JPS6224130A - Refractive index measuring apparatus - Google Patents

Refractive index measuring apparatus

Info

Publication number
JPS6224130A
JPS6224130A JP60163000A JP16300085A JPS6224130A JP S6224130 A JPS6224130 A JP S6224130A JP 60163000 A JP60163000 A JP 60163000A JP 16300085 A JP16300085 A JP 16300085A JP S6224130 A JPS6224130 A JP S6224130A
Authority
JP
Japan
Prior art keywords
refractive index
thin film
laser
transparent thin
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60163000A
Other languages
Japanese (ja)
Inventor
Katsutaro Ichihara
勝太郎 市原
Noburo Yasuda
安田 修朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60163000A priority Critical patent/JPS6224130A/en
Publication of JPS6224130A publication Critical patent/JPS6224130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the measurement of the refractive index of a transparent thin film at a high accuracy, by gauging the refractive index of the film with the known thickness handily in a wide range of wavelength from ultraviolet to infrared rays. CONSTITUTION:The title apparatus is provided with a substrate 1, a transparent thin film 2, a holder 3, a support base 4, a scale 5, an auxiliary scale 6, a laser 9 a photo detector (PD) 10, a laser driving source 11, an output monitor 12 and the like. Then, with the incident angle and the reflection angle theta set, for example, at 15Deg, this monitors the output of the DP 10 with time, moving to the side of larger at the rate of 6[Deg/min] synchronizing mobile bases 7 and 8. Here, the laser 9 oscillates continuously. Thus, the refractive index of the thin film can be measured at a relatively high accuracy with a simple and inexpensive equipment construction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸着法、スパッタ法、プラズマGつ法、熱C
VD法等の乾式法、スピンコード法等の湿式法で基体上
に成膜された誘電体、有機樹脂。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a vapor deposition method, a sputtering method, a plasma G method, a thermal C
Dielectrics and organic resins formed on substrates by dry methods such as the VD method or wet methods such as the spin code method.

透明導電体等の屈折率を測定する装置に関するもので、
特に膜厚が既知である場合に有用な屈折率測定装置を提
供するものである。
This relates to a device for measuring the refractive index of transparent conductors, etc.
The present invention provides a refractive index measuring device that is particularly useful when the film thickness is known.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

透明薄膜の屈折率を測定する装置としてはエリプソメー
ターが代表的であ!7、未知の膜厚のサンプルに対して
も精度良く屈折率を測定する事ができるが、エリプソメ
ーターの有する問題点として(1)装置コストが高い(
1)データ処理が繁雑である(11す測定波長に制限さ
れ、特lこ長波長(例えば780nm、833r1m等
の半導体レーザ波長〕側の測定ができない、があげられ
る。これらの問題点の内。
An ellipsometer is a typical device for measuring the refractive index of transparent thin films! 7. The refractive index can be measured accurately even for samples with unknown film thickness, but the problems with the ellipsometer are (1) the equipment cost is high (
1) Data processing is complicated (limited to 11 measurement wavelengths, in particular cannot measure long wavelengths (for example, semiconductor laser wavelengths such as 780 nm, 833r1m, etc.).Among these problems.

特に(明番目の半導体レーザ波長に対する屈折率が測定
できないという欠点は例えば光学式記録媒体の媒体構造
を最適化する場仕の道具として使えない事を意味し、実
用上甚々その適用分野が限定されている。エリプソメー
ターを使わずに薄膜の屈折率を導出する方法としては、
例えば同一材質の反射型基体上に、異なる膜厚の透明薄
膜を形成しその垂直入射に対する反射率と膜厚との関係
から二側定波長とかける)を使用するものがあげられる
が、この方法ではflVl嗅厚の異なるサンプルを別バ
ッヂで形成して用意しなければならないのでパッチ間の
膜質のパラつきの影響を回避し得ない。
In particular, the drawback of not being able to measure the refractive index for light semiconductor laser wavelengths means that it cannot be used as a tool for optimizing the media structure of optical recording media, for example, which severely limits its field of practical application. As a method to derive the refractive index of a thin film without using an ellipsometer,
For example, there is a method in which transparent thin films of different thicknesses are formed on a reflective substrate made of the same material, and the two-side constant wavelength is calculated from the relationship between the reflectance for normal incidence and the film thickness. In this case, samples with different flVl olfactory thicknesses must be formed and prepared as separate badges, so it is impossible to avoid the influence of variations in membrane quality between patches.

(■)反射率Rと膜厚tの関係をプロットして、  t
minをグラフイヤルに読み取らねばならないので誤差
が大きいといった欠点がある。
(■) Plot the relationship between reflectance R and film thickness t, and calculate t
Since min must be read graphically, there is a drawback that the error is large.

〔発明の目的〕[Purpose of the invention]

本発明は、上記し九従来の屈折率測定装置あるいは測定
法の有する問題点に鑑みてなされ友ものであシ、暎厚が
既知である透明薄膜の屈折率を紫外から赤外lこ亘る幅
広い波長領域で簡便に測定し得る屈折率装置を提供する
事を目的としている。
The present invention was made in view of the above-mentioned problems with conventional refractive index measuring devices and methods. The purpose of this invention is to provide a refractive index device that can easily measure in the wavelength region.

〔発明の概要〕[Summary of the invention]

本発明の透明薄膜の簡易型測定装置は光学的にフラット
な反射面、特に屈折率の波長依存性が必要な際には反射
面の分光反射率分布がフラットに近いA/、i、Nl、
Ti、SUS、St等の金属研摩面又は蒸着面上に膜厚
が既知である透明薄膜が形成されている被測定体の膜面
側から、この膜面に垂直な方向に対して0(DeF)〜
90(Deal)  の方向から、測定用単色光を入射
し、被測定体よりの反射光の強度を検出して、この強度
の入射角依存から透明薄膜の屈折率を測定するものであ
り、装置構成としては1例えば測定光源としての半導体
レーザ、入射角調節用のジグ、被測定体を固定する支持
台1反射光量を検出するPIN−フォトダイオード、ダ
イオードの出力を電気信号lこ変換する光電変換素子、
入射角測定の為のメーターがあれば充分であ11めて簡
単である。被測定体の透明薄膜の屈折率nは未知である
が、通常1.0 (n (3,0となってi3シ、この
場合の透明薄膜の厚さt[mi口](cosθ〈1〕と
するのが好ましく%例えば8331100A程度以上あ
れば充分である。又1100A未満の遵でもθを充分大
きくとれば測定が可卵である(但し薄くなればなる程測
定精度は低下する)。
The simple measuring device for transparent thin films of the present invention uses an optically flat reflecting surface, especially when the wavelength dependence of the refractive index is required, the spectral reflectance distribution of the reflecting surface is close to flat A/, i, Nl,
0 (DeF ) ~
90 (Deal), the measurement monochromatic light is incident, the intensity of the reflected light from the object to be measured is detected, and the refractive index of the transparent thin film is measured from the incidence angle dependence of this intensity. The configuration includes 1, for example, a semiconductor laser as a measurement light source, a jig for adjusting the incident angle, a support base for fixing the object to be measured, 1 a PIN-photodiode for detecting the amount of reflected light, and a photoelectric conversion for converting the output of the diode into an electrical signal. element,
It is sufficient to have a meter for measuring the angle of incidence, and it is simple. The refractive index n of the transparent thin film of the object to be measured is unknown, but it is usually 1.0 (n (3,0, i3), and the thickness of the transparent thin film in this case t [mi] (cos θ〈1〕 For example, it is sufficient if it is about 8331100A or more.Also, even if the value is less than 1100A, if θ is made sufficiently large, measurement is possible (however, the thinner the thickness, the lower the measurement accuracy).

又、特lこ膜厚lこ上限は有さないが、入射角の分解能
が余り良ぐない場合は1μm以下より好ましくは300
0A以下とすれば1次の消光角から口を測定できるので
精度が高い。
In addition, there is no particular upper limit to the film thickness, but if the resolution of the incident angle is not very good, it is preferably 1 μm or less, preferably 300 μm or less.
If it is 0 A or less, the mouth can be measured from the first-order extinction angle, resulting in high accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明の透明薄膜の簡易型屈折率測定装置によれば単線
で安価な装置構成によって、透明薄膜の屈折率を比較的
精度よく測定できる。
According to the simple refractive index measuring device for transparent thin films of the present invention, the refractive index of transparent thin films can be measured with relatively high accuracy using a single wire and inexpensive device configuration.

〔発明の実施例〕[Embodiments of the invention]

以下1図面を参照して本発明の透明薄膜の簡易型屈折率
測定装置を詳細に説明する。第1図は本発明の一実施例
の構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A simple refractive index measuring device for transparent thin films according to the present invention will be explained in detail below with reference to one drawing. FIG. 1 is a block diagram of an embodiment of the present invention.

第1図において、(1)はSi研摩基板、(2)はその
上に熱的CVD法によって成模し九1500Aの5lx
OyNz 11%(3)は固定用つめ、(4)は支持台
、(5)は角度目盛シが1 (Den)刻みでつけられ
た半円周形スケール、(6)は補助半円周形ジグ、(7
)はモーターとこのモーターによって回転しかつスケー
ル(5)に接しているゴム車輪を有するレーザー移動台
、(8)は(7)と同一機能のPD移動台%(9)は波
長833〔1m〕の半導体レーザ、(1)はPINフォ
トディテクター(PD)、(11ンはレーザ駆動源、 
 (12)はPD出力の時間変化モニターである。上記
構成lこよって、先ず入射角及びに反射角θを15De
jlに設定し、移動台+7> 、 f8)を同期して6
 [DeJF/m1n)の速度でθの大きい側へ移動し
ながらPDの出力を時間的にモニターしていった。この
時、レーザ(9)は2mwで連続発振させ九、第2図は
モニター(12)の横軸を入射角θに変換して、フォト
ディテクターの出力Rとθの関係を描いたものである。
In Fig. 1, (1) is a Si polished substrate, (2) is a 5lx of 91500A modeled on it by thermal CVD method.
OyNz 11% (3) is a fixing pawl, (4) is a support base, (5) is a semicircular scale with angle graduations in 1 (Den) increments, (6) is an auxiliary semicircular scale Jig, (7
) is a laser moving table that has a motor and a rubber wheel that is rotated by this motor and is in contact with scale (5), (8) is a PD moving table that has the same function as (7) % (9) has a wavelength of 833 [1 m] (1) is a PIN photodetector (PD), (11 is a laser drive source,
(12) is a time change monitor of PD output. According to the above configuration, first, the incident angle and the reflection angle θ are set to 15De
jl, and synchronize the moving table +7>, f8) to 6
While moving toward the larger θ side at a speed of [DeJF/m1n), the output of the PD was monitored over time. At this time, the laser (9) was continuously oscillated at 2 mW. Figure 2 shows the relationship between the photodetector's output R and θ by converting the horizontal axis of the monitor (12) into the incident angle θ. .

θは初期値の15 Dew−最大60 Delまでの範
囲で測定した。Rが極小となるθminの値は、39(
t:膜厚、λ:波長ンからnを導出すると、ロー1.7
9  となる。測定量の妥当性を調べる為に、これと同
じ嗅のFT−IR分析を行なった(基板はFZ−・S1
ウェファ−を使用した〕所、主吸収ピーク波長は10.
7μmであフ、[文献]J、Elec−trochem
、 8 QC: 80LID 5TATE 5CIFn
(J 、voll15゜No、3.p311.Marc
h、1968  に開示されるBrown等の実験結果
と一致した。
θ was measured in the range from the initial value of 15 Dew to a maximum of 60 Del. The value of θmin at which R becomes the minimum is 39 (
When n is derived from t: film thickness, λ: wavelength, Rho 1.7
It becomes 9. In order to examine the validity of the measured quantities, we performed the same olfactory FT-IR analysis (the substrate was FZ-・S1
When a wafer was used, the main absorption peak wavelength was 10.
7 μm, [Reference] J, Elec-trochem
, 8 QC: 80LID 5TATE 5CIFn
(J, vol15°No, 3.p311.Marc
This was consistent with the experimental results of Brown et al.

上記実施例では、光源に833 [nm〕の半導体レー
ザを使用したが本発明は、測定光の波長に制約されず、
Ar+レーザ、He−Neレーザ、エキシマレーザ−1
色票レーザ、窒素レーザ等のレーザあるいはハロゲンラ
ンプとモノクロメータ−を組み合わせた波長可変型の光
源等が使用できる。又、−実施列として具体的に試作し
た81!1図の構成も本発明の主旨゛を逸脱しない範囲
で自由に構成を変化でき得る。
In the above embodiment, an 833 [nm] semiconductor laser was used as the light source, but the present invention is not limited by the wavelength of the measurement light.
Ar+ laser, He-Ne laser, excimer laser-1
A laser such as a color chart laser, a nitrogen laser, or a wavelength variable light source that is a combination of a halogen lamp and a monochromator can be used. Further, the structure shown in FIG. 81!1, which was specifically produced as a prototype as a - implementation sequence, can be freely changed without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

装置を用い念測定結果の一例である。 1・・・基体、2・・・透明薄嗅、3・・・おさえ、4
・・・支持台、5・・・スケール、6・・・補助スケー
ル、9・・・レーザ、10・・・フォトディテクター、
11・・・レーザ駆動源、12・・・出力モニター。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 第1図 第2図
This is an example of the results of a mental measurement using the device. 1...Base, 2...Transparent light smell, 3...Suppression, 4
...Support stand, 5...Scale, 6...Auxiliary scale, 9...Laser, 10...Photodetector,
11... Laser drive source, 12... Output monitor. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 光学的に平滑でかつ単色光を反射する基体面上に、膜厚
が既知である透明薄膜が形成されている被測定体と、こ
の被測定体を固定する保持体と、前記被測定体の透明薄
膜の形成されている面側に単色光を膜面に垂直な方向に
対して0〔Deg〕〜90〔Deg〕の範囲で可変な方
向から入射する手段と、被測定体よりの反射光の強度を
検出し透明薄膜の屈折率を測定することを特徴とする屈
折率測定装置。
[Scope of Claims] An object to be measured in which a transparent thin film of known thickness is formed on an optically smooth substrate surface that reflects monochromatic light, and a holder for fixing this object to be measured. , means for making monochromatic light incident on the side of the surface of the object to be measured on which the transparent thin film is formed from a variable direction in the range of 0 [Deg] to 90 [Deg] with respect to the direction perpendicular to the film surface; A refractive index measuring device that measures the refractive index of a transparent thin film by detecting the intensity of reflected light from a measuring object.
JP60163000A 1985-07-25 1985-07-25 Refractive index measuring apparatus Pending JPS6224130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163000A JPS6224130A (en) 1985-07-25 1985-07-25 Refractive index measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163000A JPS6224130A (en) 1985-07-25 1985-07-25 Refractive index measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6224130A true JPS6224130A (en) 1987-02-02

Family

ID=15765291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163000A Pending JPS6224130A (en) 1985-07-25 1985-07-25 Refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6224130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221497A (en) * 2001-01-25 2002-08-09 Dainippon Printing Co Ltd Instrument for inspecting light reflecting object, usage of the same and inspection method for inspecting light reflecting object
US7765888B2 (en) 2004-11-15 2010-08-03 Jtekt Corporation Steering apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221497A (en) * 2001-01-25 2002-08-09 Dainippon Printing Co Ltd Instrument for inspecting light reflecting object, usage of the same and inspection method for inspecting light reflecting object
JP4627596B2 (en) * 2001-01-25 2011-02-09 大日本印刷株式会社 Light reflector inspection device, method of using the same, and light reflector inspection method
US7765888B2 (en) 2004-11-15 2010-08-03 Jtekt Corporation Steering apparatus

Similar Documents

Publication Publication Date Title
US5241366A (en) Thin film thickness monitor
JP5368507B2 (en) Surface characteristic analysis system with self-calibration function
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5293214A (en) Apparatus and method for performing thin film layer thickness metrology by deforming a thin film layer into a reflective condenser
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
US4873430A (en) Method and apparatus for optically measuring characteristics of a thin film by directing a P-polarized beam through an integrating sphere at the brewster's angle of the film
US6734968B1 (en) System for analyzing surface characteristics with self-calibrating capability
US6804003B1 (en) System for analyzing surface characteristics with self-calibrating capability
US5291269A (en) Apparatus and method for performing thin film layer thickness metrology on a thin film layer having shape deformations and local slope variations
US5337150A (en) Apparatus and method for performing thin film layer thickness metrology using a correlation reflectometer
JPH0224502A (en) Film-thickness measuring method
US4453828A (en) Apparatus and methods for measuring the optical thickness and index of refraction of thin, optical membranes
CN105066889A (en) A portable thin film thickness measuring device and a film thickness measuring method thereof
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
JPH09119812A (en) Method and device for featuring multilayered film structure and measuring distance between two planes directly facing film thereof
JPH0815130A (en) Fourier transform phase modulation spectroellipsometry
SU1747877A1 (en) Interference method of measurement of the semiconductor layer thickness
JPS6224130A (en) Refractive index measuring apparatus
CN111076668A (en) Differential reflection spectrum measurement method for nano-thickness SiO2 thickness
JPH07110966A (en) Method and apparatus for measurement of warp of substance
JP2522480B2 (en) Refractive index measurement method
Hansen et al. Thickness and refractive index analysis of ellipsometry data of ultra-thin semi-transparent films
JPH11101739A (en) Ellipsometry apparatus