質の成形品が得られるようになる
(Function) With this configuration, when the mold temperature is high, the cooling time is increased, and the molded product is sufficiently cooled within the mold, so that the amount of thermal deformation when taken out from the mold and left to cool is reduced. becomes smaller. On the other hand, when the mold temperature is low, the cooling time is shortened and the molded product is removed from the mold while it is still relatively hot, so the amount of thermal deformation due to cooling increases. Therefore, molded products of almost constant quality can be obtained.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

図中、第1図は末完IJ1による射出成形制御方法を実
施するための制御回路のブロック図である。また、第2
及び3図はモの制御方法の原理を説明するためのもので
、第2図は金型温度と成形品の最終寸法との関係を示す
特性曲線図であり、第3図は金型内での成形品の冷却時
間と成形品の最終寸法との関係を示す特性曲線図である
In the figure, FIG. 1 is a block diagram of a control circuit for implementing the injection molding control method using the final IJ1. Also, the second
Figures 3 and 3 are for explaining the principle of the control method, Figure 2 is a characteristic curve diagram showing the relationship between the mold temperature and the final dimension of the molded product, and Figure 3 is a diagram showing the relationship between the mold temperature and the final dimension of the molded product. FIG. 3 is a characteristic curve diagram showing the relationship between the cooling time of the molded product and the final dimension of the molded product.

まず、第2.3図により本発明の成形制御方法の原理を
説明する。
First, the principle of the molding control method of the present invention will be explained with reference to FIG. 2.3.

金型温度が高いうちにその金型から成形品を取り出すと
、その成形品は平均温度が高いので、放冷とともに大き
く熱収縮する。したがって、第2図に示されているよう
に、金型温度が高いほど、成形品の最終寸法は小さくな
る。一方、金型内で成形品を冷却する時間を長くすると
、金型から取り出したときの成形品の平均温度が低くな
るので、放冷による熱収縮量は小さくなる。したがって
、その冷却時間が長いほど、成形品の最終寸法は金型に
よって成形された寸法に近いものとなる。すなわち、第
3図に示されているように、冷却時間が長いほど、成形
品の最終寸法は大きくなる。
If a molded product is removed from the mold while the mold temperature is still high, the molded product will have a high average temperature and will undergo large thermal contraction as it cools. Therefore, as shown in FIG. 2, the higher the mold temperature, the smaller the final dimensions of the molded article. On the other hand, if the cooling time of the molded product in the mold is increased, the average temperature of the molded product when taken out from the mold will be lower, so that the amount of thermal shrinkage due to cooling will be reduced. Therefore, the longer the cooling time, the closer the final dimensions of the molded article will be to the dimensions formed by the mold. That is, as shown in FIG. 3, the longer the cooling time, the larger the final dimensions of the molded article.

このような金型温度と成形品寸法との関係あるいは冷却
時間と成形品寸法との関係は、完全な一次式として表す
ことはできない、しかしながら、金型温度あるいは冷却
時間の変化幅が小さい領域では、それらの関係を一次式
で近似させることができる。
The relationship between mold temperature and molded product dimensions or the relationship between cooling time and molded product dimensions cannot be expressed as a complete linear equation. However, in the region where the variation range of mold temperature or cooling time is small, , their relationship can be approximated by a linear equation.

そこで、他の条件が一定の下で、基準寸法立0の成形品
が得られるときの金型温度を基準金型温度Toとし、金
型温度が基準金型温度ToからΔTだけ変動したときの
成形品の寸法変動を6党とすれば、 Δ文=α嗜ΔT   (αは定数) と表すことができる。
Therefore, under other conditions being constant, the mold temperature at which a molded product with standard dimension 0 is obtained is defined as the standard mold temperature To, and when the mold temperature fluctuates by ΔT from the standard mold temperature To, If the dimensional variation of a molded product is assumed to be six, it can be expressed as ΔT = α ΔT (α is a constant).

同様に、他の条件が一定の下で、2Jli準寸法見○の
成形品が得られるときの冷却時間を基準冷却時間S、と
し、冷却時間をΔSだけ変化させたときの成形品の寸法
変動をΔ見とすれば、Δ見=β・ΔS   (βは定数
) と表すことができる。
Similarly, under other conditions being constant, the cooling time when a molded product with 2Jli standard dimensions ○ is obtained is set as the standard cooling time S, and the dimensional variation of the molded product when the cooling time is changed by ΔS. If it is assumed that Δsight is Δsight, then it can be expressed as Δsight=β・ΔS (β is a constant).

したがって、第2図に示されているように、金型温度T
■が基準温度ToよりΔTだけ高いときの成形品のΔ見
だけの寸法の減少を、第3図に示されているように冷却
時間をΔSだけ延長することによって相殺するものとす
れば。
Therefore, as shown in FIG. 2, the mold temperature T
Suppose that the reduction in the apparent size of the molded product when (2) is higher than the reference temperature To by ΔT is offset by extending the cooling time by ΔS, as shown in FIG.

αφΔT=β・ΔS より ΔS冨(α/β)ΔT となる。αφΔT=β・ΔS Than ΔS wealth (α/β) ΔT becomes.

すなわち、冷却時間を基準冷却時間Soより(α/β)
ΔT だけ延長すれば、成形品の基準寸法交0が確保さ
れることになる。逆に、金型温度TmがΔTだけ低いと
きには、冷却時間を(α/β)ΔT だけ短縮すればよ
い。
In other words, the cooling time is calculated from the standard cooling time So (α/β)
By extending it by ΔT, the standard dimension intersection of the molded product is 0. Conversely, when the mold temperature Tm is lower by ΔT, the cooling time may be shortened by (α/β)ΔT.

本発明は、このような原理に基づいて冷却時間を制御す
るようにしたもので、第1図に示されているように、ま
ず、金型lに取り付けられた温度検出器2によって、例
えば保圧時の金型温度Tsが各成形サイクルごとに検出
される。
The present invention controls the cooling time based on such a principle, and as shown in FIG. The mold temperature Ts during pressurization is detected for each molding cycle.

そして、その検出値信号が、増幅器3によって増幅され
た後、偏差演算器4に導かれる。この演算器4において
は、基準温度設定rIt5にあらかじめ設定された基準
金型温度Toと実際の金型温度T■とが比較され、その
偏差値ΔT(=T(1−Tm )が演算される。基準金
型温度Toとしては、例えば連続成形時の金、型温度の
平均値等が用いられる。
Then, the detected value signal is amplified by an amplifier 3 and then guided to a deviation calculator 4. In this calculator 4, the reference mold temperature To preset in the reference temperature setting rIt5 and the actual mold temperature T are compared, and the deviation value ΔT (=T(1-Tm)) is calculated. As the reference mold temperature To, for example, the average value of the mold temperature during continuous molding is used.

こうして算出された偏差値ΔTの信号は、次に乗算演算
器6に送られる。この演算器6においては、その偏差値
ΔTと、係数設定器7にあらかじめ設定された定数値α
/βとの乗算が行われる。その定数値α/βは、第2.
3図のような特性曲線に基づいて上述のように定められ
る係数α、βから求められる。この演算器6によって演
算された結果を補正時間ΔSとする。
The signal of the deviation value ΔT thus calculated is then sent to the multiplication calculator 6. In this calculator 6, the deviation value ΔT and a constant value α preset in the coefficient setter 7 are calculated.
/β is performed. The constant value α/β is the second.
It is determined from the coefficients α and β determined as described above based on the characteristic curve as shown in FIG. The result calculated by this calculator 6 is defined as the correction time ΔS.

すなわち、 ΔS=(α/β)ΔT となる。That is, ΔS=(α/β)ΔT becomes.

この補正時間ΔSの信号は、加算演算器8に送られる。The signal of this correction time ΔS is sent to the addition calculator 8.

この演算器8においては、冷却時間設定器9にあらかじ
め設定された基準冷却時間S、と、乗算演算器6から出
力された補正時間ΔSとの加算が行われる。その基準冷
却時間Soは、金型温度T■が基準金型温度Toに等し
いとき、基準寸法見0の成形品を得るために要する冷却
時間であり、あらかじめ実験等によって求められた値を
用いる。
In this calculator 8, the reference cooling time S preset in the cooling time setter 9 and the correction time ΔS output from the multiplication calculator 6 are added. The standard cooling time So is the cooling time required to obtain a molded product with standard dimensions of 0 when the mold temperature T is equal to the standard mold temperature To, and a value determined in advance through experiments or the like is used.

こうして、演算器8から So+ΔS の信号・が出力
され、その信号が射出成形機のシーケンサlOに伝送さ
れる。そして、そのシーケンサ10によって、実際の冷
却時間がSo+ΔSに設定・制御される。
In this way, the signal So+ΔS is output from the computing unit 8, and the signal is transmitted to the sequencer IO of the injection molding machine. Then, the sequencer 10 sets and controls the actual cooling time to So+ΔS.

このような制御方法とすることにより、例えば金型温度
T■が基準金型温度ToよりΔTだけ高い場合には、実
際の冷却時間は基準冷却時間S0よりΔSだけ延長され
ることになる。また、金型温度TsがΔTだけ低い場合
には、実際の冷却時間はΔSだけ短縮されることになる
。したがって、第2.3図によって説明したように、金
型温度TIの変動による成形品の最終寸法の変動が冷却
時間の変化によって相殺され、常に基準寸法見◎の成形
品が得られるようになる。
By using such a control method, for example, when the mold temperature T is higher than the standard mold temperature To by ΔT, the actual cooling time is extended by ΔS from the standard cooling time S0. Furthermore, if the mold temperature Ts is lower by ΔT, the actual cooling time will be shortened by ΔS. Therefore, as explained in Figure 2.3, the variation in the final dimension of the molded product due to the variation in the mold temperature TI is offset by the change in cooling time, and a molded product with standard dimensions ◎ can always be obtained. .

なお、上記実施例においては、成形品の寸法にのみ着目
して定数値α/βを定めるものとしているが、成形品の
重量等、他の品質についても第2.3図と同様の特性曲
線が得られるので、それらを加味して定数値を定めるよ
うにすれば、寸法、重量等、種々の面での品質がほぼ一
定した成形品を得ることができるようになる。
In the above example, the constant values α/β are determined by focusing only on the dimensions of the molded product, but the same characteristic curve as shown in Figure 2.3 is also used for other qualities such as the weight of the molded product. Therefore, by taking these into account when determining constant values, it becomes possible to obtain molded products whose quality in various aspects such as size and weight are substantially constant.

(発明の効果) 以上の説明から明らかなように、本発明によれば、金型
温度を検出し、その温度変化に伴って成形サイクル中の
冷却時間を変化させるようにしているので、金型温度の
差による成形品の品質の差異は、金型内での冷却時間の
差によって相殺されるようになる。したがって、金型温
度に関係なく、一定品質の成形品を得ることができるよ
うになる。しかも、成形品の内部応力を増大させるよう
なこともないので、経時変化によって品質が変動するこ
とも少ないものとすることができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the mold temperature is detected and the cooling time during the molding cycle is changed in accordance with the temperature change. Differences in quality of molded products due to temperature differences are offset by differences in cooling time within the mold. Therefore, a molded product of constant quality can be obtained regardless of the mold temperature. Furthermore, since there is no increase in the internal stress of the molded product, the quality is less likely to change due to changes over time.

また、連続成形を行う場合、成形の初期立ち上がり時に
は金型の温度が非常に不安定であるので、従来は、金型
温度が安定した安定成形条件となるまでに長時間にわた
って成形された成形品は不良品として廃棄せざるを得な
かったが、本発明によれば、金型温度のいかんにかかわ
らず要求品質内の成形品が得られるので、早期に成形さ
れた成形品も製品として利用することが可能となる。し
たがって、成形時間が短縮されるとともに、材料も節約
されるようになる。
In addition, when performing continuous molding, the temperature of the mold is very unstable at the initial start-up of molding. However, according to the present invention, molded products of the required quality can be obtained regardless of the mold temperature, so molded products that were molded early can also be used as products. becomes possible. Therefore, molding time is reduced and material is also saved.

【図面の簡単な説明】[Brief explanation of drawings]

t51図は、本発明による射出成形制御方法を用いた射
出成形機の制御回路の一例を示すブロック図、 第2図は、金型温度と成形品の最終寸法との関係を示す
特性曲線図、 第3図は、冷却時間と成形品の最終寸法との関係を示す
特性曲線図である。 l・・・金型       2・・・温度検出器4・・
・偏差演算器    5・・・基準温度設定器6・・・
乗算演算器    7・・・係数設定器8・・・加算演
算器    9・・・冷却時間設定鼎立0・・・成形品
の基準寸法 So・・・基準冷却時間  ΔS・・・補正時間To・
・・基準金型温度  ΔT・・・温度偏差値α、β・・
・定数 特許出願人 株式会社日木製鋼所 代 理 人  弁理士  森 下 端 侑第1図
Figure t51 is a block diagram showing an example of a control circuit of an injection molding machine using the injection molding control method according to the present invention; Figure 2 is a characteristic curve diagram showing the relationship between mold temperature and final dimension of the molded product; FIG. 3 is a characteristic curve diagram showing the relationship between cooling time and final dimensions of the molded product. l...Mold 2...Temperature detector 4...
- Deviation calculator 5...Reference temperature setting device 6...
Multiplier 7... Coefficient setting device 8... Addition calculator 9... Cooling time setting 0... Standard dimension of molded product So... Standard cooling time ΔS... Correction time To.
...Reference mold temperature ΔT...Temperature deviation value α, β...
・Constant patent applicant: Representative of Nikki Steel Co., Ltd. Patent attorney: Yu Morishita Hajime Figure 1

Claims (1)

【特許請求の範囲】 射出成形の各成形サイクルごとに金型の温度を検出して
、 その検出値とあらかじめ設定された基準金型温度との偏
差を求め、 その偏差値に、あらかじめ設定された定数値を乗するこ
とにより、補正時間を算出し、 その補正時間を、あらかじめ設定された基準冷却時間に
加算して、 その加算された時間により、実際の射出成形の冷却時間
を設定・制御するようにした、 射出成形制御方法。
[Claims] The temperature of the mold is detected for each molding cycle of injection molding, the deviation between the detected value and a preset reference mold temperature is determined, and the deviation value is set as a preset standard mold temperature. Calculate the correction time by multiplying by a constant value, add the correction time to the preset reference cooling time, and use the added time to set and control the actual injection molding cooling time. The injection molding control method.
JP8510486A 1986-04-15 1986-04-15 Injection molding control method Pending JPS62242512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8510486A JPS62242512A (en) 1986-04-15 1986-04-15 Injection molding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8510486A JPS62242512A (en) 1986-04-15 1986-04-15 Injection molding control method

Publications (1)

Publication Number Publication Date
JPS62242512A true JPS62242512A (en) 1987-10-23

Family

ID=13849304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8510486A Pending JPS62242512A (en) 1986-04-15 1986-04-15 Injection molding control method

Country Status (1)

Country Link
JP (1) JPS62242512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081176A1 (en) * 2001-04-05 2002-10-17 Priamus System Technologies Ag Method for producing a moulded part in a mould
WO2006007749A1 (en) * 2004-07-21 2006-01-26 Kistler Holding Ag Temperature-dependent demolding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143317A (en) * 1974-10-14 1976-04-14 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNO SEIGYOSOCHI
JPS5363459A (en) * 1976-11-18 1978-06-06 Japan Steel Works Ltd Process and apparatus for mold temperature control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143317A (en) * 1974-10-14 1976-04-14 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNO SEIGYOSOCHI
JPS5363459A (en) * 1976-11-18 1978-06-06 Japan Steel Works Ltd Process and apparatus for mold temperature control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081176A1 (en) * 2001-04-05 2002-10-17 Priamus System Technologies Ag Method for producing a moulded part in a mould
JP2004529005A (en) * 2001-04-05 2004-09-24 プリーアムス ジステーム テヒノロギース アーゲー Method of manufacturing a molded member in a molding die
WO2006007749A1 (en) * 2004-07-21 2006-01-26 Kistler Holding Ag Temperature-dependent demolding

Similar Documents

Publication Publication Date Title
US5411686A (en) Method and apparatus for controlling injection molding
JP3143122B2 (en) Temperature control system
JPS62242512A (en) Injection molding control method
CN110712345B (en) Dynamic adaption of clamping force
JPS63178021A (en) Method and apparatus for controlling injection molder
JPS636341B2 (en)
JPH08127037A (en) Molding die
JPS6324452B2 (en)
JP3234001B2 (en) Vulcanizer temperature controller
JP3392023B2 (en) Method and apparatus for predicting finished shape of molded article
JP2549028B2 (en) Control method of injection molding machine
JP2585103B2 (en) Injection molding method
JP2811536B2 (en) Estimation method of resin pressure in mold in injection molding
JPS6295205A (en) Control of heating and compression of plastic lens
JPH02239916A (en) Temperature control method for heating cylinder of molding machine
JPH04816B2 (en)
JPH06254929A (en) Injection molding machine
JPS5542807A (en) Transfer molding apparatus
JP3233994B2 (en) Vulcanizer temperature controller
JP3253387B2 (en) Feedback control method for injection molding machine and injection molding machine
JPH0719630Y2 (en) Temperature control device for press material
JP3260823B2 (en) Vulcanizer temperature controller
JPH02179719A (en) Apparatus for regulating weight of molding article
JPH0548735B2 (en)
JPH0753404B2 (en) Holding pressure control method and apparatus for injection molding