JPS62241502A - Method for controlling distillation column - Google Patents

Method for controlling distillation column

Info

Publication number
JPS62241502A
JPS62241502A JP8546286A JP8546286A JPS62241502A JP S62241502 A JPS62241502 A JP S62241502A JP 8546286 A JP8546286 A JP 8546286A JP 8546286 A JP8546286 A JP 8546286A JP S62241502 A JPS62241502 A JP S62241502A
Authority
JP
Japan
Prior art keywords
control system
output
column
purity
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8546286A
Other languages
Japanese (ja)
Other versions
JPH0640922B2 (en
Inventor
Katsutomo Hanakuma
花熊 克友
Toru Nagaseko
長迫 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP8546286A priority Critical patent/JPH0640922B2/en
Publication of JPS62241502A publication Critical patent/JPS62241502A/en
Publication of JPH0640922B2 publication Critical patent/JPH0640922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To produce high-purity top and bottom products under conditions where the supply quantity of a raw material is changed by introducing independent non-interactive elements respectively into the control systems at the top and the bottom of the titled column, and controlling the column. CONSTITUTION:The distillation column 10 is composed of a top part 11, a bottom part 21, a receiver 12, and a reboiler 22. The top part control system for adding the output of a feedforward element GF1 by the supply quantity of a raw material to the output of a reflux flow rate by the purity of the overhead product to regulate the reflux flow rate and a bottom part control system for adding the output of a feed forward element GF2 by the supply quantity of a raw material to the output of the temp. of the reboiler 22 by the purity of the bottom product to regulate the reboiler temp. are provided as the control systems. The outputs of a controller calculated respectively by non-interactive elements GM5 and GM6 are added to the top part control system and the bottom part control system, and the top part control system and the bottom part control system are independently controlled. Consequently, the mutual intervention between both systems is controlled, and an optimum control can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蒸留塔の塔頂部と塔底部の制御系に、それぞ
れ独立に非干渉要素を導入して制御を行なわせることに
より、高純度の帽り塔底製品を得られるようにした蒸留
塔の制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention achieves high purity by independently introducing non-interfering elements into the control systems at the top and bottom of a distillation column. The present invention relates to a method for controlling a distillation column that allows a bottom product to be obtained.

[従来の技術] 一般に、化学1貫において用いられる原料製品としては
、純度の高いものが要求される。このため、熱分解炉等
で生成された不純物を含んでいる原料を、蒸留塔を用い
た蒸留操作によって分離精製し、不純物の少ない高純度
で均質な組成の原料製品とした必要がある。ところで、
蒸留塔に供給された原料は気体と液体に分離され、この
うち気体は塔頂部にたまり、液体は塔底部にたまる。し
たがって、塔頂部および塔底部において、それぞれ高純
度の製品を得られるようにしなければならない。
[Prior Art] Generally, raw materials used in chemistry are required to have high purity. For this reason, it is necessary to separate and purify the raw material containing impurities produced in a pyrolysis furnace or the like by a distillation operation using a distillation column to obtain a raw material product with high purity and homogeneous composition with few impurities. by the way,
The raw material supplied to the distillation column is separated into gas and liquid, with the gas accumulating at the top of the column and the liquid accumulating at the bottom of the column. Therefore, it is necessary to ensure that products of high purity can be obtained at the top and bottom of the column, respectively.

蒸留塔において原料供給量が変化すると、数十分という
長い無駄時間の後、塔頂、塔底制御系に影響が現われる
ため、塔頂部および塔底部における製品を高純度化する
蒸留塔の制御方法としては、先行制御的なフィードフォ
ワード制御が一般に行なわれている。その−例として、
原料供給量の変化に対応した信号を、時間遅れをもたせ
た上でリボイラ流量jlIfM計の設定信号としたとと
もに、リボイラ流量の変化に対応した信号を、h工時間
遅れを有する原料供給量の変化に対応した信号と合成し
てリフラックス流量謂箇計の設定信号として加える方法
(特開昭54−109071号)がある。
When the amount of raw material supplied in a distillation column changes, the top and bottom control systems are affected after a long dead time of several tens of minutes. Therefore, a method for controlling a distillation column that purifies products at the top and bottom of the column is developed. Generally, advance control-like feedforward control is performed. As an example,
The signal corresponding to the change in the raw material supply amount is used as the setting signal for the reboiler flow rate jlIfM meter with a time delay, and the signal corresponding to the change in the reboiler flow rate is used as the change in the raw material supply amount with a time delay. There is a method (Japanese Unexamined Patent Publication No. 109071/1983) in which the signal is combined with a signal corresponding to the reflux flow rate and added as a setting signal for a so-called reflux flow rate meter.

また、リフラックス流量をamすることによって塔頂温
度を制御し、原料供給量の変化に対応した制御を行なう
蒸留塔の塔頂温度制御方法(特開昭80−81003号
)、およびリボイラの加熱温度を!節することによって
塔底温度を制御し、原料供給量の変化に対応した制御を
行なう蒸留塔の塔底温度制御方法(特開昭80−220
103号)がある。
In addition, a method for controlling the top temperature of a distillation column (Japanese Unexamined Patent Publication No. 80-81003), which controls the top temperature by adjusting the reflux flow rate in response to changes in the amount of raw material supplied, and a heating method for a reboiler. Temperature! A method for controlling the bottom temperature of a distillation column, which controls the bottom temperature by controlling the temperature in response to changes in the amount of raw material supplied (Japanese Patent Laid-Open No. 80-220
No. 103).

[解決すべき問題点] 上述した従来の制御方法において、塔頂部と塔底部を同
時に制御する場合には、塔頂部と塔底部の間で相互干渉
が生じ、安定な制御を行なうことは困難であった。すな
わち1例えば、第6図のプロセスシートに示す蒸留塔l
Oにおいて、塔頂部11の製品純度が下がったときは、
製品純度を上げるためにレシーバ12からのりフラック
ス流層LRを増加させる。一方、 リフラックス流In
k L Rが増加すると塔底部21の塔底製品純度が下
がる。塔底製品純度を上げるため、およびリフラックス
流量Lmの増加により蒸留塔10内のエンタルピが減少
するので、これを回復するため、リポイラ22の温度を
上げる。リボイラ22の温度を上昇させると塔頂製品ガ
ス量が多くなり、塔頂製品純度が変動する。このように
塔頂部制御系と塔底制御系は相互に干渉し合うので、安
定な制御は難しかった。
[Problems to be solved] In the conventional control method described above, when controlling the tower top and tower bottom at the same time, mutual interference occurs between the tower top and tower bottom, making it difficult to perform stable control. there were. That is, 1. For example, the distillation column l shown in the process sheet of FIG.
In O, when the product purity at the top 11 of the column decreases,
The glue flux flow layer LR from the receiver 12 is increased to increase product purity. On the other hand, reflux style In
As k L R increases, the bottom product purity of the column bottom 21 decreases. The temperature of the repoiler 22 is increased in order to increase the purity of the column bottom product and to recover the enthalpy within the distillation column 10, which decreases due to the increase in the reflux flow rate Lm. When the temperature of the reboiler 22 is increased, the amount of gas at the top of the column increases, and the purity of the product at the top of the column fluctuates. In this way, the tower top control system and the tower bottom control system interfere with each other, making stable control difficult.

また、塔頂部間両系内でも、塔頂製品純度は。In addition, the purity of the overhead product is also within both systems between the overheads of the tower.

(リフラックス流り/((リフラックス流量)+(塔頂
製品抜出量)) =L@ / (LR+D)zL乳/V により決まり、リフラックス流量が変化すれば塔頂製品
抜出量も変化し、リフラックス流量と塔頂製品抜出量は
干渉し合う。
(Reflux flow rate / ((reflux flow rate) + (amount of product withdrawn from the top)) = L@ / (LR + D) zL milk / V It is determined by: If the reflux flow rate changes, the amount of product withdrawn from the top of the tower also changes. The reflux flow rate and the amount of product withdrawn from the top of the tower interfere with each other.

さらに、塔底部制御系でも、塔底製品純度は、(塔底製
品ガスff1) / [(塔底製品抜出量)+(塔底製
品ガスfi)) = Va  /  (Va  + B)により決まり、
塔底製品抜出量が変化すれば塔底製品ガス量も変化し、
塔底製品抜出量と塔底製品ガス量は干渉し合う。
Furthermore, in the bottom control system, the purity of the bottom product is determined by (bottom product gas ff1) / [(bottom product withdrawal amount) + (bottom product gas fi)) = Va / (Va + B) ,
If the amount of product withdrawn from the bottom of the tower changes, the amount of product gas at the bottom of the tower also changes.
The amount of product withdrawn from the bottom of the column and the amount of product gas from the bottom of the column interfere with each other.

したがって、塔頂部制御系および塔底部制御系において
も干渉があり、より一層安定な制御が困難となる。
Therefore, there is also interference in the tower top control system and the tower bottom control system, making it even more difficult to achieve stable control.

本発明は上記問題点にかんがみてなされたもので、原料
供給量が変化し、塔頂部と塔底部の制御を同時に行なう
必要のある場合などに、塔頂部制御系と塔底部制御系の
間に相互干渉を生じることなく、それぞれの制御系を最
適に制御し、高純度の塔rri製品と塔底製品を得られ
るようにした蒸留塔の制御方法の提供を目的とした。
The present invention was made in view of the above problems, and when the feed rate of raw materials changes and it is necessary to control the tower top and tower bottom simultaneously, there is a gap between the tower top control system and the tower bottom control system. The object of the present invention is to provide a method for controlling a distillation column in which each control system is optimally controlled without causing mutual interference, and a high-purity column rri product and column bottom product can be obtained.

[問題点の解決手段1 上記目的を達成するため本発明における蒸留塔の制御方
法は1M料供給量によるフィードフォワード要素GFl
の出力と塔頂製品純度によるリフラックス流量の出力と
を加算してリフラックス流量をjI節する塔頂19Ka
制御系、および、原料供給螢によるフィードフォワード
要素G F ? の出力と塔底製品純度によるリポイラ
温度の出力とを加算してリポイラ温度を謂!する塔底部
制御系を有する蒸留塔制御系において、塔頂部制御系お
よび塔底部制御系に、それぞれ非干渉要素で演算した調
簡計の出力を加算して、塔頂部制御系および塔底部制御
系をそれぞれ独立して制御する方法としである。
[Means for solving problems 1] In order to achieve the above object, the method for controlling a distillation column in the present invention is to
and the output of the reflux flow rate depending on the purity of the tower top product, and the reflux flow rate is determined by the jI section.
Control system and feed forward element G F ? The output of the repoiler temperature is calculated by adding the output of the repoiler temperature according to the purity of the product at the bottom of the column. In a distillation column control system having a column bottom control system, the outputs of the control meters calculated using non-interfering elements are added to the column top control system and column bottom control system, respectively, and the column top control system and column bottom control system are This is a method to control each independently.

そして、これにより、塔I]!部制御系と塔底部制御系
との間の相互干渉を抑え、原料供給量が変化したような
ときでも最適な制御を行なうことができるようにしであ
る。
And with this, Tower I]! This is to suppress mutual interference between the section control system and the tower bottom control system, and to perform optimal control even when the amount of raw material supplied changes.

[実施例] 以下、本発明の一実施例について図面を参照しつつ説明
する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本実施例方法を実施するための装置例のプロセ
スシートを示すもので、10は蒸留塔、11は塔頂部、
12はレシーバ、21は塔底部。
FIG. 1 shows a process sheet of an example of an apparatus for carrying out the method of this example, in which 10 is a distillation column, 11 is a column top,
12 is a receiver, 21 is a tower bottom.

22はリポイラである。22 is a repoiler.

G F + は、塔頂部制御系におけるフィードフォワ
ード要2にであり、原料供給管中をフィートされる原料
の供給量をfQ硫計13で検出し、この信号を加算f:
段14においてリブラックス流賃調箇信号に加算するこ
とによって塔頂製品の純度を制御する。GMsは、リフ
ラックス流m L Rが増加してレシーバ12の液位が
下がり過ぎるのを防ぐため、塔E[製品抜出iDを少な
くさせるための塔頂部制御系における非干渉要素であり
、レシーバレベル調笥計15等からの製品抜出量21!
1wJ信号を、加算手段16においてリフラックス流1
に講i!I信号に加算する。また、GM&は、塔頂製品
抜出、10の減少による行き過ぎを防ぐため、リフラッ
クス流量L&を減少させるための塔頂部制御系における
非干渉要素であり、リフラックス流層:A箇信号を、加
算手段17においてレシーバレベルWffi計15から
の製品抜出1iiti信号に加算する。
G F + is the feed forward key 2 in the tower top control system, and the feed rate of the raw material fed through the raw material supply pipe is detected by the fQ sulfur meter 13, and this signal is added f:
The purity of the overhead product is controlled by addition to the Ribrax flow control signal at stage 14. GMs is a non-interfering element in the tower top control system for reducing the column E [product withdrawal iD] in order to prevent the liquid level in the receiver 12 from decreasing too much due to an increase in the reflux flow mLR; Amount of product extracted from level check meter 15 etc. is 21!
The 1wJ signal is added to the reflux flow 1 in the adding means 16.
Lecture i! Add to I signal. In addition, GM & is a non-interfering element in the tower top control system for reducing the reflux flow rate L & in order to prevent overshoot due to the reduction of the tower product extraction, 10, and the reflux flow layer: A signal. The adding means 17 adds the receiver level Wffi to the product extraction 1iiti signal from the total 15.

GF2は、塔底部制御系におけるフィードフォワード要
素であり、原料供給管中をフィードされる原料の供給湯
をmu計13で検出し、この信号を加算手段14におい
てスチーム流量調箇信号に加算することによって塔底製
品の純度を制御する。GMtは、製品抜出IBが増加し
て塔底部21の温度が七かり過ぎるのを防ぐため、リポ
イラ22へのスチームの供給流量を少なくさせるための
塔底部制御系における非干渉要素であり、塔底レベル謂
箇計23等からの製品抜出E[箇信号を、加算手段25
においてスチーム流12g1節信号に加算してリポイラ
温度31m計27に送る。また、GMaは、塔底部21
の温度の下がり過ぎを防ぐため、基底部製品の抜出IB
を#a加させるための塔底部rvIn系における非干渉
要素であり、スチーム流量al1m信号を、加算手段z
6において、塔底レベルrArM計からの製品抜出ir
Am信号に加算する。
GF2 is a feedforward element in the tower bottom control system, and detects the supplied hot water of the raw material fed through the raw material supply pipe with the mu meter 13, and adds this signal to the steam flow rate adjustment signal in the adding means 14. to control the purity of the bottom product. GMt is a non-interfering element in the tower bottom control system that reduces the flow rate of steam supplied to the repoiler 22 in order to prevent the temperature of the tower bottom 21 from becoming too high due to an increase in product withdrawal IB. Product extraction E [item signal from the bottom level so-called item total 23 etc., addition means 25
, the steam flow 12g is added to the 1st node signal and sent to the repoiler temperature 31m meter 27. In addition, GMa is the tower bottom 21
To prevent the temperature from dropping too much, the base product is removed
It is a non-interfering element in the column bottom rvIn system for adding #a, and the steam flow rate al1m signal is added to the adding means z
6, product extraction from the bottom level rArM meter
Add to Am signal.

第2図(a)および(b)は、上記蒸留塔における塔頂
部8w系および塔底部制御系をプロ、り線図で示したも
のである。
FIGS. 2(a) and 2(b) are diagrams showing the top 8w system and the bottom control system in the above distillation column.

次に、制御方法について説明する。まず、塔頂部1jI
g4系においては、塔TEI製品純度が目標値より下が
ると、製品純度を高めるためり7ラツクス流3L* t
−増加させる。このとき、非干渉要素G M sは、リ
フラックスfit Ti1t L *が増加してレシー
バ12の液位が下がり過ぎるのを防ぐため。
Next, the control method will be explained. First, the tower top 1jI
In the g4 system, when the column TEI product purity drops below the target value, a 7 lux stream of 3L*t is added to increase the product purity.
-Increase. At this time, the non-interference element G M s is provided to prevent the liquid level of the receiver 12 from falling too much due to an increase in the reflux fit Tilt L *.

塔頂製品の抜出層りを少なくするための、i*mを塔底
部制御系の制御とは無関係に行なわせる。また、非干渉
要素GM&は、塔頂製品抜出量りの減少による行き過ぎ
を防ぐために、リフラックス流rJ L Rを減少させ
るための制御を塔底部制御系のi′III御とはS関係
に行なわせる。そして、この制御により、塔頂製品の純
度を目標値と同じとし、かつまた、レシーバ12の液位
を目標値と同じに維持する。
In order to reduce the extraction layer of the top product, i*m is performed independently of the control of the bottom control system. In addition, the non-interference element GM& performs control to reduce the reflux flow rJLR in an S relationship with the i'III control of the tower bottom control system in order to prevent overshoot due to a decrease in the amount of product withdrawn from the tower top. let Through this control, the purity of the top product is made the same as the target value, and the liquid level in the receiver 12 is also maintained the same as the target value.

一方、塔底部制御系においては、塔底製品純度が目標値
より下がると、!1品純度を高めるためスチーム流量を
増加させる。このとき、非干渉要素GMrは、スチーム
流量が増加して塔底21の温度が上がり過ぎるのを防ぐ
ため、スチーム流1を減少させるための制御を塔頂部1
1Ql系の制御とは無関係に行なわせる。また、非干渉
要素G M aは、スチーム流量の減少による行き過ぎ
を防ぐために、塔底製品の抜出量Bを減少させるための
制御を塔頂部制御系の制御とは無関係に行なわせる。そ
して、この制御により、塔底製品の純度を目標値と同じ
とし、かつまた、塔底部21の液位を目標値と同じに維
持する。
On the other hand, in the bottom control system, if the bottom product purity falls below the target value,! Increase the steam flow rate to increase the purity of one product. At this time, the non-interference element GMr controls the control to reduce the steam flow 1 at the tower top 21 in order to prevent the steam flow rate from increasing and the temperature at the tower bottom 21 from rising too much.
This is performed independently of the control of the 1Ql system. In addition, the non-interference element G M a causes the control to reduce the withdrawal amount B of the column bottom product to be performed independently of the control of the column top control system, in order to prevent overshoot due to a decrease in the steam flow rate. Through this control, the purity of the column bottom product is made the same as the target value, and the liquid level in the column bottom 21 is also maintained the same as the target value.

ここで、非干渉要素の設計方法について説明するため、
第3図に示す非干渉制御ブロック線図における非干渉要
素GM+  、0M2の設計法を以下に示す。
Here, in order to explain how to design non-interfering elements,
A method of designing the non-interference elements GM+ and 0M2 in the non-interference control block diagram shown in FIG. 3 will be described below.

非干渉要素の設計法 (1)もとの干渉系 ここで、G2およびG3が他方の制御系の干渉要素とな
る(第3図参照)、シたがって、干渉要素をなくすには
0式のUlの係数G2.0式のUlの係数G3をOにす
ればよい。
Design method for non-interfering elements (1) Original interference system Here, G2 and G3 become interfering elements of the other control system (see Figure 3). Therefore, to eliminate the interfering elements, Coefficient G3 of Ul in the formula G2.0 may be set to O.

(2)非干渉要素の設計 プロセス 干渉要素 ・・・・・・■干渉要素GMI と0M2をOにして、
非干渉としたためには。
(2) Design process of non-interfering elements Interfering elements...■Interfering elements GMI and 0M2 are set to O,
To ensure non-interference.

よって、非干渉要素の設計法は。Therefore, how to design non-interfering elements?

とすればよい。And it is sufficient.

上記■、@式より、塔頂部制御系および塔底部制御系の
714箇計出力F1.F2は。
From the above formulas (■) and @, 714 total outputs F1. of the tower top control system and tower bottom control system. F2 is.

Y+  =  (Gl  +02 0M2  )  U
+=  (Gl   +G7   (−G コ /GJ
))U172  =  (GJ  +G3  GMI 
 )02=  (Ga  +G1  (−G2  /G
l  ))Ulとなる。
Y+ = (Gl +02 0M2) U
+= (Gl +G7 (-G co/GJ
)) U172 = (GJ +G3 GMI
)02= (Ga +G1 (-G2 /G
l)) It becomes Ul.

上述した非干渉要素の設計にもとづいて。Based on the design of the non-interfering elements described above.

第3図は非干渉制御ブロック線図と等価ブロック線図を
示すと第4図のようになる。
FIG. 3 shows a non-interference control block diagram and an equivalent block diagram as shown in FIG. 4.

このように塔頂部制御系と塔底fall制御系との間の
相互干渉を抑えるように、塔頂部および塔底部にそれぞ
れ独立した非干渉要素を導入して先行制御を行なわせる
ことにより、従来方式では塔頂部と塔底部の相互干渉の
ため数時間を要していた最適制御を、本実施例の方法で
は、数十分で行なうことができる。これにより、原料供
給量変化に対する過渡制御性を改善できるとともに、過
渡時におけるエネルギ損失も少なくすることができる。
In order to suppress mutual interference between the column top control system and the column bottom fall control system, independent non-interfering elements are introduced at the column top and column bottom to perform advance control, thereby reducing the conventional method. The method of this embodiment allows optimal control to be carried out in several tens of minutes, whereas it would take several hours due to mutual interference between the top and bottom of the column. As a result, it is possible to improve the transient controllability with respect to changes in the amount of raw material supplied, and also to reduce energy loss during the transition.

しかも、塔頂部および塔底部における製品としては、均
一で良質な製品を得ることが可能となる。
Furthermore, it is possible to obtain uniform and high-quality products at the top and bottom of the tower.

比較例 塔頂部制御系と塔底部制御系との相互干渉をなくすため
、第5図のように塔頂部制御系と塔底部1jIg#系の
間に非干渉要素GM9  、GMIOを導入することが
考えられる。しかし、このシステムは、理論的には可能
であるが1次のような問題点があり実用化は困難である
。すなわち、 (1)干渉の影響時間が長く、非干渉要素の設計が難し
い0例えば、リフラックス流@ L *を変化させてか
ら塔底製品組成に影響を与えるまでに数十分間以上かか
る。
Comparative Example In order to eliminate mutual interference between the tower top control system and the tower bottom control system, it is considered to introduce non-interfering elements GM9 and GMIO between the tower top control system and the tower bottom 1jIg# system as shown in Figure 5. It will be done. However, although this system is theoretically possible, it is difficult to put into practical use due to first-order problems. That is, (1) The influence of interference is long and it is difficult to design non-interfering elements. For example, it takes several tens of minutes or more after changing the reflux flow @L* until it affects the bottom product composition.

(2)プロセス負荷によって非干渉要素が非線形に変わ
り、場合によっては安定に制御するためのものが大きな
外乱となって悪#ツをおよぼすことになる。
(2) Non-interference elements change non-linearly due to process load, and in some cases, what is meant to be stably controlled becomes a large disturbance and causes trouble.

[発明の効果] 以上のように、本発明の蒸留塔の制御方法によれば、塔
頂部制御系と塔底i1制御系との相互干渉をなくすこと
ができるので、短時間のうちに最適制御が可鋤となり、
原料供給量変化に対する過渡制御性の改gを図れるなど
優れた効果を有する。
[Effects of the Invention] As described above, according to the distillation column control method of the present invention, mutual interference between the column top control system and the column bottom i1 control system can be eliminated, so optimal control can be achieved in a short time. becomes a plow,
It has excellent effects such as improving transient controllability with respect to changes in raw material supply amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例方法を説明するための装こ例のプ
ロセスフローシート、第2図(a)および(b)は第1
図の塔頂部制御系および塔底部制御系のブロック線図、
第3図は干渉要素設計方法を説明するための非干渉制御
ブロック線図、第4図は第3図の等価ブロック線図、第
5図は比較例を示すプロセスフローシート、第6図は従
来例のプロセスフローシートを示す。 10:蒸留塔          ll:塔頂部12:
レシーバ         21:塔底部z2:リポイ
ラ GFI  、GF2  :フィードフォワード要素G 
M + 、 G M 2 、 G M s 、 G M
 b 、 G M r 、G M a:非干渉要素
FIG. 1 is an example process flow sheet for explaining the method according to the present invention, and FIGS. 2(a) and (b) are the first
A block diagram of the tower top control system and tower bottom control system in the figure,
Figure 3 is a non-interference control block diagram for explaining the interference element design method, Figure 4 is an equivalent block diagram of Figure 3, Figure 5 is a process flow sheet showing a comparative example, and Figure 6 is a conventional An example process flow sheet is shown. 10: Distillation column ll: Column top 12:
Receiver 21: Tower bottom z2: Repoiler GFI, GF2: Feedforward element G
M+, GM2, GMs, GM
b, G M r , G M a: non-interference element

Claims (3)

【特許請求の範囲】[Claims] (1)原料供給量によるフィードフォワード要素GF_
1の出力と塔頂製品純度によるリフラックス流量の出力
とを加算してリフラックス流量を調節する塔頂部制御系
、および、原料供給量によるフィードフォワード要素G
F_2の出力と塔底製品純度によるリボイラ温度の出力
とを加算してリボイラ温度を調節する塔底部制御系を有
する蒸留塔制御系において、塔頂部制御系および塔底部
制御系に、それぞれ非干渉要素で演算した調節計の出力
を加算して、塔頂部制御系および塔底部制御系をそれぞ
れ独立して制御することを特徴とした蒸留塔の制御方法
(1) Feedforward factor GF_ by raw material supply amount
A tower top control system that adjusts the reflux flow rate by adding the output of 1 and the output of the reflux flow rate depending on the purity of the tower top product, and a feedforward element G depending on the raw material supply amount.
In a distillation column control system having a column bottom control system that adjusts the reboiler temperature by adding the output of F_2 and the output of the reboiler temperature depending on the purity of the column bottom product, non-interfering elements are installed in the column top control system and the column bottom control system, respectively. A method for controlling a distillation column, characterized in that a column top control system and a column bottom control system are each independently controlled by adding the outputs of the controllers calculated in .
(2)塔頂部制御系において、前記フィードフォワード
要素FG_1の出力と塔頂製品純度の出力を加算した出
力を、非干渉要素GM_6に通してレシーバレベル調節
計出力に加算させるとともに、このレシーバレベル調節
計出力を、非干渉要素GM_5を通して前記フィードフ
ォワード要素GF_1の出力と塔頂製品純度の出力の加
算値に加算することを特徴とした特許請求の範囲第1項
記載の蒸留塔の制御方法。
(2) In the tower top control system, the output obtained by adding the output of the feedforward element FG_1 and the output of the tower top product purity is added to the receiver level controller output through the non-interference element GM_6, and the receiver level is adjusted. The method for controlling a distillation column according to claim 1, characterized in that the measured output is added to the sum of the output of the feedforward element GF_1 and the output of the purity of the column top product through a non-interference element GM_5.
(3)塔底部制御計において、塔底レベル調節計出力を
、非干渉要素GM_7を通して前記フィードフォワード
要素GF_2と塔底製品純度の出力の加算値によるリボ
イラ調節計出力に加算させ、このリボイラ温度調節計出
力を、非干渉要素GM_8を通して前記塔底レベル調節
計出力に加算したことを特徴とした特許請求の範囲第1
項または第2項記載の蒸留塔の制御方法。
(3) In the tower bottom controller, the output of the tower bottom level controller is added to the reboiler controller output based on the sum of the feedforward element GF_2 and the output of the bottom product purity through the non-interference element GM_7, and the reboiler temperature is adjusted. Claim 1, characterized in that the measured output is added to the tower bottom level controller output through a non-interference element GM_8.
The method for controlling a distillation column according to item 1 or 2.
JP8546286A 1986-04-14 1986-04-14 Control method of distillation column Expired - Lifetime JPH0640922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8546286A JPH0640922B2 (en) 1986-04-14 1986-04-14 Control method of distillation column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8546286A JPH0640922B2 (en) 1986-04-14 1986-04-14 Control method of distillation column

Publications (2)

Publication Number Publication Date
JPS62241502A true JPS62241502A (en) 1987-10-22
JPH0640922B2 JPH0640922B2 (en) 1994-06-01

Family

ID=13859548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8546286A Expired - Lifetime JPH0640922B2 (en) 1986-04-14 1986-04-14 Control method of distillation column

Country Status (1)

Country Link
JP (1) JPH0640922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326301A (en) * 1989-06-26 1991-02-04 Mitsui Petrochem Ind Ltd Method for controlling composition of distillate
WO2007021912A2 (en) * 2005-08-15 2007-02-22 Praxair Technology, Inc. Model predictive control having application to distillation
JP2008043890A (en) * 2006-08-17 2008-02-28 Idemitsu Kosan Co Ltd Method and system for controlling purity in distilling column

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326301A (en) * 1989-06-26 1991-02-04 Mitsui Petrochem Ind Ltd Method for controlling composition of distillate
WO2007021912A2 (en) * 2005-08-15 2007-02-22 Praxair Technology, Inc. Model predictive control having application to distillation
WO2007021912A3 (en) * 2005-08-15 2008-02-07 Praxair Technology Inc Model predictive control having application to distillation
JP2008043890A (en) * 2006-08-17 2008-02-28 Idemitsu Kosan Co Ltd Method and system for controlling purity in distilling column

Also Published As

Publication number Publication date
JPH0640922B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US8828324B2 (en) Fluidized bed reactor systems and distributors for use in same
CA2096999A1 (en) Stabilization and Control of Surface Sagd Production Wells
JPS62241502A (en) Method for controlling distillation column
US10851459B2 (en) Dichlorosilane compensating control strategy for improved polycrystalline silicon growth
CN108151548B (en) Alternate acknowledge pool and running water method between a kind of heating furnace variable
CN102923709A (en) Feeding system for polycrystalline silicon production, and method thereof
CN113772674A (en) Control method for polycrystalline silicon production reduction furnace
JP3849445B2 (en) Automatic control system for hydrogenation reactor
CN102101672A (en) Control method for stably adjusting purity of trichlorosilane
CN215655179U (en) Fluidized bed material extraction system
SU1101427A1 (en) System for controlling glass melting in tank furnace
KR100275791B1 (en) Method of crystalization of edta4na
JPH0221281B2 (en)
JP3320758B2 (en) Method for optimizing control of mass transfer zone in distillation column
SU969325A2 (en) Method for automatically controlling thermal processing of high-melting materials
JP2550205B2 (en) Air separation method and device
SU956546A2 (en) Method for automatically controlling operation of muitiple-stream pyrolysis furnace
JPH03153537A (en) Production of quartz glass ingot
JPS6061003A (en) Device for controlling top temperature of distillation tower
SU1474156A1 (en) Method of controlling oxime isomerization process
CN113371717A (en) Method for preparing polysilicon by sectional control
SU991373A1 (en) Automatic adjusting system having leading speed signal
JPH0433738B2 (en)
JPH0341755B2 (en)
SU946684A2 (en) Method of automatic control of raw material hydrothermic processing in cyclone unit