JP4236213B2 - Compound molding method of ultra high molecular weight polyethylene and rubber - Google Patents

Compound molding method of ultra high molecular weight polyethylene and rubber Download PDF

Info

Publication number
JP4236213B2
JP4236213B2 JP2008541519A JP2008541519A JP4236213B2 JP 4236213 B2 JP4236213 B2 JP 4236213B2 JP 2008541519 A JP2008541519 A JP 2008541519A JP 2008541519 A JP2008541519 A JP 2008541519A JP 4236213 B2 JP4236213 B2 JP 4236213B2
Authority
JP
Japan
Prior art keywords
rubber
mold
molecular weight
weight polyethylene
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008541519A
Other languages
Japanese (ja)
Other versions
JPWO2008136485A1 (en
Inventor
俊弘 大松
Original Assignee
作新化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 作新化成株式会社 filed Critical 作新化成株式会社
Application granted granted Critical
Publication of JP4236213B2 publication Critical patent/JP4236213B2/en
Publication of JPWO2008136485A1 publication Critical patent/JPWO2008136485A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1459Coating annular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/246Uncured, e.g. green

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、超高分子量ポリエチレンとゴムとが接着された成形品を、射出成形機を用いて両者を複合成形する方法に関する。   The present invention relates to a method of molding a molded article in which ultrahigh molecular weight polyethylene and rubber are bonded together using an injection molding machine.

超高分子量ポリエチレンとゴムの複合成形品は、例えば、一例を挙げて説明すると、極寒の環境下で使用されるスノーモービルなどの、キャタピラーやベルトなどのガイド用のホイール(車輪)などに用いられる場合においては、耐寒性が要求され、低温下での機械的強度が要求されるため、通常、分子量が150万〜650万程度の超高分子量ポリエチレンが用いられている。そして、これらのガイドホイール(車輪)は、極めて高速で回転するので、超高分子量ポリエチレンのみでは騒音が大きくなるのを防止するため、車輪の外周部は加硫ゴムからなるものが使用される。この場合、超高分子量ポリエチレンと加硫ゴムの界面の接着性が悪いと、上記のような車輪に用いた場合、超高分子量ポリエチレンと加硫ゴムの界面からの剥離が生じ、車輪が損傷すると言う問題が生じる。   The ultra-high molecular weight polyethylene / rubber composite molded product is used, for example, as a guide wheel such as a caterpillar or belt, such as a snowmobile used in an extremely cold environment. In some cases, cold resistance is required, and mechanical strength at low temperatures is required. Therefore, ultrahigh molecular weight polyethylene having a molecular weight of about 1,500,000 to 6,500,000 is usually used. Since these guide wheels (wheels) rotate at a very high speed, the outer peripheral portion of the wheels is made of vulcanized rubber in order to prevent noise from being increased only by ultra high molecular weight polyethylene. In this case, if the adhesion between the interface between the ultra-high molecular weight polyethylene and the vulcanized rubber is poor, when used in a wheel as described above, peeling from the interface between the ultra-high molecular weight polyethylene and the vulcanized rubber occurs, and the wheel is damaged. The problem arises.

従来、ポリオレフィン系樹脂とゴムとの接着方法については、一般に加熱接着方法が用いられている。例えば、有機過酸化物などの加硫剤を含有する未加硫ゴムシートと高分子量ポリエチレンシートとを重ねて熱板の間に挟み、適宜の圧力で超高分子量ポリエチレンの軟化点以上の温度で加熱接着する方法が挙げられる(下記特許文献1参照)。   Conventionally, as a method for bonding a polyolefin resin and rubber, a heat bonding method is generally used. For example, an unvulcanized rubber sheet containing a vulcanizing agent such as an organic peroxide and a high molecular weight polyethylene sheet are stacked and sandwiched between hot plates, and heated and bonded at a temperature equal to or higher than the softening point of ultra high molecular weight polyethylene at an appropriate pressure. (Refer to Patent Document 1 below).

しかし、この方法はシート状物同士の接着などの単純な形状の成形物を製造する場合にしか適用できず、より複雑な形状の成形物には適用できない。   However, this method can be applied only to the case of manufacturing a molded product having a simple shape such as adhesion between sheet-like products, and cannot be applied to a molded product having a more complicated shape.

さらには、従来の加熱接着方法では製品を得るのに30分以上の長時間を要するため、極めて生産性が低い欠点があった。すなわち接着物はシート状のものに限られて、複雑な形状の製品が得られない欠点があり、熱板の間に挟み30分程度加熱する必要があるので、熱板による成形に時間がかかり、1つの接着物を得るのに熱板が30分も占有されると言う問題がある。   Furthermore, the conventional heat bonding method has a drawback that it takes a long time of 30 minutes or more to obtain a product, resulting in extremely low productivity. In other words, the adhesive is limited to a sheet-like material, and has a drawback that a product having a complicated shape cannot be obtained. It is necessary to heat between the hot plates for about 30 minutes. There is a problem that the hot plate is occupied for 30 minutes to obtain one adhesive.

この点を、改良し、より短時間で複雑な形状の製品が得られる方法として、先に、本発明者は、合成ゴムのポリマーにゴム用補強材であるカーボンブラックと加硫剤とを配合して形成したゴムコンパウンドを、ゴム金型内で加熱して半加硫状態で成形したのち、射出成形金型内にインサートし、超高分子量ポリエチレンを前記射出成形金型内に射出して圧縮成形後、前記射出成形金型から取り出して加硫状態に加温することにより、射出成形金型内での成形時間が2〜5分程度に短縮され、金型を占有する時間が短縮され生産性が向上する方法を提案している(下記特許文献2参照)。
特公昭62−24249号公報 特開2000−309034号公報
As a method for improving this point and obtaining a product having a complicated shape in a shorter time, the present inventor previously blended carbon black, which is a reinforcing material for rubber, and a vulcanizing agent with a polymer of synthetic rubber. The rubber compound formed in this way is heated in a rubber mold and molded in a semi-vulcanized state, then inserted into an injection mold, and ultrahigh molecular weight polyethylene is injected into the injection mold and compressed. After molding, by taking out from the injection mold and heating to vulcanized state, the molding time in the injection mold is shortened to about 2-5 minutes, the time to occupy the mold is shortened and production A method for improving the performance is proposed (see Patent Document 2 below).
Japanese Patent Publication No.62-24249 JP 2000-309034 A

しかしながら、特許文献2で提案した超高分子量ポリエチレンと合成ゴムとの複合成形方法は、合成ゴムのポリマーにカーボンブラックと加硫剤とを配合して形成したゴムコンパウンドを、予めゴム金型内で加熱して半加硫状態に予備成形しておくことが必要であるが、予備成形品毎に、常にバラツキなく一定割合の半加硫状態にすることが難しく、ゴムと超高分子量ポリエチレンとの界面の接着性がゴムの半加硫状態に応じてばらつくという問題があることがわかった。しかも、合成ゴムを半加硫状態にしてしまうので、予め、ゴム金型内で予備成形しておくことが必要となり、コストがアップすると言う問題もある(つまり、半加硫状態のゴムは、未加硫ゴムに較べて射出成形金型内での超高分子量ポリエチレンの前記射出成形時に半加硫状態のゴムがきれいに再成形される可能性が小さくなるので、予めゴム金型内で加熱して半加硫状態にすると同時に最終成形品のゴム部分の形状と同じ形に予備成形しておくことが必要となる)。   However, in the composite molding method of ultra high molecular weight polyethylene and synthetic rubber proposed in Patent Document 2, a rubber compound formed by blending a synthetic rubber polymer with carbon black and a vulcanizing agent is previously placed in a rubber mold. It is necessary to pre-mold in a semi-vulcanized state by heating, but it is difficult to always make a semi-vulcanized state of a certain ratio without variation for each pre-formed product. It was found that there is a problem that the adhesiveness at the interface varies depending on the semi-vulcanized state of the rubber. Moreover, since the synthetic rubber is put in a semi-vulcanized state, it is necessary to preform in advance in a rubber mold, and there is a problem that the cost is increased (that is, the rubber in the semi-vulcanized state is Compared to unvulcanized rubber, it is less likely that the semi-vulcanized rubber will be neatly remolded during the injection molding of ultra-high molecular weight polyethylene in the injection mold. It must be pre-molded into the same shape as the rubber part of the final molded product at the same time as the semi-vulcanized state).

本発明は、上記問題点を解決し、より複雑な形状の製品の成形が可能であり、ゴムと超高分子量ポリエチレンとの界面での接着性を良好に保ち、射出成形時における金型内での成形時間が上記特許文献2記載の発明と同様に短時間にすることができ、従って、射出成形金型を占有する時間を短く保ちながら、成形品間でのゴムと超高分子量ポリエチレンとの界面での接着性のバラツキが少ない生産効率のよい超高分子量ポリエチレンとゴムとの複合成形方法を提供することを目的とする。   The present invention solves the above-mentioned problems, enables molding of products with more complicated shapes, maintains good adhesion at the interface between rubber and ultra-high molecular weight polyethylene, and in the mold during injection molding. The molding time can be shortened in the same manner as the invention described in the above-mentioned Patent Document 2, and therefore the rubber and ultra high molecular weight polyethylene between the molded products can be kept while keeping the time to occupy the injection mold. It is an object of the present invention to provide a composite molding method of ultra-high molecular weight polyethylene and rubber with good production efficiency with little variation in adhesion at the interface.

前記課題を解決するため、本発明の超高分子量ポリエチレンとゴムとの複合成形方法は次のものである。   In order to solve the above problems, the composite molding method of ultrahigh molecular weight polyethylene and rubber of the present invention is as follows.

(1)ゴムにゴム用補強材と加硫剤を配合して形成した未加硫ゴムコンパウンドを、固定金型部と、少なくとも一部が可動である可動金型部とからなる射出成形金型内の所定位置にインサートし、可動金型部の可動部を動かして最終成形品の体積よりも大きくした前記射出成形金型内の成形キャビティ内に超高分子量ポリエチレンを射出し、次いで、前記射出成形金型内の成形キャビティが目的とする最終成形品の体積になるように可動金型部の可動部を動かして圧縮成形し、次いで、前記射出成形金型から当該成形品を取り出して加温して、半加硫状態になっているゴムコンパウンド部分を加硫状態にすることからなる超高分子量ポリエチレンとゴムとの複合成形方法。   (1) An unmolded rubber compound formed by blending rubber with a rubber reinforcing material and a vulcanizing agent, an injection mold comprising a fixed mold part and a movable mold part at least partially movable And insert the ultra-high molecular weight polyethylene into the molding cavity in the injection mold, which is larger than the volume of the final molded product by moving the movable part of the movable mold part, and then injecting the injection part The movable part of the movable mold part is moved and compressed so that the molding cavity in the molding mold becomes the volume of the final finished product, and then the molded product is taken out from the injection mold and heated. Then, a composite molding method of ultrahigh molecular weight polyethylene and rubber, which comprises vulcanizing a rubber compound portion in a semi-vulcanized state.

(2)前記(1)項に記載の複合成形方法においては、未加硫ゴムコンパウンドが、シート状の未加硫ゴムコンパウンドの形状大きさ加工して形成した未加硫ゴムコンパウンドであることが好ましい。 (2) the (1) in the composite molding method according to claim, unvulcanized rubber compound, unvulcanized rubber compound which is formed by processing the shape and size of the sheet-shaped unvulcanized Gomukonpaun de Preferably there is.

(3)前記(1)又は(2)項のいずれかに記載の複合成形方法においては、可動金型部の可動部が、前記射出成形金型内の成形キャビティ内に射出された超高分子量ポリエチレンからなる部分を圧縮するための可動部であることが好ましい。   (3) In the composite molding method according to any one of (1) and (2), the movable part of the movable mold part is injected into the molding cavity in the injection mold and the ultrahigh molecular weight is injected. A movable part for compressing a part made of polyethylene is preferable.

(4)前記(1)〜(3)項のいずれか1項に記載の複合成形方法においては、可動金型部の可動部による圧縮割合が、成形品厚み方向で、最終成形品厚みが圧縮成形直前の金型キャビティの厚み方向の距離の1/1.5〜1/4.5になる割合に圧縮成形することが好ましい。   (4) In the composite molding method according to any one of items (1) to (3), the compression ratio of the movable mold portion by the movable portion is in the thickness direction of the molded product, and the final molded product thickness is compressed. It is preferable to perform compression molding at a ratio of 1 / 1.5 to 1 / 4.5 of the distance in the thickness direction of the mold cavity immediately before molding.

(5)前記(1)〜(4)項のいずれか1項に記載の複合成形方法においては、金型温度を80℃〜150℃に維持しながら、超高分子量ポリエチレンを射出成形温度120℃〜260℃で射出し圧縮成形することが好ましい。   (5) In the composite molding method according to any one of (1) to (4), the ultrahigh molecular weight polyethylene is injected at an injection molding temperature of 120 ° C. while maintaining the mold temperature at 80 ° C. to 150 ° C. It is preferable to perform injection molding at ˜260 ° C. and compression molding.

(6)前記(1)〜(5)項のいずれか1項に記載の複合成形方法においては、半加硫状態のゴムコンパウンド部分を加硫状態に加温する温度が、70〜150℃であることが好ましい。   (6) In the composite molding method according to any one of (1) to (5), the temperature at which the rubber compound portion in the semi-vulcanized state is heated to the vulcanized state is 70 to 150 ° C. Preferably there is.

(7)前記(1)〜(6)項のいずれか1項に記載の複合成形方法においては、ゴム用補強材が、カーボンブラックまたはホワイトカーボンであることが好ましい。   (7) In the composite molding method according to any one of (1) to (6), the rubber reinforcing material is preferably carbon black or white carbon.

本発明の超高分子量ポリエチレンとゴムとの複合成形方法は、超高分子量ポリエチレンとゴムとの金型内での複合成形が2分〜5分程度の短時間で行えるため、従来の接着方法に比べて量産が可能になり、コストダウンの効果が大である。   The composite molding method of ultra high molecular weight polyethylene and rubber according to the present invention can be performed in a short time of about 2 to 5 minutes in a mold of ultra high molecular weight polyethylene and rubber in a conventional bonding method. Compared with this, mass production becomes possible, and the effect of cost reduction is great.

また、射出成形金型を使用するので、複雑な形状の製品を容易に得られる。   Further, since an injection mold is used, a product having a complicated shape can be easily obtained.

しかも、ゴムと超高分子量ポリエチレンとの界面での接着性のバラツキを成形品間で少なくすることができ、品質の一定なゴムと超高分子量ポリエチレンとの複合成形を製造することができる。従って、信頼性の優れた超高分子量ポリエチレンとゴムとの複合成形方法を提供できる。   In addition, variations in adhesion at the interface between the rubber and the ultra high molecular weight polyethylene can be reduced between the molded articles, and a composite molding of rubber and ultra high molecular weight polyethylene with a constant quality can be manufactured. Therefore, it is possible to provide a composite molding method of ultra-high molecular weight polyethylene and rubber having excellent reliability.

以下、本発明の理解を容易にするために、具体的実施形態例を示した図面を引用しながら本発明の超高分子量ポリエチレンとゴムとの複合成形方法を説明するが、本発明はこれらの具体的実施形態例のみに限定されるものではない。   Hereinafter, in order to facilitate understanding of the present invention, a composite molding method of ultrahigh molecular weight polyethylene and rubber of the present invention will be described with reference to the drawings showing specific embodiments. It is not limited to specific example embodiments.

本発明方法で成形される具体的成形品の一実施形態例として、例えば、図1〜図2に示した車輪を取り上げて説明するが、これは本発明の理解をより一層容易にするために、具体例を引用して説明するための引用であり、本発明の超高分子量ポリエチレンとゴムとの複合成形方法は、この例にのみ限定されるものではない。図1は、本発明方法で成形される超高分子量ポリエチレンとゴムとの複合成形品の一実施形態例であるスノーモービル用ガイドホイールなどにも用いられる車輪の正面図である。図2は、図1のA−Aラインにおける断面図である。   As an embodiment of a specific molded article formed by the method of the present invention, for example, the wheel shown in FIGS. 1 to 2 will be taken up and described. This is for the purpose of facilitating the understanding of the present invention. These are citations for citing specific examples, and the composite molding method of ultrahigh molecular weight polyethylene and rubber of the present invention is not limited to this example. FIG. 1 is a front view of a wheel used also for a guide wheel for a snowmobile, which is an embodiment of a composite molded product of ultrahigh molecular weight polyethylene and rubber molded by the method of the present invention. 2 is a cross-sectional view taken along line AA in FIG.

本発明の成形法で得られた図1〜図2で示した車輪は、2が超高分子量ポリエチレンからなり、車輪の外周部に示される1が加硫ゴム(ゴムコンパウンドから形成される部分)であり、4は車軸に挿入するための車軸挿入孔である。3は加硫ゴム1と超高分子量ポリエチレン2との界面であり、特に限定するものではないが、通常、界面3は、図2の断面形状において、若干外に膨らんだ部分も有するやや不定形なラインに見えるが、これは後述する圧縮成形の際の圧力でゴム1が存在する方向にも超高分子量ポリエチレン2が進出しようとすることにより生じると推定される。本発明方法により得られた成形品は、この界面3でのゴム1と超高分子量ポリエチレン2の接着が優れている。   1 to 2 obtained by the molding method of the present invention, the wheel 2 is made of ultra-high molecular weight polyethylene, and 1 shown on the outer periphery of the wheel is vulcanized rubber (part formed from a rubber compound). 4 is an axle insertion hole for insertion into the axle. 3 is an interface between the vulcanized rubber 1 and the ultrahigh molecular weight polyethylene 2 and is not particularly limited. Usually, the interface 3 has a slightly indeterminate shape having a part bulging outward slightly in the cross-sectional shape of FIG. This seems to be caused by the ultrahigh molecular weight polyethylene 2 trying to advance in the direction in which the rubber 1 exists due to the pressure during compression molding described later. The molded product obtained by the method of the present invention has excellent adhesion between the rubber 1 and the ultrahigh molecular weight polyethylene 2 at the interface 3.

この図で取り上げた車輪は、説明を簡単にするために、かなり単純な構造の車輪を示したが、車軸挿入孔4の断面構造が例えばベアリングなどが挿入できる溝を形成した構造になっているなど、要求に応じて他のより複雑な構造にすることは任意である。   The wheel taken up in this figure shows a fairly simple wheel for the sake of simplicity of explanation, but the cross-sectional structure of the axle insertion hole 4 has a structure in which a groove into which a bearing or the like can be inserted is formed. It is optional to make other more complex structures as required.

本発明で使用される超高分子量ポリエチレンは、通常、分子量が150万〜650万程度で、融点が約120℃〜約230℃のものである。本発明の目的を阻害しない場合に、超高分子量ポリエチレンに適宜の他のポリマーや添加剤などが添加されていてもよい。
なお、超高分子量ポリエチレンの平均分子量を測定したい場合には、ASTM D2857の粘度法に準拠して測定できる。
The ultra-high molecular weight polyethylene used in the present invention usually has a molecular weight of about 1,500,000 to 6,500,000 and a melting point of about 120 ° C. to about 230 ° C. In the case where the object of the present invention is not hindered, other appropriate polymers and additives may be added to the ultrahigh molecular weight polyethylene.
In addition, when measuring the average molecular weight of ultra high molecular weight polyethylene, it can measure based on the viscosity method of ASTM D2857.

本発明で用いられるゴムコンパウンドの材料ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジェンゴム(SBR)、アクリロニトリル−ブタジェンゴム、エチレン−プロピレンゴム、クロロプレンゴム、ブチルゴム等、或いはこれらの2種以上の混合物などが挙げられる。   Examples of the rubber compound rubber used in the present invention include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, ethylene-propylene rubber, chloroprene rubber, butyl rubber, etc., or two or more thereof. And the like.

上記ゴム成分に、カーボンブラックやホワイトカーボンなどのゴム用補強材を配合してベースとする。前記ゴム用補強材の添加量は、成形品の使用目的やゴムの種類に応じて異なるが、通常、ゴム成分100重量部に対して60〜130重量部で用いるのが好ましく、より好ましくは75〜105重量部である。ゴム用補強材としては、通常、カーボンブラックまたはホワイトカーボンが好ましく用いられる。ホワイトカーボンをゴム用補強材として用いる場合には、必要に応じて、ゴムコンパウンドに顔料などを更に配合して所望の色に着色することは任意である。   A rubber reinforcing material such as carbon black or white carbon is blended with the rubber component as a base. The amount of the rubber reinforcing material added varies depending on the purpose of use of the molded product and the type of rubber, but is usually preferably 60 to 130 parts by weight, more preferably 75 parts per 100 parts by weight of the rubber component. ~ 105 parts by weight. Usually, carbon black or white carbon is preferably used as the rubber reinforcing material. When white carbon is used as a rubber reinforcing material, it is optional to add a pigment or the like to the rubber compound and color it to a desired color as required.

カーボンブラックは、ゴムコンパウンド用に使用できるものであれば、特に制限はなく、具体例としては、例えばSAF(N110)相当のもの、ISAF(N220)相当のもの、HAF(N330)相当のものなどが挙げられるが何らこれらのみに限定されるものではない。   Carbon black is not particularly limited as long as it can be used for rubber compounds. Specific examples thereof include those corresponding to SAF (N110), those corresponding to ISAF (N220), those corresponding to HAF (N330), and the like. However, the present invention is not limited to these.

上記において、SAFはSuper Abrasion Furnaceの略、ISAFはIntermediate Super Abrasion Furnaceの略、HAFはHigh Abrasion Furnaceの略であり、慣用的に使用されているカーボンブラックの品質グレード記号を示しており、N110、N220、N330などは、ASTM D1765に規定の品質グレードを示す記号である。   In the above, SAF is an abbreviation for Super Abrasion Furnace, ISAF is an abbreviation for Intermediate Super Abrasion Furnace, HAF is an abbreviation for High Abrasion Furnace, and shows the quality grade symbol of carbon black conventionally used, N110, N220, N330, and the like are symbols indicating quality grades defined in ASTM D1765.

このベースに、加硫剤として硫黄と有機過酸化物のパーオキサイドとを併用し、ゴムコンパウンド作成する。硫黄の添加量も、成形品の使用目的やゴムの種類に応じて異なるが、通常、ゴム成分100重量部に対して0.5〜3重量部程度用いるのが好ましく、より好ましくは1.5〜2.5重量部である。また、有機過酸化物の添加量も、成形品の使用目的やゴムの種類に応じて異なるが、通常、ゴム成分100重量部に対して0.5〜3重量部で用いるのが好ましく、より好ましくは1〜2重量部である。パーオキサイトとしては、ゴムを加硫できるものであれば特に限定されるものではなく、代表的にはジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシイソプロビルカーボネート等が挙げられる。   A rubber compound is prepared by using sulfur and an organic peroxide peroxide as a vulcanizing agent in combination with this base. Although the addition amount of sulfur also varies depending on the purpose of use of the molded product and the type of rubber, it is usually preferable to use about 0.5 to 3 parts by weight, more preferably 1.5 parts by weight based on 100 parts by weight of the rubber component. -2.5 parts by weight. Also, the amount of organic peroxide added varies depending on the purpose of use of the molded product and the type of rubber, but it is usually preferable to use 0.5 to 3 parts by weight with respect to 100 parts by weight of the rubber component. Preferably it is 1-2 weight part. The peroxide is not particularly limited as long as it can vulcanize rubber. Typically, di-t-butyl peroxide, dicumyl peroxide, t-butyl peroxyisopropyl carbonate and the like are used. Can be mentioned.

上記の如く、ゴム成分にゴム用補強材と加硫剤が配合されて未加硫状態のゴムコンパウンドとされるが、特に限定されるものではないが、通常、未加硫状態のゴムコンパウンドは、例えばシート状に成形されているので、目的とする最終成形品の形や大きさにより、適当なサイズのゴムコンパウンドを購入してもよい。例えば、特に限定するものではないが、上述したようなスノーモービル用ガイドホイールを製造するとした場合に、その大きさに応じて、例えば、厚さ17mm×幅400mm×長さ600mmのシート状のゴムコンパウンドや、厚さ15mm×幅400mm×長さ450mmのシート状のゴムコンパウンドなどを使用できる。   As described above, a rubber reinforcing material and a vulcanizing agent are blended into the rubber component to form an unvulcanized rubber compound, but it is not particularly limited, but normally, an unvulcanized rubber compound is For example, since it is molded into a sheet shape, a rubber compound of an appropriate size may be purchased depending on the shape and size of the final molded product. For example, although not particularly limited, when the above-described snowmobile guide wheel is manufactured, depending on the size, for example, a sheet-like rubber having a thickness of 17 mm × width of 400 mm × length of 600 mm A compound or a sheet-like rubber compound having a thickness of 15 mm × width of 400 mm × length of 450 mm can be used.

もし、この様にシート状になっている未加硫状態のゴムコンパウンドを用いる場合には、ゴムコンパウンドシートを車輪のゴム部分の最終成形品の断面積に見合う程度の太さの棒状にカットし、ほぼ図1のゴム1の部分の輪の長さとほぼ同様の長さに切断し(一例を挙げるなら、厚さ17mm×幅10mm×長さ540mmとか、或いは、厚さ15mm×幅7mm×長さ395mmの棒状物に切断する)、得られた棒状物の両端同士をゴムの溶剤、例えば、トルエンなどを用いて、ゴム輪状につなげたものを用意し、それを、金型の所定部分に最終成形品においてゴムとすべき部分の金型のキャビティ部分に充填して使用すると、金型に充填しやすく、また良好な成形がしやすくなり便利である。   If an unvulcanized rubber compound in the form of a sheet is used in this way, the rubber compound sheet is cut into a rod that is thick enough to match the cross-sectional area of the final molded product of the rubber part of the wheel. 1 is cut to a length substantially the same as the length of the ring of the rubber 1 portion in FIG. 1 (for example, thickness 17 mm × width 10 mm × length 540 mm, or thickness 15 mm × width 7 mm × length Cut into a 395 mm-long rod-like material), and prepare a material obtained by joining the ends of the obtained rod-like material in a rubber ring shape using a rubber solvent such as toluene, and place it on a predetermined part of the mold. It is convenient to fill the mold cavity portion of the mold to be rubber in the final molded product so that the mold can be easily filled and good molding can be easily performed.

これは、上記車輪を成形する場合の一例であるが、他の成形品を製造する場合においても、なるべく最終成形品の当該ゴムの形状と類似の適宜の形状・大きさに加工して形成した未加硫ゴムコンパウンドを用いることが好ましい。尚、このように適宜の形状・大きさに加工して形成した未加硫ゴムコンパウンドを用いる場合に、当然、この加工中に加硫が進行し、半加硫状態になったり、加硫状態になったりする加工条件を採用することは避けなければならない。尚、未加硫ゴムコンパウンドは、超高分子量ポリエチレンを射出し成形する条件下で、金型形状に沿うように容易に成形されるので、予め、適宜の形状・大きさに形成しておく未加硫ゴムコンパウンドの形状や大きさは、最終成形品と全く同じにしておく必要はない。要は、ゴムコンパウンドが充填される金型部分の形状にインサートしやすい形状や大きさにしておくと好ましいということである。   This is an example of molding the wheel, but even when other molded products are manufactured, they are formed by processing into an appropriate shape and size similar to the shape of the rubber of the final molded product as much as possible. It is preferable to use an unvulcanized rubber compound. In addition, when using an unvulcanized rubber compound formed by processing into an appropriate shape and size as described above, naturally, vulcanization proceeds during this processing, resulting in a semi-vulcanized state or a vulcanized state. It must be avoided to adopt processing conditions that lead to The unvulcanized rubber compound is easily molded along the mold shape under the conditions of injection and molding of ultra-high molecular weight polyethylene, so that it has not been formed in an appropriate shape and size in advance. The shape and size of the vulcanized rubber compound need not be exactly the same as the final molded product. In short, it is preferable to make the shape and size easy to insert into the shape of the mold part filled with the rubber compound.

尚、本発明において「未加硫ゴムコンパウンドを、固定金型部と、少なくとも一部が可動である可動金型部とからなる射出成形金型内の所定位置にインサートする」の「所定位置」とは、「最終成形品において未加硫ゴムコンパウンドから形成される加硫ゴムが占める位置に相当する位置」を示しているものである。より簡略化して表現するなら「所定位置」とは、「最終成形品において加硫ゴムが占める位置に相当する位置」である。   In the present invention, “predetermined position” of “inserting an unvulcanized rubber compound into a predetermined position in an injection mold including a fixed mold part and a movable mold part at least partially movable”. "Indicates the position corresponding to the position occupied by the vulcanized rubber formed from the unvulcanized rubber compound in the final molded product". If expressed in a simplified manner, the “predetermined position” is “a position corresponding to the position occupied by the vulcanized rubber in the final molded product”.

次に、図3〜図5の具体的な実施の形態例を引用しながら、本発明の超高分子量ポリエチレンとゴムとの複合成形方法の一例について説明する。前述したように、これらは本発明の理解をより一層容易にするために、具体例を挙げて説明するための引用であり、本発明の超高分子量ポリエチレンとゴムとの複合成形方法が、この例にのみ限定されるものではない。   Next, an example of a composite molding method of ultrahigh molecular weight polyethylene and rubber according to the present invention will be described with reference to the specific embodiments shown in FIGS. As described above, in order to make the understanding of the present invention easier, these are quotes for explaining with specific examples, and the composite molding method of ultrahigh molecular weight polyethylene and rubber according to the present invention is the citation. It is not limited to examples only.

図3〜図5は、図1〜図2を用いて説明した超高分子量ポリエチレン2とゴム1とからなる車輪(例えばスノーモービル用ガイドホイールなどに適用される車輪など)の複合成形方法を説明するための成形工程の一部を示す主として射出成形用金型部分の模式的部分断面図であり、この実施の形態例では、図3が図3基準で上下の金型部分11と14が開いている状態を示し、図4は、上下の金型部分11と14を閉じた後、可動金型部14の可動部13を動かして(図4基準で下方に動かす)、最終成形品の体積よりも大きくした成形キャビティ内に超高分子量ポリエチレンを射出した状態の工程を示しており、図5が前記に続く工程で、前記射出成形金型内の成形キャビティが目的とする最終成形品の体積になるように可動金型部14の可動部13を動かして(図5基準で可動部を押し上げて)圧縮成形している状態の工程を示している。   3 to 5 illustrate a composite molding method of a wheel (for example, a wheel applied to a guide wheel for a snowmobile, etc.) composed of the ultrahigh molecular weight polyethylene 2 and the rubber 1 described with reference to FIGS. FIG. 3 is a schematic partial cross-sectional view mainly showing a mold part for injection molding showing a part of a molding process for performing the process, and in this embodiment, FIG. 3 is opened with upper and lower mold parts 11 and 14 based on FIG. FIG. 4 shows the volume of the final molded product by closing the upper and lower mold parts 11 and 14 and then moving the movable part 13 of the movable mold part 14 (moving downward on the basis of FIG. 4). FIG. 5 shows a process in which ultra-high molecular weight polyethylene is injected into a molding cavity larger than the above, and FIG. 5 is a process subsequent to the above, in which the molding cavity in the injection mold has a desired volume of the final molded product. Of the movable mold part 14 so that Moving the moving section 13 (pushes up the movable portion in FIG. 5 reference) shows a step in a state of compression molded.

なお、超高分子量ポリエチレンを射出するための押し出し機などの射出装置部分の図示や、可動金型部を可動させるための油圧装置などの図示は省略し、金型も図3〜図5においてはそれぞれ上側部分、下側部分を省略した部分図である。また、金型の向きは特定するものではないが、実際に使用する場合には、通常、図3〜図5基準で、これを90度回転した横向きの状態で使用されるか、図3〜図5に示したように固定金型部が上方になる向きの状態で使用されることが一般的であるが、特にこれらに限定されるものではない。   In addition, illustration of injection apparatus parts, such as an extruder for injecting ultra high molecular weight polyethylene, and hydraulic equipment for moving a movable mold part are abbreviate | omitted, and a metal mold | die is also in FIGS. It is the fragmentary figure which abbreviate | omitted the upper part and the lower part, respectively. Also, the direction of the mold is not specified, but when actually used, it is usually used in a state of being rotated 90 degrees on the basis of FIGS. As shown in FIG. 5, it is generally used in a state in which the fixed mold portion is directed upward, but is not particularly limited thereto.

図3〜図5において、11が固定金型部、14が可動金型部であり、可動金型部14は、固定部12と可動部13とからなり、可動部13は、例えば油圧装置(図示せず)などを操作することにより、可動金型部14の可動部13を図の上下方向に移動させることができるようになっている。   3-5, 11 is a fixed mold part, 14 is a movable mold part, The movable mold part 14 consists of the fixed part 12 and the movable part 13, and the movable part 13 is, for example, a hydraulic device ( The movable part 13 of the movable mold part 14 can be moved in the vertical direction in the figure by operating a not shown) or the like.

固定金型部11の上部には、超高分子量ポリエチレンを射出するための射出装置(図示せず)と連結されており、射出する超高分子量ポリエチレンの金型内部キャビティへの通路であるスプルー18、ランナー19、ゲート20とを有している。   An upper part of the fixed mold part 11 is connected to an injection device (not shown) for injecting ultrahigh molecular weight polyethylene, and a sprue 18 is a passage to the mold internal cavity of the ultrahigh molecular weight polyethylene to be injected. , Runner 19 and gate 20.

このような金型を用いて、次のようにして超高分子量ポリエチレンとゴムとの複合成形品を成形する。   Using such a mold, a composite molded product of ultrahigh molecular weight polyethylene and rubber is formed as follows.

まず、図3に示すように、可動金型部14(固定部12)と固定金型部11はその接触面15、15を互いに接触させずに、両者を離しておき、金型キャビティ22のうち、最終成形品において加硫ゴムが占めるべき部分21に、前述のような未加硫のゴムコンパウンド31をインサートする。そして、固定金型部11と可動金型部14(固定部12)とを図4に示した状態のように、型締めする(境界接触面15で固定金型部11と可動金型部14が接触することになる)。   First, as shown in FIG. 3, the movable mold part 14 (fixed part 12) and the fixed mold part 11 do not make their contact surfaces 15, 15 contact each other, but are separated from each other. Of these, the unvulcanized rubber compound 31 as described above is inserted into the portion 21 to be occupied by the vulcanized rubber in the final molded product. Then, the fixed mold part 11 and the movable mold part 14 (fixed part 12) are clamped as shown in FIG. 4 (the fixed mold part 11 and the movable mold part 14 at the boundary contact surface 15). Will come in contact).

次に図示していない油圧装置を操作することにより、可動金型部14の可動部13を図の下方向に移動させ、金型キャビティ22を好ましくは目的とする最終成形品厚さの1.5〜4.5倍程度の厚さに相当するキャビティに広げておく。より具体的に説明すると、最終成形品の厚さを図5の矢印16aの範囲の厚さとすると、図4の矢印16bの距離(圧縮成形直前の金型キャビティの厚み方向の距離)を好ましくは図5の矢印16aの厚さの1.5〜4.5倍程度になるように、より好ましくは1.8〜4.2倍程度になるように可動金型部14の可動部13を図の下方向に移動させ金型キャビティ22を広げておく。この広がった金型キャビティ22内に、金型温度を80℃〜150℃に維持しながら、超高分子量ポリエチレン32を射出成形温度120℃〜260℃、好ましくは130℃〜230℃で射出する。図4はこの時の状態を示した工程断面図である。超高分子量ポリエチレンは、分子量が極めて大きいので、図4に示したような超高分子量ポリエチレン32を広がった金型キャビティ22内に射出した状態では、通常、フラッシュ状と称される状態になっている。   Next, by operating a hydraulic device (not shown), the movable part 13 of the movable mold part 14 is moved in the downward direction in the figure, and the mold cavity 22 preferably has a desired final molded product thickness of 1. It is spread over a cavity corresponding to a thickness of about 5 to 4.5 times. More specifically, assuming that the thickness of the final molded product is within the range of the arrow 16a in FIG. 5, the distance of the arrow 16b in FIG. 4 (the distance in the thickness direction of the mold cavity immediately before compression molding) is preferably The movable part 13 of the movable mold part 14 is illustrated so as to be about 1.5 to 4.5 times the thickness of the arrow 16a in FIG. 5, more preferably about 1.8 to 4.2 times. The mold cavity 22 is expanded by moving downward. The ultrahigh molecular weight polyethylene 32 is injected into the expanded mold cavity 22 at an injection molding temperature of 120 ° C. to 260 ° C., preferably 130 ° C. to 230 ° C. while maintaining the mold temperature at 80 ° C. to 150 ° C. FIG. 4 is a process sectional view showing the state at this time. Since ultra-high molecular weight polyethylene has an extremely large molecular weight, when the ultra-high molecular weight polyethylene 32 as shown in FIG. Yes.

なお、射出成形温度があまりに高すぎると、成形時に超高分子量ポリエチレンが分解しやすくなり、又ゴムとの接着面に気体が発生して剥離しやすくなるので、成形温度は上記の範囲が好ましい。このように射出成形温度をあまり高くできないので、超高分子量ポリエチレンは、広がった金型キャビティ22内に射出した状態では、いわゆるフラッシュ状になっているのである。もし、このような状態で、すなわち通常の射出成形のみで成形物を取り出すと、成形物の物性(機械的強度)がかなり小さいものしか得られないので、本発明方法においては、続く図5で説明するように、更に圧縮成形することが必要になる。直接圧縮する部分は超高分子量ポリエチレンの部分のみで十分である。   If the injection molding temperature is too high, the ultra-high molecular weight polyethylene is easily decomposed during molding, and gas is easily generated and peeled off on the adhesive surface with the rubber. Therefore, the molding temperature is preferably within the above range. Since the injection molding temperature cannot be so high, the ultra-high molecular weight polyethylene is in a so-called flash shape when injected into the wide mold cavity 22. If the molded product is taken out in such a state, that is, only by ordinary injection molding, only the physical properties (mechanical strength) of the molded product can be obtained. Therefore, in the method of the present invention, FIG. As will be explained, further compression molding is required. Only the ultrahigh molecular weight polyethylene part is sufficient for direct compression.

すなわち、図5に示すように油圧装置など(図示せず)を操作することにより、可動金型部14の可動部13を図の上方向に移動させ、金型キャビティが目的とする最終成形品厚さになるように圧縮成形する。圧縮成形の金型温度は上記と同様である。可動金型部の可動部による圧縮割合は、図5の矢印16aの長さと図4の矢印16bの長さの比になり、具体的には、成形品の形や種類にもよるが、成形品厚み方向で、最終成形品厚みが圧縮成形直前の金型キャビティの厚み方向の距離の1/1.5〜1/4.5になる割合に圧縮成形することが好ましく、より好ましくは1/1.8〜1/4.2程度である。   That is, by operating a hydraulic device or the like (not shown) as shown in FIG. 5, the movable part 13 of the movable mold part 14 is moved upward in the figure, and the final molded product intended by the mold cavity is obtained. Compression molding is performed to obtain a thickness. The mold temperature for compression molding is the same as above. The compression ratio of the movable mold portion by the movable portion is the ratio of the length of the arrow 16a in FIG. 5 to the length of the arrow 16b in FIG. 4, and specifically, depending on the shape and type of the molded product, In the product thickness direction, compression molding is preferably performed so that the final molded product thickness is 1 / 1.5 to 1 / 4.5 of the distance in the thickness direction of the mold cavity immediately before compression molding, more preferably 1 / It is about 1.8 to 1 / 4.2.

圧縮成形後に、固定金型部11と可動金型部14の間を開いて、成形品を取り出す。これら射出、圧縮成形に要する成形時間は、約180秒〜300秒である。なお成形時間は、製品の形状、厚み、大きさ等に応じて、適宜、変更してよい。   After compression molding, the space between the fixed mold part 11 and the movable mold part 14 is opened, and the molded product is taken out. The molding time required for these injection and compression molding is about 180 seconds to 300 seconds. The molding time may be appropriately changed according to the shape, thickness, size, etc. of the product.

かくして複合成形が完了すると直ちに金型から成形品を取り出し、オーブン、熱風乾燥機などの加熱装置で70℃〜150℃で加温してゴム部分を目的とする好適な加硫状態にする。加硫のための加温時間は、ゴムの組成や成形品の大きさによっても異なるが、通常50分〜70分程度であり、最適な加温時間や温度はゴムの組成や成形品の大きさによって予め実験により決定すればよい。   Thus, as soon as the composite molding is completed, the molded product is taken out from the mold and heated at 70 ° C. to 150 ° C. with a heating device such as an oven or a hot air dryer to bring the rubber part into a suitable vulcanized state for the purpose. The heating time for vulcanization varies depending on the rubber composition and the size of the molded product, but is usually about 50 to 70 minutes, and the optimal heating time and temperature are the rubber composition and the size of the molded product. Accordingly, it may be determined in advance by experiments.

また、用いるゴムコンパウンド部分が比較的薄い場合や、ゴムコンパウンドの体積が比較的小さい場合には、上記圧縮成形後に金型から成形品を取り出して加熱処理して加硫する工程を省略できる場合もある。   In addition, when the rubber compound portion to be used is relatively thin, or when the volume of the rubber compound is relatively small, the step of taking out the molded product from the mold after the compression molding and heat-treating it may be omitted. is there.

超高分子量ポリエチレン(融点136℃、分子量約3,000,000、三井化学株式会社製、“ハイゼックスミリオン 320M”)とゴムとの複合成形を行う実施例について説明する。未加硫状態のゴムコンパウンドの配合(重量比)は次のとおりである。   An example in which a composite molding of ultra high molecular weight polyethylene (melting point: 136 ° C., molecular weight: about 3,000,000, manufactured by Mitsui Chemicals, “Hi-Zex Million 320M”) and rubber will be described. The blending (weight ratio) of the unvulcanized rubber compound is as follows.

天然ゴム70重量部、SBR(スチレン−ブタジエンゴム:結合スチレン量23.5重量%)30重量部、亜鉛華5重量部、ステアリン酸1重量部、カーボンブラック[ISAF(N220)]95重量部、プロセスオイル20重量部、老化防止剤2重量部、加硫促進剤2重量部、硫黄2重量部、パーオキサイド1.5重量部、なお、このパーオキサイドには、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンを用いたが、公知のパーオキサイド、例えば、ジ−tブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシイソプロビルカーボネート等適宜の他のパーオキサイドに変えてもよい。   70 parts by weight of natural rubber, 30 parts by weight of SBR (styrene-butadiene rubber: 23.5% by weight of bound styrene), 5 parts by weight of zinc oxide, 1 part by weight of stearic acid, 95 parts by weight of carbon black [ISAF (N220)], process oil 20 parts by weight, anti-aging agent 2 parts by weight, vulcanization accelerator 2 parts by weight, sulfur 2 parts by weight, peroxide 1.5 parts by weight. In addition, 1,1-bis (t-butylperoxide is included in this peroxide. Oxy) -3,3,5-trimethylcyclohexane was used, but other known peroxides such as di-tbutyl peroxide, dicumyl peroxide, t-butylperoxyisopropyl carbonate, etc. It may be changed to

この未加硫状態のゴムコンパウンドのシートを前述したように、厚さ17mm×幅10mm×長さ540mmの棒状に切断し、得られた棒状物の両端をトルエンを用いて、ゴム輪状につなげたものを用意し、図3で説明したように、最終成形品において加硫ゴムが占めるべき部分21(図3〜図5参照)に、前述のような未加硫状態のゴムコンパウンド31をインサートする。この工程を詳細に説明すれば、前述したように、可動金型部14(固定部12)と固定金型部11はその接触面15、15で接触させずに、両者を離しておき、金型成形キャビティ22のうち、最終成形品において加硫ゴムが占めるべき部分21の可動金型部14(固定部12)のところに、前述のような未加硫状態のゴムコンパウンド31をインサートする。そして、固定金型部11と可動金型部14(固定部12)とを図4に示した状態のように、型締めする。   As described above, this unvulcanized rubber compound sheet was cut into a rod shape having a thickness of 17 mm, a width of 10 mm, and a length of 540 mm, and both ends of the obtained rod-like product were connected to a rubber ring using toluene. As shown in FIG. 3, an unvulcanized rubber compound 31 as described above is inserted into the portion 21 (see FIGS. 3 to 5) that the vulcanized rubber should occupy in the final molded product. . If this process is explained in detail, as mentioned above, the movable mold part 14 (fixed part 12) and the fixed mold part 11 are not brought into contact with each other at their contact surfaces 15 and 15, but they are separated from each other. The unvulcanized rubber compound 31 as described above is inserted into the movable mold portion 14 (fixed portion 12) of the portion 21 in the final molded product where the vulcanized rubber should occupy. Then, the fixed mold part 11 and the movable mold part 14 (fixed part 12) are clamped as in the state shown in FIG.

次に図4に示したように油圧機構(図示せず)により、可動金型部14の可動部13を図の下方向に移動させ、金型キャビティ22を目的とする最終成形品厚さの3倍程度の厚さに相当するキャビティに広げる(図4の矢印16bの距離を図5の矢印16aの長さの3倍程度になるように可動金型部14の可動部13を図の下方向に移動させる)。   Next, as shown in FIG. 4, the movable part 13 of the movable mold part 14 is moved downward in the figure by a hydraulic mechanism (not shown), so that the mold cavity 22 has a final molded product thickness of the target. The movable mold part 14 of the movable mold part 14 is moved downward in the figure so that the distance corresponding to the arrow 16b in FIG. 4 is about three times the length of the arrow 16a in FIG. Move in the direction).

次に前記広げた金型キャビティ22内にスプルー18、ランナー19、ゲート20を通して超高分子量ポリエチレン32を射出した。金型温度を80℃〜150に維持しながら、超高分子量ポリエチレンを射出成形温度150℃〜230℃で射出成形機で射出した。この時の工程図が図4で示した工程図である。   Next, ultrahigh molecular weight polyethylene 32 was injected into the expanded mold cavity 22 through the sprue 18, runner 19, and gate 20. While maintaining the mold temperature at 80 ° C. to 150 ° C., ultra high molecular weight polyethylene was injected with an injection molding machine at an injection molding temperature of 150 ° C. to 230 ° C. The process chart at this time is the process chart shown in FIG.

次に、図5に示すように油圧機構(図示せず)により、可動金型部14の可動部13を図の上方向に移動させ、金型キャビティが目的とする最終成形品厚さ16aになるように圧縮成形した。圧縮成形の金型温度は上記と同様である。圧縮成形後、固定金型部11と可動金型部14の間を開いて、成形品を取り出した。   Next, as shown in FIG. 5, the movable part 13 of the movable mold part 14 is moved upward in the figure by a hydraulic mechanism (not shown), so that the mold cavity has a final molded product thickness 16a. Compression molding was performed. The mold temperature for compression molding is the same as above. After compression molding, the space between the fixed mold part 11 and the movable mold part 14 was opened, and the molded product was taken out.

かくして得られた複合成形品を、オーブン中で70℃〜120℃で約1時間加温して最適加硫状態にした。これら射出、圧縮成形に要する成形時間は、約200秒〜300秒であった。従って、金型を1つの成形品が独占する時間は短時間であり、加硫のための加温は、多数個の成形品を一度にまとめて処理するか、連続移動式のオーブン中を通過させれば良く、最も問題となる金型における成形時間を短縮でき生産効率を向上させることができた。   The composite molded product thus obtained was heated in an oven at 70 ° C. to 120 ° C. for about 1 hour to obtain an optimum vulcanized state. The molding time required for these injection and compression molding was about 200 to 300 seconds. Therefore, the time for monopolizing the mold is short, and the heating for vulcanization can be done by treating a large number of molded parts at once or passing through a continuous moving oven. As a result, it was possible to shorten the molding time in the most problematic mold and improve the production efficiency.

得られた複合成形品の加硫ゴムと超高分子量ポリエチレンとの界面の接着力のバラツキを調べたところ、同じ原料を用い、前記特許文献2の従来法の実施例で記載された成形法で得られた比較成形品;すなわちゴムコンパウンドをあらかじめゴム金型内で120〜190℃(3分)で半加硫状態で成形し、この半加硫状態で成形されたゴムコンパウンドを、上記実施例1で用いた射出成形金型に同様にインサートし、超高分子量ポリエチレンを射出成形温度130〜230℃、金型温度100〜150℃で実施例1と同様に射出圧縮成形し、成形品を取り出し、オーブン中で100℃〜150℃で約1時間加温して再加硫して得られた比較成形品は、不良品の発生率が7%ほどあったが、上記本発明法の実施品では、ほとんど不良品の発生がなかった。その結果、品質が均一で安定した生産が可能となった。   When the dispersion of the adhesive force at the interface between the vulcanized rubber and the ultrahigh molecular weight polyethylene of the obtained composite molded product was examined, the same raw material was used, and the molding method described in the conventional method example of Patent Document 2 was used. The obtained comparative molded product; that is, the rubber compound was previously molded in a rubber mold at a temperature of 120 to 190 ° C. (3 minutes) in a semi-vulcanized state. Inserted in the same way as the injection mold used in No. 1, and injection-molded ultrahigh molecular weight polyethylene at an injection molding temperature of 130 to 230 ° C. and a mold temperature of 100 to 150 ° C. in the same manner as in Example 1 to take out the molded product. The comparative molded product obtained by re-curing by heating at 100 ° C. to 150 ° C. for about 1 hour in an oven had an occurrence rate of defective products of about 7%. In most cases, defective products are not generated. won. As a result, uniform and stable production became possible.

なお、複合成形品の加硫ゴムと超高分子量ポリエチレンとの界面の接着力のバラツキは、次のようにしてテストした。   In addition, the variation in the adhesive force at the interface between the vulcanized rubber and the ultrahigh molecular weight polyethylene of the composite molded product was tested as follows.

図1、図2に示した成形品の加硫ゴム1の部分(図1基準で図1の下方の加硫ゴム1の部分で超高分子量ポリエチレン2との境界のところまで)をバイスでしっかり挟んで固定し(図1基準で加硫ゴム1の部分の表裏からバイスで挟む。図2を基準にして説明すると加硫ゴム1の部分を図2の上面と下面からバイスで挟むことになる。)、体重約70kgの男性が成形品を手でつかんで引っ張ることにより、加硫ゴム1と超高分子量ポリエチレン2との境界が剥離した場合を不良、剥離が認められなかった場合を合格として、成形品100個を基準に不良品の発生率を計算したものである。   1 and 2 of the molded product shown in FIG. 2 (to the boundary with the ultra high molecular weight polyethylene 2 at the lower part of the vulcanized rubber 1 in FIG. 1 based on FIG. 1) with a vice (Fixed by vise from the front and back of the portion of vulcanized rubber 1 on the basis of FIG. 1. Referring to FIG. 2, the portion of vulcanized rubber 1 is sandwiched by the vice from the upper surface and the lower surface of FIG. 2. )) When a man with a weight of about 70 kg grabs the molded product by hand and pulls the boundary between the vulcanized rubber 1 and the ultra-high molecular weight polyethylene 2, the case where the separation is not good and the case where the separation is not recognized is accepted. The occurrence rate of defective products is calculated based on 100 molded products.

実施例1で用いた未加硫ゴムコンパウンドに変えて、SBR(スチレン−ブタジエンゴム:結合スチレン量23.5重量%)100重量部、亜鉛華5重量部、ステアリン酸1重量部、ホワイトカーボン95重量部、プロセスオイル20重量部、老化防止剤2重量部、加硫促進剤2重量部、硫黄2重量部、パーオキサイド(1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン)1.5重量部からなる未加硫ゴムコンパウンドを用いた以外は、実施例1と同様の条件で複合成形品を製造した。この射出、圧縮成形に要する成形時間は、実施例1と同様約200秒〜300秒であった。従って、金型を1つの成形品が独占する時間は短時間であり、加硫のための加温は、多数個の成形品を一度にまとめて処理するか、連続移動式のオーブン中を通過させれば良く、最も問題となる金型における成形時間を短縮でき生産効率を向上させることができた。   Instead of the unvulcanized rubber compound used in Example 1, 100 parts by weight of SBR (styrene-butadiene rubber: 23.5% by weight of bound styrene), 5 parts by weight of zinc white, 1 part by weight of stearic acid, 95 parts by weight of white carbon 20 parts by weight of process oil, 2 parts by weight of anti-aging agent, 2 parts by weight of vulcanization accelerator, 2 parts by weight of sulfur, peroxide (1,1-bis (t-butylperoxy) -3,3,5-trimethyl (Cyclohexane) A composite molded article was produced under the same conditions as in Example 1 except that an unvulcanized rubber compound consisting of 1.5 parts by weight was used. The molding time required for this injection and compression molding was about 200 seconds to 300 seconds as in Example 1. Therefore, the time for monopolizing the mold is short, and the heating for vulcanization can be done by treating a large number of molded parts at once or passing through a continuous moving oven. As a result, it was possible to shorten the molding time in the most problematic mold and improve the production efficiency.

得られた複合成形品の加硫ゴムと超高分子量ポリエチレンとの界面の接着力のバラツキを調べたところ、同じ原料を用い、前記特許文献2の従来法の実施例で記載された成形法で得られた比較成形品は、不良品の発生率が7%ほどあったが、上記本発明法の実施品では、ほとんど不良品の発生がなかった。その結果、品質が均一で安定した生産が可能となった。   When the dispersion of the adhesive force at the interface between the vulcanized rubber and the ultrahigh molecular weight polyethylene of the obtained composite molded product was examined, the same raw material was used, and the molding method described in the conventional method example of Patent Document 2 was used. The obtained comparative molded product had a defective product generation rate of about 7%, but the product of the above-described method of the present invention produced almost no defective product. As a result, uniform and stable production became possible.

実施例1の超高分子量ポリエチレンを、ティコナジャパン株式会社製“Hostalen GUR”(分子量約3,000,000)に変えて用いた以外は、実施例1と同様の条件で複合成形品を製造した。この射出、圧縮成形に要する成形時間は、実施例1と同様約200秒〜300秒であった。従って、金型を1つの成形品が独占する時間は短時間であり、加硫のための加温は、多数個の成形品を一度にまとめて処理するか、連続移動式のオーブン中を通過させれば良く、最も問題となる金型における成形時間を短縮でき生産効率を向上させることができた。   A composite molded article is produced under the same conditions as in Example 1 except that the ultra high molecular weight polyethylene of Example 1 is used instead of “Hostalen GUR” (molecular weight of about 3,000,000) manufactured by Ticona Japan Co., Ltd. did. The molding time required for this injection and compression molding was about 200 seconds to 300 seconds as in Example 1. Therefore, the time for monopolizing the mold is short, and the heating for vulcanization can be done by treating a large number of molded parts at once or passing through a continuous moving oven. As a result, it was possible to shorten the molding time in the most problematic mold and improve the production efficiency.

得られた複合成形品の加硫ゴムと超高分子量ポリエチレンとの界面の接着力のバラツキを調べたところ、同じ原料を用い、前記特許文献2の従来法の実施例で記載された成形法で得られた比較成形品は、不良品の発生率が7%ほどあったが、上記本発明法の実施品では、ほとんど不良品の発生がなかった。その結果、品質が均一で安定した生産が可能となった。   When the dispersion of the adhesive force at the interface between the vulcanized rubber and the ultrahigh molecular weight polyethylene of the obtained composite molded product was examined, the same raw material was used, and the molding method described in the conventional method example of Patent Document 2 was used. The obtained comparative molded product had a defective product generation rate of about 7%, but the product of the above-described method of the present invention produced almost no defective product. As a result, uniform and stable production became possible.

実施例1の超高分子量ポリエチレンを、ティコナジャパン株式会社製“Hostalen GUR”(分子量約3,000,000)に変え、実施例1で用いた未加硫ゴムコンパウンドを実施例2で用いた未加硫ゴムコンパウンドに変えて用いた以外は、実施例1と同様の条件で複合成形品を製造した。この射出、圧縮成形に要する成形時間は、実施例1と同様約200秒〜300秒であった。従って、金型を1つの成形品が独占する時間は短時間であり、加硫のための加温は、多数個の成形品を一度にまとめて処理するか、連続移動式のオーブン中を通過させれば良く、最も問題となる金型における成形時間を短縮でき生産効率を向上させることができた。   The ultra high molecular weight polyethylene of Example 1 was changed to “Hostalen GUR” (molecular weight of about 3,000,000) manufactured by Ticona Japan Co., Ltd., and the unvulcanized rubber compound used in Example 1 was used in Example 2. A composite molded article was produced under the same conditions as in Example 1 except that the unvulcanized rubber compound was used. The molding time required for this injection and compression molding was about 200 seconds to 300 seconds as in Example 1. Therefore, the time for monopolizing the mold is short, and the heating for vulcanization can be done by treating a large number of molded parts at once or passing through a continuous moving oven. As a result, it was possible to shorten the molding time in the most problematic mold and improve the production efficiency.

得られた複合成形品の加硫ゴムと超高分子量ポリエチレンとの界面の接着力のバラツキを調べたところ、同じ原料を用い、前記特許文献2の従来法の実施例で記載された成形法で得られた比較成形品は、不良品の発生率が7%ほどあったが、上記本発明法の実施品では、ほとんど不良品の発生がなかった。その結果、品質が均一で安定した生産が可能となった。   When the dispersion of the adhesive force at the interface between the vulcanized rubber and the ultrahigh molecular weight polyethylene of the obtained composite molded product was examined, the same raw material was used, and the molding method described in the conventional method example of Patent Document 2 was used. The obtained comparative molded product had a defective product generation rate of about 7%, but the product of the above-described method of the present invention produced almost no defective product. As a result, uniform and stable production became possible.

本発明の超高分子量ポリエチレンとゴムとの複合成形方法は、超高分子量ポリエチレンとゴムとの金型内での複合成形が2分〜5分の短時間で行えるため、従来の接着方法に比べて量産が可能になり、コストダウンの効果が大である。   The composite molding method of ultra high molecular weight polyethylene and rubber according to the present invention can perform composite molding of ultra high molecular weight polyethylene and rubber in a mold in a short time of 2 to 5 minutes. Therefore, mass production becomes possible and the effect of cost reduction is great.

射出成形金型を使用するので、複雑な形状の製品を容易に得られる。本発明方法で得られる超高分子量ポリエチレンとゴムとの複合成形品は、特にゴムと超高分子量ポリエチレンとの界面の接着性のバラツキがなく、均一な物性の成形品を提供でき、信頼性の高い超高分子量ポリエチレンとゴムとの複合成形品の成形方法を提供できる。従って、本発明方法は、超高分子量ポリエチレンとゴムとの複合成形品の成形に好適に使用できる。   Since an injection mold is used, a product having a complicated shape can be easily obtained. The composite molded product of ultra-high molecular weight polyethylene and rubber obtained by the method of the present invention has no unevenness in adhesion at the interface between rubber and ultra-high molecular weight polyethylene, and can provide a molded product with uniform physical properties. It is possible to provide a method for forming a composite molded product of high ultrahigh molecular weight polyethylene and rubber. Therefore, the method of the present invention can be suitably used for molding a composite molded product of ultrahigh molecular weight polyethylene and rubber.

図1は本発明方法で成形される超高分子量ポリエチレンとゴムとの複合成形品の一実施形態例である車輪の正面図である。FIG. 1 is a front view of a wheel as an embodiment of a composite molded product of ultrahigh molecular weight polyethylene and rubber molded by the method of the present invention. 図2は図1のA−Aラインにおける断面図である。2 is a cross-sectional view taken along line AA of FIG. 図3は本発明の複合成形方法を説明するための成形工程の一部を示す主として射出成形用金型部分の模式的部分断面図である。FIG. 3 is a schematic partial sectional view mainly showing a mold part for injection molding, showing a part of the molding process for explaining the composite molding method of the present invention. 図4は図3の工程に続く、本発明の複合成形方法の成形工程の一部を示す主として射出成形用金型部分の模式的部分断面図である。FIG. 4 is a schematic partial cross-sectional view of a mold part for injection molding mainly showing a part of the molding process of the composite molding method of the present invention following the process of FIG. 図5は図4の工程に続く、本発明の複合成形方法の成形工程の一部を示す主として射出成形用金型部分の模式的部分断面図である。FIG. 5 is a schematic partial cross-sectional view mainly showing a mold part for injection molding, showing a part of the molding process of the composite molding method of the present invention following the process of FIG.

符号の説明Explanation of symbols

1 加硫ゴム
2 超高分子量ポリエチレン
3 ゴム1と超高分子量ポリエチレン2との界面
4 車軸挿入孔
11 固定金型部
12 可動金型部の固定部
13 可動金型部の可動部
14 可動金型部
15 可動金型部14(固定部12)と固定金型部11の接触面
16a 最終成形品の厚さを示す矢印
16b 圧縮成形直前の金型キャビティの厚み方向の距離
18 スプルー
19 ランナー
20 ゲート
21 最終成形品において加硫ゴムが占めるべき部分
22 金型キャビティ
31 ゴムコンパウンド
32 超高分子量ポリエチレン
DESCRIPTION OF SYMBOLS 1 Vulcanized rubber 2 Ultra high molecular weight polyethylene 3 Interface of rubber 1 and ultra high molecular weight polyethylene 2 4 Axle insertion hole 11 Fixed mold part 12 Fixed part of movable mold part 13 Movable part of movable mold part 14 Movable mold Part 15 Contact surface of movable mold part 14 (fixed part 12) and fixed mold part 11 16a Arrow indicating thickness of final molded product 16b Distance in mold cavity thickness direction immediately before compression molding 18 Sprue 19 Runner 20 Gate 21 Parts that the vulcanized rubber should occupy in the final molded product 22 Mold cavity 31 Rubber compound 32 Ultra high molecular weight polyethylene

Claims (7)

ゴムにゴム用補強材と加硫剤を配合して形成した未加硫ゴムコンパウンドを、固定金型部と、少なくとも一部が可動である可動金型部とからなる射出成形金型内の所定位置にインサートし、可動金型部の可動部を動かして最終成形品の体積よりも大きくした前記射出成形金型内の成形キャビティ内に超高分子量ポリエチレンを射出し、次いで、前記射出成形金型内の成形キャビティが目的とする最終成形品の体積になるように可動金型部の可動部を動かして圧縮成形し、次いで、前記射出成形金型から当該成形品を取り出して加温して、半加硫状態になっているゴムコンパウンド部分を加硫状態にすることからなる超高分子量ポリエチレンとゴムとの複合成形方法。  An unvulcanized rubber compound formed by blending rubber with a rubber reinforcing material and a vulcanizing agent, a predetermined mold in an injection mold comprising a fixed mold part and a movable mold part at least partially movable. Insert the ultra-high molecular weight polyethylene into the molding cavity in the injection mold that is inserted at the position and move the movable part of the movable mold part to make it larger than the volume of the final molded product, and then the injection mold The movable part of the movable mold part is moved and compressed so that the molding cavity inside becomes the volume of the desired final molded product, and then the molded product is taken out from the injection mold and heated, A composite molding method of ultrahigh molecular weight polyethylene and rubber, which comprises setting a rubber compound portion in a semi-vulcanized state to a vulcanized state. 未加硫ゴムコンパウンドが、シート状の未加硫ゴムコンパウンドの形状大きさ加工して形成した未加硫ゴムコンパウンドである請求項1の記載の複合成形方法。Unvulcanized rubber compound, a composite molding process according to claim 1 is an unvulcanized rubber compound which is formed by processing the shape and size of the sheet-shaped unvulcanized Gomukonpaun de. 可動金型部の可動部が、前記射出成形金型内の成形キャビティ内に射出された超高分子量ポリエチレンからなる部分を圧縮するための可動部である請求項1又は2いずれか1項に記載の複合成形方法。  The movable part of a movable mold part is a movable part for compressing the part which consists of ultra high molecular weight polyethylene injected in the shaping | molding cavity in the said injection mold. Composite molding method. 可動金型部の可動部による圧縮割合が、成形品厚み方向で、最終成形品厚みが圧縮成形直前の金型キャビティの厚み方向の距離の1/1.5〜1/4.5になる割合に圧縮成形する請求項1〜3のいずれか1項に記載の複合成形方法。  Ratio in which the compression ratio by the movable part of the movable mold part is in the thickness direction of the molded product, and the final molded product thickness is 1 / 1.5 to 1 / 4.5 of the distance in the thickness direction of the mold cavity immediately before the compression molding The composite molding method according to any one of claims 1 to 3, wherein the compression molding is performed. 金型温度を80℃〜150℃に維持しながら、超高分子量ポリエチレンを射出成形温度120℃〜260℃で射出し圧縮成形する請求項1〜4のいずれか1項に記載の複合成形方法。  The composite molding method according to any one of claims 1 to 4, wherein ultra high molecular weight polyethylene is injected and compression molded at an injection molding temperature of 120 ° C to 260 ° C while maintaining the mold temperature at 80 ° C to 150 ° C. 半加硫状態のゴムコンパウンド部分を加硫状態に加温する温度が、70〜150℃である請求項1〜5のいずれか1項に記載の複合成形方法。  The composite molding method according to any one of claims 1 to 5, wherein a temperature at which the semi-vulcanized rubber compound portion is heated to a vulcanized state is 70 to 150 ° C. ゴム用補強材が、カーボンブラックまたはホワイトカーボンである請求項1〜6のいずれか1項に記載の複合成形方法。  The composite molding method according to any one of claims 1 to 6, wherein the rubber reinforcing material is carbon black or white carbon.
JP2008541519A 2007-05-02 2008-04-30 Compound molding method of ultra high molecular weight polyethylene and rubber Active JP4236213B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007121496 2007-05-02
JP2007121496 2007-05-02
PCT/JP2008/058266 WO2008136485A1 (en) 2007-05-02 2008-04-30 Method of composite molding for ultrahigh molecular weight polyethylene and rubber

Publications (2)

Publication Number Publication Date
JP4236213B2 true JP4236213B2 (en) 2009-03-11
JPWO2008136485A1 JPWO2008136485A1 (en) 2010-07-29

Family

ID=39943592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008541519A Active JP4236213B2 (en) 2007-05-02 2008-04-30 Compound molding method of ultra high molecular weight polyethylene and rubber

Country Status (2)

Country Link
JP (1) JP4236213B2 (en)
WO (1) WO2008136485A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858651B2 (en) * 2011-03-03 2012-01-18 三菱マテリアル株式会社 Mixing calciner
DE102011115591A1 (en) * 2011-10-11 2013-04-11 Kraussmaffei Technologies Gmbh Process for coating a molded part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165227A (en) * 1984-02-06 1985-08-28 Bando Chem Ind Ltd Gluing method of hypermacromolecular weight polyethylene and rubber
JPH0643110B2 (en) * 1989-03-01 1994-06-08 クレハエラストマー株式会社 Molding method for seat rings for butterfly valves
JP3415071B2 (en) * 1999-04-27 2003-06-09 作新化成株式会社 Composite molding method of ultra high molecular weight polyethylene and synthetic rubber
JP2001030048A (en) * 1999-07-22 2001-02-06 Tokai Kogyo Co Ltd Metal molding, its molding method and molding die

Also Published As

Publication number Publication date
JPWO2008136485A1 (en) 2010-07-29
WO2008136485A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4700548B2 (en) Tire manufacturing method
EP1636010B1 (en) Method for over-moulding a glazing
US20150151516A1 (en) Method for mutually adhering moulded articles of vulcanized rubber
JP4236213B2 (en) Compound molding method of ultra high molecular weight polyethylene and rubber
EP3086913A2 (en) Membrane-assisted preforming of plastic semi-finished product
CN109320858A (en) A kind of preparation method of high life tire curing bladder
KR101666815B1 (en) Tire vulcaning mold
US20100090373A1 (en) Vulcanization process of rubber tires with the use of microwaves
EP2104602B1 (en) Method for manufacturing a moulded article with insert from a rubber polymer
KR20100123380A (en) Method of hybrid for rubber having molding
Anifantis et al. Elastomer macrocomposites
CN103128891B (en) The airtyred sulfuration method for shaping of car
JP2006248037A (en) Injection molding method of rubber molded product
JP3415071B2 (en) Composite molding method of ultra high molecular weight polyethylene and synthetic rubber
JP2007136926A (en) Injection molding method of rubber molded body
JP6887614B2 (en) Tire vulcanization bladder and its manufacturing method
JP2007331299A (en) Tire vulcanizing mold
KR101626055B1 (en) grommet manufacturing mold using Thermoplastic elastomer composition
US1462452A (en) Method of manufacturing pneumatic tires and the like
US9975304B2 (en) Tire manufacturing method
CN108215041B (en) Production method of thick rubber product with core piece
US10059070B2 (en) Tire, tread for retread tire, method for manufacturing the tread for retread tire, retread tire having the tread for retread tire, and method for manufacturing the retread tire
JP5750970B2 (en) Method for vulcanizing pneumatic tires
JP2006248036A (en) Injection molding method of rubber molded product
JP2016175252A (en) Method of manufacturing pneumatic tire, mold for molding tire, and pneumatic tire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

R150 Certificate of patent or registration of utility model

Ref document number: 4236213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250