JPS6224249B2 - - Google Patents

Info

Publication number
JPS6224249B2
JPS6224249B2 JP59019730A JP1973084A JPS6224249B2 JP S6224249 B2 JPS6224249 B2 JP S6224249B2 JP 59019730 A JP59019730 A JP 59019730A JP 1973084 A JP1973084 A JP 1973084A JP S6224249 B2 JPS6224249 B2 JP S6224249B2
Authority
JP
Japan
Prior art keywords
rubber
molecular weight
ultra
high molecular
weight polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59019730A
Other languages
Japanese (ja)
Other versions
JPS60165227A (en
Inventor
Sadao Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP59019730A priority Critical patent/JPS60165227A/en
Publication of JPS60165227A publication Critical patent/JPS60165227A/en
Publication of JPS6224249B2 publication Critical patent/JPS6224249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超高分子量ポリエチレンとゴムの接着
方法に関する。 従来、ポリオレフインとゴムとを強力に且つ簡
単に接着し得る接着剤は知られていない。接着剤
を用いない接着方法として、例えば、特公昭50−
15269号公報には、ワツクスを配合したエチレン
共重合体ゴムの加硫物とポリオレフインとをこの
ポリオレフインの軟化点以上の温度で接触させる
ことにより接着する方法が提案されているが、こ
の場合、ポリオレフインとゴムとの接着強度は、
引張接着力で10〜15Kg/cm2、180゜剥離接着力で
1〜2Kg/cmであつて尚小さく、用途によつては
接着強度が不足して実用に耐えない。 また、上記の方法によれば、ゴムを加硫する工
程と接着工程とを要するので、生産性に劣る。 本発明は、一般にポリオレフインとゴムとの接
着における上記した問題を解決するためになされ
たものであつて、特に、超高分子量ポリエチレン
とゴムとを強力、簡単に且つ生産性高く接着する
ことができる方法を提供することを目的とする。 本発明による超高分子量ポリエチレンとゴムと
の接着方法は、有機過酸化物を含有する未加硫ゴ
ムと超高分子量ポリエチレンとを超高分子量ポリ
エチレンの軟化点以上の温度で加熱接着すること
を特徴とする。 本発明の方法は、ゴムとして天然ゴム、スチレ
ン−ブタジエンゴム、ブタジエンゴム、イソプレ
ンゴム、クロロプレンゴム、エチレン−α−オレ
フイン共重合ゴム、エチレン−α−オレフイン−
ジエン共重合ゴム等の汎用ゴムを超高分子量ポリ
エチレンに接着するのに好適である。ここに、超
高分子量ポリエチレンとは、通常、分子量が数百
万、融点が100℃以上であるポリエチレンをい
い、代表的な超高分子量ポリエチレンとして、例
えば分子量400〜500万、融点約120℃であるもの
を挙げることができる。 本発明の方法においては、上記のような超高分
子量ポリエチレンとゴムとを接着させるに際し
て、未加硫ゴムに有機過酸化物を含有させ、この
未加硫ゴムと超高分子量ポリエチレンとをこの超
高分子量ポリエチレンの軟化点以上の温度で加熱
接着させる。換言すれば、未加硫ゴムを有機酸化
物により加硫すると同時に、このゴムと超高分子
量ポリエチレンとを接着する。即ち、加硫接着す
る。 このような過酸化物としては、従来より知られ
ている任意のものが用いられるが、例えば、ジ−
t−ブチルパーオキサイド、t−ブチルクミルパ
ーオキサイド、ジクミルパーオキサイド、α・
α′−ビス(t−ブチルパーオキシ)−p−ジイソ
プロピルベンゼン、2・5−ジメチル−2・5−
ジ(t−ブチルパーオキシ)ヘキサン、2・5−
ジメチルジ(t−ブチルパーオキシ)ヘキサン−
3、2・5−ジメチル−2・5−ジ(ベンゾイル
パーオキシ)ヘキサン、t−ブチルパーオキシイ
ソプロピルカーボネート、1・1−ビス(t−ブ
チルパーオキシ)−3・5・5−トリメチルシク
ロヘキサン等が好適に用いられる。 未加硫ゴムにおける有機過酸化物の配合量は、
ゴム100g当りに0.0005〜0.05モル、好ましくは
0.001〜0.01モルである。即ち、本発明によれ
ば、極めて少量の有機過酸化物によつて未加硫ゴ
ムと超高分子量ポリエチレンとを強固に加硫接着
することができ、従つて、ゴムの物性を損なうこ
とがない。有機過酸化物の配合量が上記範囲より
も少ないときは、加硫接着によつて超高分子量ポ
リエチレンとの間に十分な接着強度が得られず、
一方、上記範囲を越えるときは、却つて接着強度
が低下するからである。 加硫接着温度は、使用する有機過酸化物の分解
温度とゴムに接着される超高分子量ポリエチレン
の軟化点によるが、通常、120〜180℃程度が適当
である。200℃を越えるときは、通常、超高分子
量ポリエチレンが分解し、従つてまた、接着面に
気体が発生するおそれがある。 未加硫ゴムと超高分子量ポリエチレンとの加硫
接着は、従来より知られている通常の方法によつ
て行なうことができる。例えば、未加硫ゴムと超
高分子量ポリエチレンとを所定の温度に加熱され
た熱板の間に挟み、所定の圧力にて所定時間加熱
加圧する。 本発明においては、ゴムを多層構造として超高
分子量ポリエチレンと接着することもできる。即
ち、有機過酸化物を含有する未加硫ゴムをシート
状又は糊状の接着ゴムとして超高分子量ポリエチ
レンに接触させ、この接着ゴム層に他の未加硫ゴ
ムを接触させて加硫接着することにより、超高分
子量ポリエチレンと多層ゴムとが強固に一体に接
着された接着物を得ることができる。この場合、
最外層の未加硫ゴムは、加硫剤として最も一般的
なイオウを含有するゴムを使用することができ
る。また、加硫剤としてイオウと共に有機過酸化
物を併用するゴムも使用することができる。 また、上記のような接着ゴムを介して超高分子
量ポリエチレンを積層し、加硫接着すれば、超高
分子量ポリエチレンを相互に強固に接着すること
もできる。 以上のように、本発明によれば、有機過酸化物
を含有する未加硫ゴムと超高分子量ポリエチレン
とをこの超高分子量ポリエチレンの軟化点以上の
温度で加硫接着することにより、強固に超高分子
量ポリエチレンとゴムとを接着することができ
る。しかも、本発明によれば、従来の方法と異な
り、ゴムとして未加硫ゴムを用い、超高分子量ポ
リエチレンと加硫接着するので、一挙に加硫ゴム
−超高分子量ポリエチレン接着物を得ることがで
き、かくして種々のゴム−超高分子量ポリエチレ
ン複合体を高い生産性で得ることができる。 尚、この超高分子量ポリエチレンは、その摩擦
係数が非常に小さいところから、例えば、粉体処
理における付着防止用ライニング材として用いら
れているが、大きい粒子を含む粒体の処理におい
ては、超高分子量ポリエチレンが耐衝撃摩耗性が
劣るために、比較的短時間に消耗し、或いは破損
する。従つて、このような超高分子量ポリエチレ
ンにゴムを加硫接着し、超高分子量ポリエチレン
をライニング材として被ライニング材に取り付け
れば、超高分子量ポリエチレンに対する衝撃力が
ゴムの歪エネルギーにて吸収緩和され、かくし
て、ライニング材の超高分子量ポリエチレンの摩
耗が防止され、その耐久性が著しく向上する。 また、超高分子量ポリエチレン表面に耐摩耗性
のライニングを施す場合に、本発明に従つて、耐
摩耗性にすぐれるゴムを接着すれば、従来の金属
ライニングに比べて軽量化することができる。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。尚、以下において、部は重量部を示す。
また、得られた接着物の剥離強度は、オートグラ
フ(島津製作所製)を用いて、2.2cm幅の試料に
ついて剥離速度50mm/分の速度で測定した値であ
る。 実施例 1 配合物1 天然ゴム 100部 カーボンブラツク N330 50部 酸化亜鉛 5部 ステアリン酸 1部 老化防止剤 3部 イオウ 1.5部 加硫促進剤 1.5部 ジクミルパーオキサイド (第1表) 上記の配合物1を試験ロールにて混練して、厚
み3.5mmの未加硫ゴムシートとし、超高分子量ポ
リエチレン(分子量約500万、融点120℃)からな
る厚み3.5mmのシートを重ね、温度160℃、圧力30
Kg/cm2にて30分間加熱加圧して加硫接着した。得
られた接着物における剥離強度を第1表に示す。 また、有機過酸化物を含有しないほかは、上記
配合物1と同じ配合物から調製した厚み3.5mmの
未加硫ゴムシートと、上記と同じ超高分子量ポリ
エチレンシートとを加硫接着させた。結果を比較
例1として第1表に併せて示す。 本発明の方法によれば、実験番号1〜4の結果
から明らかなように、ゴムシートは超高分子量ポ
リエチレンシートに強固に接着されている。しか
し、比較例1にみられるように、未加硫ゴムが有
機過酸化物を含有しないときは、超高分子量ポリ
エチレンと接着しない。 実施例 2 第2表に示す有機過酸化物を含有する種々のゴ
ム配合物を実施例1と同様にして厚み3.5mmのゴ
ムシートとし、実施例1と同じ超高分子量ポリエ
チレンと加硫接着した。得られた接着物における
剥離強度を第2表に示す。ゴムシートは超高分子
量ポリエチレンシートに強固に接着されている。 実施例 3 実施例1の実験番号2の配合物において、有機
過酸化物として1・1−ビス(t−ブチルパーオ
キシ)−3・5・5−トリメチルシクロヘキサン
を用いた以外は、同じ配合物から同様にしてゴム
シートを調製
The present invention relates to a method for bonding ultra-high molecular weight polyethylene and rubber. Hitherto, no adhesive has been known that can strongly and easily bond polyolefin and rubber. For example, as a bonding method that does not use adhesive,
Publication No. 15269 proposes a method of bonding a vulcanized product of ethylene copolymer rubber blended with wax and polyolefin by bringing them into contact at a temperature higher than the softening point of the polyolefin. The adhesion strength between and rubber is
The tensile adhesive strength is 10 to 15 kg/cm 2 and the 180° peel adhesive strength is 1 to 2 kg/cm, which are still small, and depending on the application, the adhesive strength is insufficient and cannot be put to practical use. Furthermore, the above method requires a rubber vulcanization step and an adhesion step, resulting in poor productivity. The present invention was made in order to solve the above-mentioned problems in bonding polyolefin and rubber in general, and in particular, it is possible to bond ultra-high molecular weight polyethylene and rubber strongly, easily, and with high productivity. The purpose is to provide a method. The method of bonding ultra-high molecular weight polyethylene and rubber according to the present invention is characterized in that unvulcanized rubber containing an organic peroxide and ultra-high molecular weight polyethylene are bonded together by heating at a temperature equal to or higher than the softening point of ultra-high molecular weight polyethylene. shall be. The method of the present invention uses natural rubber, styrene-butadiene rubber, butadiene rubber, isoprene rubber, chloroprene rubber, ethylene-α-olefin copolymer rubber, ethylene-α-olefin-
Suitable for adhering general-purpose rubber such as diene copolymer rubber to ultra-high molecular weight polyethylene. Here, ultra-high molecular weight polyethylene usually refers to polyethylene with a molecular weight of several million and a melting point of 100°C or higher.A typical ultra-high molecular weight polyethylene is, for example, a polyethylene with a molecular weight of 4 to 5 million and a melting point of about 120°C. I can name some things. In the method of the present invention, when bonding ultra-high molecular weight polyethylene and rubber as described above, an organic peroxide is contained in unvulcanized rubber, and this unvulcanized rubber and ultra-high molecular weight polyethylene are bonded together. Heat and bond at a temperature above the softening point of high molecular weight polyethylene. In other words, while the unvulcanized rubber is vulcanized with the organic oxide, this rubber and ultra-high molecular weight polyethylene are bonded together. That is, it is vulcanized and bonded. As such peroxide, any conventionally known peroxide can be used, but for example, di-
t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α・
α'-bis(t-butylperoxy)-p-diisopropylbenzene, 2,5-dimethyl-2,5-
Di(t-butylperoxy)hexane, 2,5-
dimethyldi(t-butylperoxy)hexane-
3,2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyisopropyl carbonate, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, etc. is preferably used. The amount of organic peroxide in unvulcanized rubber is
0.0005 to 0.05 mol per 100 g of rubber, preferably
It is 0.001 to 0.01 mole. That is, according to the present invention, unvulcanized rubber and ultra-high molecular weight polyethylene can be strongly vulcanized and bonded using a very small amount of organic peroxide, and therefore the physical properties of the rubber are not impaired. . When the amount of organic peroxide blended is less than the above range, sufficient adhesive strength cannot be obtained between the vulcanized adhesive and the ultra-high molecular weight polyethylene.
On the other hand, if it exceeds the above range, the adhesive strength will decrease on the contrary. The vulcanization adhesion temperature depends on the decomposition temperature of the organic peroxide used and the softening point of the ultra-high molecular weight polyethylene to be adhered to the rubber, but is usually about 120 to 180°C. When the temperature exceeds 200°C, the ultra-high molecular weight polyethylene usually decomposes, and therefore there is also a risk that gas will be generated on the adhesive surface. Vulcanization adhesion between the unvulcanized rubber and the ultra-high molecular weight polyethylene can be carried out by a conventionally known method. For example, unvulcanized rubber and ultra-high molecular weight polyethylene are sandwiched between hot plates heated to a predetermined temperature, and heated and pressed at a predetermined pressure for a predetermined time. In the present invention, the rubber can also be bonded to ultra-high molecular weight polyethylene in a multilayer structure. That is, an unvulcanized rubber containing an organic peroxide is brought into contact with ultra-high molecular weight polyethylene in the form of a sheet or glue-like adhesive rubber, and another unvulcanized rubber is brought into contact with this adhesive rubber layer to achieve vulcanization and bonding. By doing so, it is possible to obtain an adhesive in which the ultra-high molecular weight polyethylene and the multilayer rubber are firmly bonded together. in this case,
As the unvulcanized rubber of the outermost layer, rubber containing sulfur, which is the most common vulcanizing agent, can be used. Further, rubber that uses an organic peroxide together with sulfur as a vulcanizing agent can also be used. Further, by laminating ultra-high molecular weight polyethylenes via adhesive rubber as described above and vulcanizing them, the ultra-high molecular weight polyethylenes can be firmly bonded to each other. As described above, according to the present invention, unvulcanized rubber containing an organic peroxide and ultra-high molecular weight polyethylene are vulcanized and bonded at a temperature equal to or higher than the softening point of the ultra-high molecular weight polyethylene, thereby creating a strong bond. Ultra-high molecular weight polyethylene and rubber can be bonded together. Moreover, according to the present invention, unlike conventional methods, unvulcanized rubber is used as the rubber and vulcanization bonding is performed with ultra-high molecular weight polyethylene, so it is possible to obtain a vulcanized rubber-ultra high molecular weight polyethylene bond in one step. In this way, various rubber-ultra-high molecular weight polyethylene composites can be obtained with high productivity. This ultra-high molecular weight polyethylene is used, for example, as a lining material to prevent adhesion in powder processing because of its extremely low coefficient of friction. Since molecular weight polyethylene has poor impact abrasion resistance, it wears out or breaks in a relatively short period of time. Therefore, if rubber is vulcanized and bonded to such ultra-high molecular weight polyethylene and the ultra-high molecular weight polyethylene is attached to the lined material as a lining material, the impact force on the ultra-high molecular weight polyethylene will be absorbed and alleviated by the strain energy of the rubber. Thus, wear of the ultra-high molecular weight polyethylene of the lining material is prevented and its durability is significantly improved. Further, when applying an abrasion-resistant lining to the surface of ultra-high molecular weight polyethylene, by adhering rubber with excellent abrasion resistance according to the present invention, the weight can be reduced compared to conventional metal linings. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, in the following, parts indicate parts by weight.
The peel strength of the obtained adhesive was measured using an Autograph (manufactured by Shimadzu Corporation) at a peeling speed of 50 mm/min on a 2.2 cm wide sample. Example 1 Formulation 1 Natural rubber 100 parts Carbon black N330 50 parts Zinc oxide 5 parts Stearic acid 1 part Anti-aging agent 3 parts Sulfur 1.5 parts Vulcanization accelerator 1.5 parts Dicumyl peroxide (Table 1) The above formulation 1 was kneaded with a test roll to form an unvulcanized rubber sheet with a thickness of 3.5 mm, and a 3.5 mm thick sheet of ultra-high molecular weight polyethylene (molecular weight approximately 5 million, melting point 120 °C) was layered, and the mixture was heated at a temperature of 160 °C and under pressure. 30
Vulcanization bonding was carried out by heating and pressing at Kg/cm 2 for 30 minutes. Table 1 shows the peel strength of the obtained adhesive. Further, an unvulcanized rubber sheet with a thickness of 3.5 mm prepared from the same formulation as the above-mentioned Formulation 1 except that it did not contain an organic peroxide was vulcanized and bonded to the same ultra-high molecular weight polyethylene sheet as above. The results are also shown in Table 1 as Comparative Example 1. According to the method of the present invention, as is clear from the results of experiment numbers 1 to 4, the rubber sheet is firmly adhered to the ultra-high molecular weight polyethylene sheet. However, as seen in Comparative Example 1, when the unvulcanized rubber does not contain an organic peroxide, it does not adhere to ultra-high molecular weight polyethylene. Example 2 Various rubber compounds containing organic peroxides shown in Table 2 were made into rubber sheets with a thickness of 3.5 mm in the same manner as in Example 1, and vulcanized and bonded to the same ultra-high molecular weight polyethylene as in Example 1. . Table 2 shows the peel strength of the obtained adhesive. The rubber sheet is firmly adhered to the ultra-high molecular weight polyethylene sheet. Example 3 The same formulation as in experiment number 2 of Example 1 except that 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane was used as the organic peroxide. Prepare a rubber sheet in the same way from

【表】【table】

【表】【table】

【表】 し、加硫温度148℃として実施例1と同じ超高分
子量ポリエチレンシートと加硫接着した。 このようにして得られた接着物の剥離強度は
51.0Kg/2.5cmであつて、ゴム層が破壊された。 比較例 2 配合物2 天然ゴム 50部 ブタジエンゴム 50部 カーボンブラツク N220 60部 酸化亜鉛 5部 ステアリン酸 1部 老化防止剤 3部 イオウ 1.5部 加硫促進剤 1.5部 芳香族系プロセスオイル 15部 上記配合物2を厚み3.5mmのシートとし、これ
を実施例1と同じ超高分子量ポリエチレンシート
に加硫接着した。ゴムシートと超高分子量ポリエ
チレンシートとの間の剥離力は2.0Kg/2.5cmであ
つて、界面剥離を生じて、ゴムと超高分子量ポリ
エチレンシートとは殆ど接着していない。 実施例 4 実施例1における実験番号2の配合物を混練し
て厚み1mmの接着ゴムシートとし、また、これと
同じ接着ゴムをトルエンに20重量%濃度で溶解さ
せてゴム糊を調製した。 実施例1と同じ厚み3.5mmの超高分子量ポリエ
チレンシートと比較例2の配合物2から調製した
厚み3.5mmのゴムシート(以下、被着ゴムシート
という。)との間に上記接着ゴムシートを介在さ
せてこれらを積層し、実施例1と同じ条件下に加
硫接着した。この結果、2層のゴムが相互に接着
されていると共に、このゴム層と超高分子量ポリ
エチレンシートも強固に接着されており、ポリエ
チレンシートとゴム層との剥離力は62.0Kg/2.5
cmであつて、ゴム層が破壊された。 尚、厚み3.5mmの上記接着ゴムシートと上記被
着ゴムシートとを実施例1と同じ条件下で加硫接
着させたとき、これらゴムシート間の剥離力は
50.0Kg/2.5cmであつて、接着ゴム層が配壊され
た。この事実から上記3層構造の接着物におい
て、接着ゴムシートと被着ゴムシートが加硫接着
されることが確認される。 また、上記と同じ超高分子量ポリエチレンシー
ト表面に上記ゴム糊を刷毛塗りし、室温で乾燥さ
せた後、これに上記被着ゴムシートを積層して加
硫接着させた。 このようにして得られた接着物のゴム層と超高
分子量ポリエチレンシートとの間の剥離強度は
60.0Kg/2.5cmであつて、ゴム層が破壊された。 実施例 5 比較例2の配合物2にゴム100部当りについて
ジクミルパーオキサイド1部を添加し、厚み3.5
mmのシートとした。このゴムシートを実施例1と
同じ厚み3.5mmの超高分子量ポリエチレンシート
に積層し、同様に加硫接着したところ、剥離強度
は47.0℃/2.5cmであつて、ゴムシートに破壊が
起こつた。 実施例 6 実施例1実験番号1の組成を有する厚み3.5mm
の未加硫ゴムシートに、超高分子量ポリエチレン
(分子量約400万)シートを重ね、実施例1と同じ
条件にてこれららを加硫接着した。 このようにして得られた接着物の剥離強度は50
Kg/2.5cmであつて、ゴム層が破壊された。
[Table] The sample was vulcanized and bonded to the same ultra-high molecular weight polyethylene sheet as in Example 1 at a vulcanization temperature of 148°C. The peel strength of the adhesive obtained in this way is
The weight was 51.0Kg/2.5cm, and the rubber layer was destroyed. Comparative Example 2 Compound 2 Natural rubber 50 parts Butadiene rubber 50 parts Carbon black N220 60 parts Zinc oxide 5 parts Stearic acid 1 part Anti-aging agent 3 parts Sulfur 1.5 parts Vulcanization accelerator 1.5 parts Aromatic process oil 15 parts Above combination Product 2 was made into a sheet with a thickness of 3.5 mm, and this was vulcanized and bonded to the same ultra-high molecular weight polyethylene sheet as in Example 1. The peeling force between the rubber sheet and the ultra-high molecular weight polyethylene sheet was 2.0 kg/2.5 cm, and interfacial peeling occurred and the rubber and the ultra-high molecular weight polyethylene sheet were hardly adhered to each other. Example 4 The blend of Experiment No. 2 in Example 1 was kneaded to form an adhesive rubber sheet with a thickness of 1 mm, and the same adhesive rubber was dissolved in toluene at a concentration of 20% by weight to prepare a rubber glue. The above adhesive rubber sheet was placed between the same 3.5 mm thick ultra-high molecular weight polyethylene sheet as in Example 1 and the 3.5 mm thick rubber sheet prepared from Compound 2 of Comparative Example 2 (hereinafter referred to as adhered rubber sheet). These were laminated with each other interposed, and vulcanized and bonded under the same conditions as in Example 1. As a result, the two layers of rubber are adhered to each other, and this rubber layer and the ultra-high molecular weight polyethylene sheet are also firmly adhered, and the peeling force between the polyethylene sheet and the rubber layer is 62.0Kg/2.5
cm, and the rubber layer was destroyed. Furthermore, when the above-mentioned adhesive rubber sheet with a thickness of 3.5 mm and the above-mentioned adhered rubber sheet are vulcanized and bonded under the same conditions as in Example 1, the peeling force between these rubber sheets is
The weight was 50.0Kg/2.5cm, and the adhesive rubber layer was destroyed. This fact confirms that in the three-layered adhesive, the adhesive rubber sheet and the adhered rubber sheet are vulcanized and bonded. Further, the above-mentioned rubber glue was brush-coated on the surface of the same ultra-high molecular weight polyethylene sheet as above, and after drying at room temperature, the above-mentioned adhered rubber sheet was laminated thereon and vulcanized and bonded. The peel strength between the rubber layer of the adhesive thus obtained and the ultra-high molecular weight polyethylene sheet is
It was 60.0Kg/2.5cm and the rubber layer was destroyed. Example 5 1 part of dicumyl peroxide per 100 parts of rubber was added to Formulation 2 of Comparative Example 2 to give a thickness of 3.5
mm sheet. When this rubber sheet was laminated onto an ultra-high molecular weight polyethylene sheet having the same thickness of 3.5 mm as in Example 1 and vulcanized and bonded in the same manner, the peel strength was 47.0° C./2.5 cm, and the rubber sheet broke. Example 6 Thickness: 3.5 mm having the composition of Example 1 Experiment No. 1
An ultra-high molecular weight polyethylene sheet (molecular weight: about 4 million) was layered on the unvulcanized rubber sheet, and these were vulcanized and bonded under the same conditions as in Example 1. The peel strength of the adhesive thus obtained was 50
Kg/2.5cm, and the rubber layer was destroyed.

Claims (1)

【特許請求の範囲】[Claims] 1 有機過酸化物を含有する未加硫ゴムと超高分
子量ポリエチレンとを超高分子量ポリエチレンの
軟化点以上の温度で加熱接着することを特徴とす
る超高分子量ポリエチレンとゴムとの接着方法。
1. A method for bonding ultra-high molecular weight polyethylene and rubber, which comprises heating and bonding unvulcanized rubber containing an organic peroxide and ultra-high molecular weight polyethylene at a temperature equal to or higher than the softening point of the ultra-high molecular weight polyethylene.
JP59019730A 1984-02-06 1984-02-06 Gluing method of hypermacromolecular weight polyethylene and rubber Granted JPS60165227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019730A JPS60165227A (en) 1984-02-06 1984-02-06 Gluing method of hypermacromolecular weight polyethylene and rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019730A JPS60165227A (en) 1984-02-06 1984-02-06 Gluing method of hypermacromolecular weight polyethylene and rubber

Publications (2)

Publication Number Publication Date
JPS60165227A JPS60165227A (en) 1985-08-28
JPS6224249B2 true JPS6224249B2 (en) 1987-05-27

Family

ID=12007427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019730A Granted JPS60165227A (en) 1984-02-06 1984-02-06 Gluing method of hypermacromolecular weight polyethylene and rubber

Country Status (1)

Country Link
JP (1) JPS60165227A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125818A (en) * 1984-11-26 1986-06-13 Oji Rubber Kasei Kk Manufacture of composite composed of rubber and polyethylene
JPS63137018A (en) * 1986-11-27 1988-06-09 Toyoda Gosei Co Ltd Glass run for automobile
EP0439860A3 (en) * 1989-12-29 1991-09-04 Stamicarbon B.V. Hose coated with high molecular weight polyethylene and process for the production thereof
JPH045104A (en) * 1990-04-23 1992-01-09 Yokohama Rubber Co Ltd:The Pneumatic tire and its manufacture
US5635274A (en) * 1994-06-21 1997-06-03 Gencorp Inc. Molded glass run channel composite
US6660360B2 (en) 2000-01-04 2003-12-09 Cooper Technology Services, Llc Laminate of a substrate and an extruded high density polyethylene
JP4650597B2 (en) * 2001-03-29 2011-03-16 日本ケミコン株式会社 Sealing body for electrolytic capacitor and manufacturing method thereof
JP4920980B2 (en) * 2006-01-27 2012-04-18 シロキ工業株式会社 Back conversion sheet
WO2008136485A1 (en) * 2007-05-02 2008-11-13 Sakushinkasei Corporation Method of composite molding for ultrahigh molecular weight polyethylene and rubber
JP5520464B2 (en) * 2008-09-30 2014-06-11 Ntn株式会社 Transfer member and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938706A (en) * 1972-08-19 1974-04-11
JPS5047372A (en) * 1972-12-08 1975-04-26
JPS56136362A (en) * 1980-03-03 1981-10-24 Goodrich Co B F Abrasion resisting composite material
JPS57140159A (en) * 1981-02-24 1982-08-30 Toyoda Gosei Kk Rubber shape with polyolefin thin-film and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938706A (en) * 1972-08-19 1974-04-11
JPS5047372A (en) * 1972-12-08 1975-04-26
JPS56136362A (en) * 1980-03-03 1981-10-24 Goodrich Co B F Abrasion resisting composite material
JPS57140159A (en) * 1981-02-24 1982-08-30 Toyoda Gosei Kk Rubber shape with polyolefin thin-film and its manufacture

Also Published As

Publication number Publication date
JPS60165227A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
EP0031398B1 (en) Cured rubber skim stock compositions having improved metal adhesion and metal adhesion retention, and tyre having said improvement
JPS6224249B2 (en)
JPH04506485A (en) pressure sensitive adhesive laminate
MXPA06013303A (en) Steel plate reinforcing sheet .
EP2623311A1 (en) Method for reinforcing metal plates and reinforcement structure
JP6222183B2 (en) Battery packaging materials
US3114409A (en) Adhesion of vinylpyridine copolymer rubber to other rubbers
US4051090A (en) Adhesive bonding
US1617707A (en) Laminated material and method of making the same
JPS6310175B2 (en)
JPS63221144A (en) Ethylene/propylene rubber composition
US3193428A (en) Lamination of polymeric 3, 3-bis(chloromethyl) oxetane to butadiene-acrylonitrile rubber
JPS6311368B2 (en)
JP2002205336A (en) Method for manufacturing rubber laminate
JP2613627B2 (en) Method of bonding millable urethane elastomer to rubber and laminate thereof
JPS591548A (en) Rubber composition
JP2651670B2 (en) Heat resistant conveyor belt
US4480066A (en) Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention
US2048807A (en) Composite rubber sheet
JPS61125818A (en) Manufacture of composite composed of rubber and polyethylene
JPS58148743A (en) Bonding method of urethane rubber to general purpose rubber
EP0125373A1 (en) Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention
JP3308631B2 (en) Method for producing nylon / rubber adhesive composite
JP3868009B2 (en) Laminate
US4511628A (en) Rubber articles having improved metal adhesion and metal adhesion retention employing bis(2-mercaptobenzothiazato) nickel