JPS6223949A - High strength alloy having high corrosion resistance - Google Patents

High strength alloy having high corrosion resistance

Info

Publication number
JPS6223949A
JPS6223949A JP16258985A JP16258985A JPS6223949A JP S6223949 A JPS6223949 A JP S6223949A JP 16258985 A JP16258985 A JP 16258985A JP 16258985 A JP16258985 A JP 16258985A JP S6223949 A JPS6223949 A JP S6223949A
Authority
JP
Japan
Prior art keywords
strength
alloy
corrosion resistance
corrosion
creep rupture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16258985A
Other languages
Japanese (ja)
Other versions
JPH0660365B2 (en
Inventor
Hiroyuki Doi
裕之 土井
Yoshinori Furukawa
古川 義徳
Hiroshi Fukui
寛 福井
Seishin Kirihara
桐原 誠信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60162589A priority Critical patent/JPH0660365B2/en
Publication of JPS6223949A publication Critical patent/JPS6223949A/en
Publication of JPH0660365B2 publication Critical patent/JPH0660365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength Ni alloy having high corrosion resistance and superior creep rupture strength and suitable for use as a material for a boiler for steam-power generation using coal as fuel by adding specified amounts of Cr and other elements to Ni. CONSTITUTION:An Ni alloy ingot consisting of, by weight, 0.03-0.15% C, 28-32% Cr, 0.2-0.8% Mn, 0.7-1.2% Si, 0.8-1.6% Mo, 0.6-1.5% Nb, 0.3-0.7% Al, 0.6-2.0% Ti and the balance >=58% Ni combined optionally with Fe or further contg. 0.03-0.5% one or more among Zr, Hf and Ta and having 0.3-0.7 weight ratio of Mn/Ti is rolled. The resulting plate is subjected to soln. heat treatment by heating at 1,185 deg.C for 10min and water cooling to obtain a high strength alloy having high corrosion resistance and >=11kgf/mm<2> creep rupture strength after the lapse of 10<5>hr at 700 deg.C. The alloy has 100-350mum grain size and is used as a material for a boiler for steam-power generation using coal as fuel and operated at 600-700 deg.C high temp. under high pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高温クリープ破断強度を向上せしめた耐熱合
金に係シ、特に石炭を燃料とする火力発電用蒸気ボイラ
等における蒸気温度600〜700℃程度の高温高圧化
での使用に好適な高強度・高耐食性合金に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a heat-resistant alloy with improved high-temperature creep rupture strength, particularly when the steam temperature is 600 to 700°C in steam boilers for thermal power generation using coal as fuel. This invention relates to a high-strength, high-corrosion-resistant alloy suitable for use at high temperatures and high pressures.

〔発明の背景〕[Background of the invention]

従来の石炭燃焼H?イラチューブ、特に過熱器管のよう
に燃焼ガス及び付着灰(主にアルカリ塩)による苛酷な
腐食環境下で使用される材料は、腐食によるチューブ外
壁とクリープ及び疲労損傷の相乗作用によって破壊に到
ることが多い。この腐食減肉の主な原因は、燃焼ガス中
に含まれるSO2と、燃焼灰に含まれる低融点のNa2
804 、に2804がチューブ外壁をアタックするこ
とによると考えられている。一方、最近の火力発電プラ
ントは、省資源−省エネルギー及び発電効率の向上とい
う点から、従来の重油燃焼から石炭燃焼への移行、蒸気
条件の高温・高圧化が強力に推進されているため、前述
の腐食環境がより厳しくなるばかりでなく、従来よりも
高い高温強度を有する材料が要求されている。
Conventional coal combustion H? Irate tubes, especially superheater tubes, are materials that are used in a severely corrosive environment due to combustion gas and attached ash (mainly alkali salts), which can lead to failure due to the synergistic effects of corrosion on the outer wall of the tube, creep, and fatigue damage. Often. The main causes of this corrosion thinning are SO2 contained in the combustion gas and low melting point Na2 contained in the combustion ash.
It is thought that this is due to the fact that 804 and 2804 attack the outer wall of the tube. On the other hand, recent thermal power plants have been strongly promoted to shift from conventional heavy oil combustion to coal combustion and to increase the temperature and pressure of steam conditions in order to conserve resources, conserve energy, and improve power generation efficiency. Not only is the corrosive environment becoming more severe, but materials with higher high-temperature strength than before are required.

ところで従来の石炭燃焼ボイラではチューブ外壁温度が
最高で600℃程度、蒸気圧力が246にη12程度で
ありたため、SU830 Q系ステンレス鋼、特にSU
S 316 、 SUS 321 、 SUS 347
等が使用されていた。これらのプラントにおいては、主
に長時間使用中の腐食による減肉及び水蒸気酸化が原因
となって、これにクリープや疲労による損傷が重畳して
破壊に到っていた。この燃焼ガス及び付着灰による腐食
に対する対策としては従来、チューブ外壁にクロマイソ
ング処理を施したり、希土類元素添加によシ密着性のよ
い緻密な安定被膜を形成させたり、また、低融点のアル
カリ塩の融点を高めることなどにより対処している。
By the way, in conventional coal-fired boilers, the maximum tube outer wall temperature was around 600°C and the steam pressure was around 246 η12, so SU830 Q series stainless steel, especially SU
S 316, SUS 321, SUS 347
etc. were used. In these plants, the main causes were thinning due to corrosion and steam oxidation during long-term use, which was combined with damage due to creep and fatigue, leading to destruction. Conventional countermeasures against corrosion caused by combustion gas and adhered ash include applying Chromisong treatment to the outer wall of the tube, adding rare earth elements to form a dense and stable film with good adhesion, and using low-melting-point alkali salts. This is being dealt with by increasing the melting point of the substance.

また、チューブ内壁の水蒸気酸化に対する対策としては
、ショットピーニング等を施すことによシ蒸気接触面の
結晶粒を細かくすることによυ対処している。
In addition, as a countermeasure against steam oxidation on the inner wall of the tube, shot peening or the like is used to make the crystal grains on the steam contact surface finer.

しかしながら、例えばクロマイソング処理やシWツ)ピ
ーニングについてみると、実プラントに適用する際の施
工技術や溶接による効果低減の問題がある。さらに、蒸
気条件の高温・高圧化によって使用環境が厳しくなって
いるため、素材自身が優れた耐高温ガス腐食性及び耐水
蒸気酸化性を有することが必要となってくる。また、高
温・高圧化によってチューブ設計寸法に対する設計強度
も上昇するため、上記耐食性とともに高温強度も重要な
要因となってくる。そのため、高温強度及び耐食性を兼
ね備えたNi、Cr含有量の高い合金が必要である。
However, when looking at, for example, chromisong treatment and peening, there is a problem of reduced effectiveness due to construction techniques and welding when applied to actual plants. Furthermore, as the usage environment has become harsher due to higher temperature and higher pressure steam conditions, the material itself needs to have excellent high temperature gas corrosion resistance and steam oxidation resistance. Furthermore, as the temperature and pressure increase, the design strength relative to the tube design dimensions also increases, so high-temperature strength becomes an important factor as well as the above-mentioned corrosion resistance. Therefore, an alloy with high Ni and Cr contents is required that has both high temperature strength and corrosion resistance.

このような合金としては、鉄基合金としてSup@rt
herm(27Cr−36Ni −15Co )、イン
コロイ800 (21Cr−36Ni−0,4Al−0
,4TI )%があるが、前者についてはチューブへの
加工、溶接に問題があり、後者については若干強度が不
足している。また、ガスタービン用材料のNi基合金や
CO基合金は多くのものが鋳鋼であシ、引抜き加工によ
るシームレス管を製造することが困難であるばかりでな
く、時効硬化型のT/析出強化型合金においては溶接が
不可能でおる。したがって、高強度−高耐食性合金とし
てはCr量が高く、高温長時間加熱後も安定なオーステ
ナイト組織を有し、引抜き加工1曲げ加工、溶接性を考
慮して溶体化処理まで十分高温強度の得られる材料が必
要である。
As such an alloy, Sup@rt is an iron-based alloy.
herm (27Cr-36Ni-15Co), Incoloy 800 (21Cr-36Ni-0,4Al-0
, 4TI)%, but the former has problems in processing and welding into tubes, and the latter has slightly insufficient strength. In addition, many Ni-based alloys and CO-based alloys used in gas turbine materials are cast steel, which not only makes it difficult to manufacture seamless pipes by drawing, but also makes it difficult to manufacture seamless pipes by drawing. Alloys cannot be welded. Therefore, as a high-strength, high-corrosion-resistant alloy, it has a high Cr content and a stable austenitic structure even after long-term heating at high temperatures. material is required.

高Cr−N1合金で強度・耐食性を有する合金として例
えば、特開昭52−92818号公報に示されるように
、  Crを重量比で10〜40%、Alを0.5〜5
%、Tiを0,5〜5%含むN1基合金でNi、 (A
l、TI )すなわちr′相を時効析出することによシ
強度を得る合金があるが、この種のr′析出強化型合金
では上記のように施工過程に問題があるためがイラチュ
ーブとしては不適当である。また、特開昭50−124
822号公報に示される「耐熱、耐食性のすぐれたN1
−Cr合金」はTiとhtの含有量が1.8〜2.8チ
と高く、さらにC。
As a high Cr-N1 alloy having strength and corrosion resistance, for example, as shown in JP-A-52-92818, Cr is 10 to 40% by weight and Al is 0.5 to 5% by weight.
%, Ni, (A
There are alloys that obtain strength by aging precipitation of the r' phase, but this kind of r' precipitation-strengthened alloy has problems in the construction process as described above, so it cannot be used as a flat tube. It's inappropriate. Also, JP-A-50-124
"N1 with excellent heat resistance and corrosion resistance" shown in Publication No. 822
-Cr alloy' has a high Ti and HT content of 1.8 to 2.8 Ti, and also C.

を16〜24チ含むNi基合金で前者同様時効析出強化
型合金であ夛、やはシ〆イラチューブとしては不適当で
ある。特開昭47−22823号公報に示される「クロ
ム−ニッケル合金」はCrf40〜55チ含みNb、T
a、Ti t−添加したNi基合金であり、この合金は
窒化物生成元素を添加して、高温長時間加熱後の室温に
おける延性低下を抑制するというものでおり、?イラチ
ュー!、のような強度部材としCは適用困難である。さ
らに、特開昭52−68021号公報に示される「耐熱
性合金旧iNIを24〜53%、Crを20〜44チを
含み、C及び81高めの遠心鋳造管として石油化学工場
で使用されるパイプ等に使用されるものでる。り 、t
1’イラチューブに適用することは難かしい。
A Ni-based alloy containing 16 to 24 pieces of Ni, like the former, is an age-precipitation-strengthened alloy and is unsuitable for use as a silica tube. The "chromium-nickel alloy" disclosed in Japanese Patent Application Laid-open No. 47-22823 contains 40 to 55% of Crf, Nb, and T.
a, Ti t-added Ni-based alloy.This alloy has nitride-forming elements added to suppress the decrease in ductility at room temperature after long-term heating at high temperature. Irachu! It is difficult to apply C to strength members such as . Furthermore, as shown in Japanese Patent Application Laid-open No. 52-68021, "A heat-resistant alloy containing 24 to 53% of old iNI and 20 to 44% of Cr, used in petrochemical plants as centrifugally cast pipes with higher C and 81. It is used for pipes, etc.
It is difficult to apply to 1′ ira tubes.

以上のように、1%Cr −N1合金としては、その強
化因子からみると、ciを高くした遠心鋳造合金あるい
は高Al、TI添加の7゛′′析出型合金が主であるた
め、チューブの製造、加工性、溶接等の問題があり、ボ
イラチューブの素材としては適用が難かしい。そこで、
高Orのゲイラチューゾ材としては、現状ではインコネ
ル690が最適であるが、高温強度特にクリープ破断強
度が低いという問題点を有していた。
As mentioned above, in terms of strengthening factors, 1%Cr-N1 alloys are mainly centrifugal cast alloys with high ci or 7'''' precipitation type alloys with high Al and TI additions, so tubes can be There are problems with manufacturing, workability, welding, etc., making it difficult to use as a material for boiler tubes. Therefore,
Currently, Inconel 690 is optimal as a high-Or Geirachuso material, but it has the problem of low high-temperature strength, particularly low creep rupture strength.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、クリープ破断強度及び#を食性をも兼
ね備え、特に石炭を燃料とする火力発電用ボイラに用い
て好適な、高強度・高耐食性合金を提供することにある
An object of the present invention is to provide a high-strength, high-corrosion-resistant alloy that has both creep rupture strength and corrosion resistance, and is particularly suitable for use in coal-fired thermal power generation boilers.

〔発明の概要〕[Summary of the invention]

前記した目的を達成する本発明合金の特徴は、重量比で
、C: 0.03〜O,15q6、Cr:28〜32%
、Mn: 0.2〜0.8%、81: 07〜1.2 
%。
The characteristics of the alloy of the present invention that achieve the above-mentioned objects are: C: 0.03 to O, 15q6, Cr: 28 to 32% in weight ratio
, Mn: 0.2-0.8%, 81: 07-1.2
%.

Mo: 0.8〜1.6 q6、Nb:0.6〜1.5
%、A/=:0.3〜0.7%、Ti:0.6〜2.0
%、残部が少なくとも5896以上のN1、又は場合に
よシ歯と共にFeを含有し、および製造上不可避的に混
入する不純物からなり、全オーステナイト組織を有する
ところにある。また本発明の合金は、前記範囲内におい
て更に、高温長時間加熱後の炭化物の凝集粗大化を抑制
する効果をもつ元素として知られるZr。
Mo: 0.8-1.6 q6, Nb: 0.6-1.5
%, A/=: 0.3-0.7%, Ti: 0.6-2.0
%, the balance is at least 5896 N1 or more, or in some cases contains Fe together with a tooth, and is composed of impurities that are unavoidably mixed in during manufacturing, and has an entirely austenite structure. The alloy of the present invention further contains Zr, which is an element known to have the effect of suppressing the agglomeration and coarsening of carbides after high temperature and long-term heating, within the above range.

Hf、Taの内少なくとも1種以上を必要に応じて含有
させることができる。Zr、Hf、Taは粒界を強化す
るとともに、微細な炭化物を析出し、粒界におけるM2
3C6型炭化物の凝集粗大化による強度低化及び結晶粒
の粗大化を防止する。これを含有させる場合には前記抑
制の効果を得るに必要十分な含有量として、通常0.0
3〜0.5 %、好11. (ハon5〜0.1%の範
囲とすることがよい。
At least one or more of Hf and Ta can be contained as necessary. Zr, Hf, and Ta strengthen grain boundaries, precipitate fine carbides, and reduce M2 at grain boundaries.
Prevents strength reduction and crystal grain coarsening due to agglomeration and coarsening of 3C6 type carbides. When this is contained, the content is usually 0.0 as necessary and sufficient to obtain the above-mentioned suppressing effect.
3-0.5%, good 11. (It is preferable to set it in the range of 5 to 0.1%.

本発明において各合金元素の含有量を前記の如くする理
由は次の通りである。
The reason why the content of each alloying element in the present invention is set as described above is as follows.

Cはオーステナイト生成元素であるとともに、母相中に
固溶して高温強度を維持するのに有効である。また、M
o、Nb、Tf等と炭化物を形成し粒内に析出して高温
強度を向上させるが、Cの含有量・が0.03%未満で
はその効果が少なくなるとともにσ相を生成して脆化し
、高温長時間側のクリープ破断強度も著しく低下する。
C is an austenite-forming element, and is effective in maintaining high-temperature strength by being dissolved in the matrix. Also, M
C, Nb, Tf, etc., form carbides and precipitate within the grains, improving high-temperature strength. However, if the C content is less than 0.03%, this effect decreases and σ phase is generated, resulting in embrittlement. , the creep rupture strength at high temperatures for long periods of time is also significantly reduced.

また、0.15%をこえると、結晶粒界に炭化物が析出
、凝集粗大化して高温強度が低下するとともに、加工性
、溶接性を害し、さらに、耐食性向上に有効なCrをC
r Z s Cb型の炭化物として固定してしまうため
に、固溶Cr量が減少して結晶粒界近傍のCr欠乏相か
ら優先的に腐食が進行してしまう。以上のことよシ、C
の含有量は0.03〜0,15慢、特に0.04〜0.
08%の範囲が好ましい。
Moreover, if it exceeds 0.15%, carbides will precipitate at grain boundaries, aggregate and coarsen, resulting in a decrease in high-temperature strength and impairing workability and weldability.
Since it is fixed as r Z s Cb type carbide, the amount of solid solution Cr decreases and corrosion progresses preferentially from the Cr-deficient phase near the grain boundaries. That's all, C.
The content is between 0.03 and 0.15, especially between 0.04 and 0.
A range of 0.08% is preferred.

Niは、Crと共存して塑性加工性を高めるとともにオ
ーステナイト組織を安定化し、母相中に固溶して高温強
度を維持する元素であり、完全なオーステナイト組ll
&を得るには、Nt当量とCr当量との関係式から計算
したシェフラ線図よシすれば約28%以上必要とされる
が、Cr−Ni系あるいはFe −Cr −Ni系の合
金ではCr量が増大すると600〜800℃の範囲でσ
相を生成し7、伸び、絞シおよびクリープ強さが低下す
る(オーステナイトとフェライトの2相合金(r十α)
あるいは完全なオーステナイト(γ)であってもσ相が
生成する)。
Ni is an element that coexists with Cr to improve plastic workability and stabilize the austenite structure, and maintains high-temperature strength by being solid-solved in the matrix, creating a complete austenite structure.
According to the Schaeffler diagram calculated from the relational expression between Nt equivalent and Cr equivalent, approximately 28% or more is required to obtain &, but in Cr-Ni or Fe-Cr-Ni alloys, Cr As the amount increases, σ in the range of 600-800℃
7, elongation, drawing strength and creep strength decrease (two-phase alloy of austenite and ferrite (r1α))
Or even if it is completely austenite (γ), a σ phase is generated).

このσ相生成の抑制は、 NiとCrの1比に関係し。This suppression of σ phase generation is related to the ratio of Ni to Cr.

例えばCr量を30%程度含む合金では安定なオーステ
ナイト組織を有するためには約2倍相度のNi量が必要
である。
For example, in an alloy containing about 30% of Cr, in order to have a stable austenitic structure, an amount of Ni of about twice the phase degree is required.

また本発明においては、Ar、Tiを複合添加する仁と
により、高温で使用中にNi 3(Al、Ti )金属
間化合物すなわちr′相を析出させ、これによって高温
強度特にクリープ破断強度の向上する特徴的構成を有す
るが、r′の生成にはAl、Tiの添加量が影響すると
ともにNi量も重要な役割を果す。また、 cr量を3
0%と一定にした場合にNi系を20〜7゜チまで変化
した場合Ni iは多いt丘ど耐食性を改善する効果が
大きい。
In addition, in the present invention, by adding Ar and Ti in a composite manner, Ni 3 (Al, Ti) intermetallic compound, that is, r' phase, is precipitated during use at high temperatures, thereby improving high temperature strength, especially creep rupture strength. However, the amount of added Al and Ti affects the generation of r', and the amount of Ni also plays an important role. Also, the cr amount is 3
When the Ni system is kept constant at 0% and the Ni content is varied from 20 to 7 degrees, the Ni i has a large effect of improving corrosion resistance.

また更に本発明においては、η相の生成を抑制する点で
オーステナイト安定化元素とされるMnを、合金の加工
性を考慮して後述の如く低めているという特徴的な構成
も有している。
Furthermore, the present invention has a characteristic configuration in which the content of Mn, which is considered an austenite stabilizing element in suppressing the formation of the η phase, is lowered as described below in consideration of the workability of the alloy. .

したがって、これら種々のNi量増加の必要性から、N
iの含有量は少なくとも58%以上、特に60〜67q
6の範囲が好ましい。
Therefore, due to the need to increase the amount of Ni in various ways, N
The content of i is at least 58% or more, especially 60 to 67q
A range of 6 is preferred.

F6は、Niの一部に代替して含有させることができる
が、この場合にもNiは少なくとも58%以上必要であ
るので、特にF・を100重量%以下特に5重量%以下
が好ましい。
F6 can be contained in place of a part of Ni, but in this case as well, at least 58% or more of Ni is required, so it is particularly preferable that F. is 100% by weight or less, especially 5% by weight or less.

Crは優先酸化されて表面に密着性の良い保護被膜を生
成し耐酸化性を著しく改善するのに有効な元素である。
Cr is an element that is preferentially oxidized to form a protective film with good adhesion on the surface and is effective in significantly improving oxidation resistance.

十分な耐酸化性を得るには少なくとも28チ以上必要で
あり、η相の生成を抑制する観点から32チを越える添
加量は好ましくない。
In order to obtain sufficient oxidation resistance, at least 28 inches is required, and from the viewpoint of suppressing the formation of the η phase, it is not preferable to add more than 32 inches.

したがって、Crの含有蓋は28〜32チとされる。Therefore, the Cr content is 28 to 32 inches.

Siは脱酸作用があ)、脱酸剤として必要な元素である
とともに耐食性を改善する元素であるが、おま9多く添
加するとη相の生成を促進させて脆化するので、Stの
含有蓋は07〜1.2 % 、特に0.7〜1.0%の
範囲が好ましい。
Si has a deoxidizing effect) and is an element necessary as a deoxidizing agent and an element that improves corrosion resistance. However, if too much Si is added, it will promote the formation of the η phase and cause embrittlement. is preferably in the range of 0.7 to 1.2%, particularly 0.7 to 1.0%.

MnはSlと同様に脱酸剤として必要l「元素であシ、
製造上不可避的に混入する元素の一つであるSと結合し
てMnSを生成して高温割れを防止する元素であるが、
鍛造。圧延、引抜加工の工程によるシームレス管等の製
造を考慮した場合、Mnを必要以上に多くすると割れが
発生1〜やすくなる。また、81とは逆にMnはオース
テナイト安定化元素であシ高温強度の担い手となるため
、その含有蓋は0.2〜08%、特に、03〜07チの
範囲が好ましい。また、本発明材はその重要な強化因子
であるγ′相すなわちN1a(Al、TI)金属間化合
物を析出するためTIを添加してお、!l) 、Mn/
Ti比は特に限定はされるものではないが強度向上の観
点からはMn/Tiの垂蓋チ比で0.3〜0.7が好着
しい。
Like Sl, Mn is necessary as a deoxidizing agent.
It is an element that combines with S, which is one of the elements that are inevitably mixed in during manufacturing, to form MnS and prevent high-temperature cracking.
Forged. When considering the production of seamless pipes and the like through rolling and drawing processes, if Mn is increased more than necessary, cracks are more likely to occur. Further, contrary to 81, Mn is an austenite stabilizing element and is responsible for high-temperature strength, so its content is preferably in the range of 0.2 to 08%, particularly 03 to 07%. In addition, TI is added to the material of the present invention in order to precipitate the γ' phase, that is, the N1a (Al, TI) intermetallic compound, which is an important strengthening factor. l), Mn/
Although the Ti ratio is not particularly limited, from the viewpoint of improving strength, the Mn/Ti flap ratio is preferably 0.3 to 0.7.

Moは本発明における重要な元素であす、石炭燃焼ガス
に対する耐高温腐食性を劣化することなく、r固溶体の
基地を強化するとともに、その一部は炭化物として析出
し高温強度を向上させ且つ結晶粒界を強化する。さらに
強化因子となる炭化物及びγ′相の粒界への凝集粗大化
を抑制する効果がある・しかしながら、 Mo量が08
チ未満ではその効果が小さく、また1、6俤を越えると
、かえってη相の析出を助長し加工性が著しく低下する
。したがってMoの含有lは0.8〜1.6 %、特に
1,0〜1.3%の範囲が好ましい。
Mo is an important element in the present invention. Mo strengthens the solid solution base without deteriorating the high temperature corrosion resistance against coal combustion gas, and some of it precipitates as carbide to improve high temperature strength and strengthen crystal grains. strengthen the world. Furthermore, it has the effect of suppressing the agglomeration and coarsening of carbides and γ' phase, which are strengthening factors, at grain boundaries. However, when the amount of Mo is 0.8
If it is less than 1.6 mm, the effect is small, and if it exceeds 1.6 mm, the precipitation of the η phase will be promoted and the workability will be significantly reduced. Therefore, the Mo content is preferably in the range of 0.8 to 1.6%, particularly 1.0 to 1.3%.

Nbは、Si+Mn、Mo、あるいはTiと同様にη相
の生成を助長する元素であるが、炭化物を析出して高温
強度を向上させるのに有効である。また、微細で安定な
炭化物を形成し、高温で使用中の結晶粒の粗大化を防止
するとともに、r固溶体の基地に固溶しているCの移動
を抑制することによシ粒界への炭化物の凝集粗大化を抑
制する。しかしながら、Nb1lが0.6チ未満ではそ
の効果が小さく、また1、5係を越えると、η相を生成
してクリープ破断強度を低下させる。したがって、Nb
の含有量は0.6〜1.5q6、特に0.9〜1.3チ
の範囲が好ましい。
Nb, like Si+Mn, Mo, or Ti, is an element that promotes the formation of the η phase, and is effective in precipitating carbides and improving high-temperature strength. In addition, it forms fine and stable carbides, prevents coarsening of crystal grains during use at high temperatures, and suppresses the movement of C dissolved in the base of the r solid solution to the grain boundaries. Suppresses the agglomeration and coarsening of carbides. However, if Nb1l is less than 0.6 inches, this effect is small, and if it exceeds the 1.5 coefficient, η phase is produced and the creep rupture strength is reduced. Therefore, Nb
The content is preferably in the range of 0.6 to 1.5q6, particularly 0.9 to 1.3q.

AAは、耐酸化性の向上に有効であるとともに、本発明
の特徴であるγ′相の析出に寄与する元素である。通常
、TIとの複合添加によシ、N13/A/1.、TI)
金属間化合物を生成することによって高温強度向上に寄
与する。しかしながら、 Al量が0.3チ未満になる
とビ相に含まれるTi量が増加し、Ni3T+すなわち
η相を析出して著しく強度を低下させる。
AA is an element that is effective in improving oxidation resistance and also contributes to the precipitation of the γ' phase, which is a feature of the present invention. Usually, by combined addition with TI, N13/A/1. , T.I.)
Contributes to improved high-temperature strength by generating intermetallic compounds. However, when the amount of Al is less than 0.3 inches, the amount of Ti contained in the bi-phase increases and Ni3T+, that is, the η phase is precipitated, resulting in a significant decrease in strength.

また0、7%を越えると過剰のAlがAlNを析出し、
延性を著しく低下させる。したがってAlの含有量は0
.3〜0.7 s特ニ0.3〜0.5 %ノ範囲が好ま
しい。
Moreover, if it exceeds 0.7%, excess Al will precipitate AlN,
Significantly reduces ductility. Therefore, the Al content is 0
.. A range of 3 to 0.7%, particularly 0.3 to 0.5%, is preferred.

T1はNb 、 Moと同様に炭化物を生成し析出強化
して高温強度、延性を向上するとともに、Alとの複合
添加によリビ相を析出して高温強度を向上させる。この
効果が有効に働くのはAl/T lの比で0.2〜0,
5の範囲であり、0.2未満でおるとη相を析出するこ
とにより高温強度を著しく低下させる。
Like Nb and Mo, T1 forms carbides and strengthens by precipitation to improve high temperature strength and ductility, and when combined with Al, precipitates a ribbed phase to improve high temperature strength. This effect works effectively at an Al/T l ratio of 0.2 to 0,
If it is less than 0.2, the high temperature strength will be significantly lowered due to the precipitation of η phase.

また、0.5を越えると効果が小さくなってしまう。Moreover, if it exceeds 0.5, the effect becomes small.

また、2.0−を越えるとどの析出量が多くなり、延性
を著しく低下させる。したがってT1の含有量は0.6
〜2.OS特に0.9〜1.6チの範囲が好ましい。
On the other hand, if it exceeds 2.0, the amount of precipitates increases and the ductility is significantly reduced. Therefore, the content of T1 is 0.6
~2. The OS is particularly preferably in the range of 0.9 to 1.6 inches.

本発明合金は溶体化処理されたままの全オーステナイト
組織を有する。溶体化処理温度は1100〜1200℃
が好ましく、特に1170〜1190℃がよい。この範
囲で溶体化処理を行なうと結晶粒は約100〜350μ
mの範囲となる。結晶粒の大きさはクリープ破断強度に
大きく影響する。一般に同一鋼種でおれば結晶粒が大き
い程強度は高くなるが、大きくなりすぎると短時間強度
は高くなるが長時間で強度が低下する。そこで、熱処理
温度によって結晶粒を限定することによシ強度を得るこ
とが好ましく、前記溶体化処理によれば、700℃、 
io5時間クリープ破断強度はl 1 kgt7’■2
以上、あるいは750℃、 10  時間クリープ破断
強度は7kgf/mm以上の特性を示すものが得られる
。まえ、溶体化処理時に本発明材の強化因子である〆相
が体積比で0.5n程度析出しても影響はないが、通常
、溶体化処理は加熱後水冷によって急冷するため、溶体
化処理後ど相は認められない。
The alloy of the present invention has an all-austenitic structure as solution treated. Solution treatment temperature is 1100-1200℃
is preferable, particularly 1170 to 1190°C. If solution treatment is performed in this range, the crystal grains will be approximately 100 to 350 μm.
The range is m. Grain size greatly affects creep rupture strength. Generally, if the steel is of the same type, the larger the crystal grains, the higher the strength; however, if the grains are too large, the short-term strength will be high, but the long-term strength will decrease. Therefore, it is preferable to obtain strength by limiting the crystal grains depending on the heat treatment temperature, and according to the solution treatment, 700℃,
io5 hour creep rupture strength is l 1 kgt7'■2
A material exhibiting a creep rupture strength of 7 kgf/mm or more at 750° C. or 750° C. for 10 hours can be obtained. Although there is no effect even if the final phase, which is a strengthening factor of the present invention material, precipitates in a volume ratio of about 0.5n during solution treatment, normally solution treatment is rapidly cooled by water cooling after heating. Late phase is not allowed.

〔発明の実施例〕[Embodiments of the invention]

第1表に示す化学組成の本発明合金(NO,1〜N0.
5’)、および比較合金(NO,6〜No、 12 )
を、溶製−造塊−圧延して鋼板にし、溶体化処理を施し
た後、供試材とした。
The alloy of the present invention having the chemical composition shown in Table 1 (NO, 1 to NO.
5'), and comparative alloys (NO, 6 to No, 12)
was melted, ingot-formed and rolled into a steel plate, which was subjected to solution treatment and then used as a test material.

溶体化処理は、本発明合金N O,1〜5及び比較合金
N016〜9について1185℃X10rnln−水冷
、比較合金NO,10について1000℃×30 m1
n−水冷、比較合金NO,11について3150℃X 
30 m1n−水冷、比較合金NO,12について10
50℃X30m1n−水冷を夫々施したものである 次に溶体化処理を施した各供試材について、腐食試験と
クリープ破断試験を行って耐食性とクリニブ破断強度を
比較した。さらK、直径120m+長さ200圏の溶解
インゴットを3o關角材に鍛造したときの割れ発生を調
べ、鍛造性を比較した。
Solution treatment was carried out at 1185°C x 10rnln-water cooling for the present invention alloys NO, 1 to 5 and comparative alloys N016 to 9, and at 1000°C x 30 m1 for comparative alloys NO, 10.
n-Water cooling, 3150°C for comparative alloy NO, 11
30 m1n-water cooling, 10 for comparative alloy No. 12
Corrosion tests and creep rupture tests were conducted on the sample materials that had been subjected to water cooling at 50° C. x 30 ml and then subjected to solution treatment, and the corrosion resistance and crinib rupture strength were compared. Furthermore, the occurrence of cracks was investigated when a molten ingot with a diameter of 120 m and a length of 200 m was forged into a 3o square material, and the forgeability was compared.

なお、腐食試験は−E−/l/比でNa2SO4:に2
So4:Fe2O3の比が1.5:1.5:1からなる
混合物を供試材の表面に塗布し、730℃で11 so
2. i 0 % CO2゜5fiO2およびN2の混
合ガス中で100時間保持し、試験後の腐食減量をもっ
て耐食性を評価した。筐だ、700℃、750℃I 1
055時間クリーブ断強度は、700℃、750’C,
800℃のクリープ破断強度からラルソン争ミラーの/
?ラメータを用いて整理したもので評価した。また、鍛
造性は前記の如く実際の鍛造を行うことによって割れ発
生を調査することKよって評価した。
In addition, the corrosion test was conducted using Na2SO4:2 at the -E-/l/ratio.
A mixture consisting of So4:Fe2O3 in a ratio of 1.5:1.5:1 was applied to the surface of the test material, and heated at 730°C for 11 so
2. It was maintained in a mixed gas of i0% CO2°5fiO2 and N2 for 100 hours, and the corrosion resistance was evaluated based on the corrosion loss after the test. It's a cabinet, 700℃, 750℃I 1
055 hour cleave strength is 700℃, 750'C,
From the creep rupture strength of 800℃, Larson's /
? The evaluation was made by organizing the results using parameters. Further, forgeability was evaluated by conducting actual forging as described above and investigating the occurrence of cracks.

それらの結果を第2表、第3表及び第4表に示す。The results are shown in Tables 2, 3 and 4.

第2表に示す如く30チCr−60チNi系合金(供試
材N O,1−N O,9のものをいう:以下間じ)は
、比較合金のNO,] 0 (SU8310 )及びN
 O。
As shown in Table 2, the 30-inch Cr-60-nickel alloy (referring to the sample material NO, 1-NO, 9; hereinafter referred to as the blank) is the comparative alloy NO, ] 0 (SU8310) and N
O.

11(インコロイ800H)に比べて、それぞれ6倍、
3倍程度の耐食性を示し、比較合金N O,12(イン
コネル690)と同等の耐食性を示している。
11 (Incoloy 800H), respectively 6 times,
It exhibits about three times the corrosion resistance, and exhibits corrosion resistance equivalent to that of the comparative alloy NO,12 (Inconel 690).

また、第3表に示す如く、本発明合金のりQ−ゾ破断強
度は比較合金よりも高い値を示し、30%Cr−80%
姐系合金でも比較合金NO,6及びN008は長時間側
で強度が低下する傾向を示している。
Furthermore, as shown in Table 3, the Q-zo rupture strength of the alloy of the present invention was higher than that of the comparative alloy, with 30%Cr-80%
Comparative alloys NO, 6, and N008 also show a tendency for strength to decrease over a long period of time.

N4表は30 q6Or −604Ni系合金の鍛造性
評価を鍛造時の割れ発生によって評価した結果を示して
おり、本発明合金は鍛造による割れ発生は見られず、又
、比較合金の内強度の低いN O,6及びN O,8も
割れは発生しなかった。しかしながら、比較合金の内強
度の高1.−1NO47及びNO9は割れが発生した。
Table N4 shows the results of evaluating the forgeability of the 30q6Or-604Ni alloy based on the occurrence of cracks during forging. No cracking occurred in N 2 O, 6 and N 2 O, 8. However, the internal strength of the comparative alloys is 1. -1 Cracks occurred in NO47 and NO9.

第1図は、前記した第3表の結果で示される700℃及
び750℃の10’時間クリープ破断強度とMn量の関
係を示したものであり、この図より、Mn量は0.2〜
0,8チの範囲で高い強度を示し、特に、0、3〜0.
7%が好ましいことが理解される。また第2図は700
℃及び750℃(DIO−間クリープ破断強度とMn/
’1″1の関係を第1表および第3表に基づいて示した
ものであり、この図よ、j7 Mn/T1は0.3〜0
.7の範囲で高い強度を示すことが理解される。なお第
3図は、本発明合金NO,5と比較合金NO,8を例に
して、クリニブ破断強度とラルソン・ミラーの)母うメ
ータの関係を示したものであシ、この図から本発明合金
は比較合金より高い強度を示し、直線の傾きも緩やかで
あるという好ましい特性をもつことが理解される。
Figure 1 shows the relationship between the 10' hour creep rupture strength at 700°C and 750°C and the Mn content, as shown in the results of Table 3 above. From this figure, it can be seen that the Mn content is 0.2 to
It shows high strength in the range of 0.8 inches, especially in the range of 0.3 to 0.
It is understood that 7% is preferred. Also, Figure 2 shows 700
°C and 750 °C (DIO-creep rupture strength and Mn/
'1''1 relationship is shown based on Tables 1 and 3. In this figure, j7 Mn/T1 is 0.3 to 0.
.. It is understood that high strength is shown in the range of 7. In addition, Fig. 3 shows the relationship between the Clinib breaking strength and the Larson-Miller) motherboard meter using the present invention alloy No. 5 and the comparative alloy No. 8 as examples. It is understood that the alloy has favorable properties such as higher strength than the comparative alloys and a gentle slope of the straight line.

第2表 第  3  表 第4表 〔発明の効果〕 本発明によれば、例えば高温高圧の石炭燃焼ガス及び高
温蒸気の雰囲気下の使用において、耐高温腐食性に優れ
且つ高いクリープ破断強度を兼ね備え、また鍛造、圧延
、引抜加工によるチューブ等の製造に適した高強度・高
耐食性合金が得られ、特にこの合金を火力発電プラント
用石炭焚がイラチューブに適用することによって1発電
効率の向上1石炭の有効利用に極めて効果がある。
Table 2 Table 3 Table 4 [Effects of the Invention] According to the present invention, for example, when used in an atmosphere of high temperature and high pressure coal combustion gas or high temperature steam, it has excellent high temperature corrosion resistance and high creep rupture strength. In addition, a high-strength, high-corrosion-resistant alloy suitable for manufacturing tubes, etc. by forging, rolling, and drawing can be obtained, and in particular, by applying this alloy to Ira tubes for coal-fired thermal power plants, it is possible to improve power generation efficiency1. It is extremely effective in effectively utilizing coal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明合金例および比較合金例の700℃及
び750℃の105時間クリープ破断強度とMn fi
の関係を示す図、第2図は、同700℃及び750℃の
105時間クリープ破断強度とMn / T 1の関係
を示す図、第3図は、同クリープ破断強度とラルソン・
2ラーのパラメータの関係を示す図である。 第1図 第2図
Figure 1 shows the 105-hour creep rupture strength at 700°C and 750°C and the Mn fi
Figure 2 is a diagram showing the relationship between 105-hour creep rupture strength at 700°C and 750°C and Mn/T1, and Figure 3 is a diagram showing the relationship between creep rupture strength and Larson
FIG. 2 is a diagram showing the relationship between parameters of 2-color. Figure 1 Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)重量比で、C:0.03〜0.15%、Cr:2
8〜32%、Mn:0.2〜0.8%、Si:0.7〜
1.2%、Mo:0.8〜1.6%、Nb:0.6〜1
.5%、Al:0.3〜0.7%、Ti:0.6〜2.
0%、残部が実質的にNi、又はNiおよびFeであっ
て、Niは少なくとも58%以上含有され、全オーステ
ナイト組織を有することを特徴とした鍛造、圧延可能な
高強度・高耐食性合金。
(1) Weight ratio: C: 0.03 to 0.15%, Cr: 2
8-32%, Mn: 0.2-0.8%, Si: 0.7-
1.2%, Mo: 0.8-1.6%, Nb: 0.6-1
.. 5%, Al: 0.3-0.7%, Ti: 0.6-2.
1. A high-strength, high-corrosion-resistant alloy that can be forged and rolled, characterized in that the balance is essentially Ni, or Ni and Fe, containing at least 58% or more of Ni, and having an entirely austenitic structure.
(2)特許請求の範囲第(1)項において、Mn含有量
が0.3〜0.7%である高強度・高耐食性合金。
(2) A high-strength, high-corrosion-resistant alloy according to claim (1), having a Mn content of 0.3 to 0.7%.
(3)特許請求の範囲第(1)項において、Mn/Ti
の重量%比が0.3〜0.7である高強度・高耐食性合
金。
(3) In claim (1), Mn/Ti
A high-strength, high-corrosion-resistant alloy having a weight percent ratio of 0.3 to 0.7.
(4)特許請求の範囲第(1)項において、結晶粒の大
きさが100〜350μmである高強度・高耐食性合金
(4) The high-strength, high-corrosion-resistant alloy according to claim (1), wherein the crystal grain size is 100 to 350 μm.
(5)特許請求の範囲第(1)項において、700℃、
10^5時間クリープ破断強度が11kgf/mm^2
以上である高強度・高耐食性合金。
(5) In claim (1), 700°C;
10^5 hour creep rupture strength is 11kgf/mm^2
High strength and high corrosion resistance alloy.
(6)特許請求の範囲第(1)項において、750℃、
10^5時間のクリープ破断強度が7kgf/mm^2
以上である高強度・高耐食性合金。
(6) In claim (1), 750°C;
Creep rupture strength for 10^5 hours is 7kgf/mm^2
High strength and high corrosion resistance alloy.
(7)重量比で、C:0.03〜0.15%、Cr:2
8〜32%、Mn:0.2〜0.8%、Si:0.7〜
1.2%、Mo:0.8〜1.6%、Nb:0.6〜1
.5%、Al:0.3〜0.7%、Ti:0.6〜2.
0%、Zr、HfおよびTaの1種又は2種以上の合計
で0.03〜0.5%、残部が実質的にNi、又はNi
およびFeであって、Niは少なくとも58%以上含有
され、全オーステナイト組織を有することを特徴とした
鍛造、圧延可能な高強度・高耐食性合金。
(7) Weight ratio: C: 0.03 to 0.15%, Cr: 2
8-32%, Mn: 0.2-0.8%, Si: 0.7-
1.2%, Mo: 0.8-1.6%, Nb: 0.6-1
.. 5%, Al: 0.3-0.7%, Ti: 0.6-2.
0%, the total of one or more of Zr, Hf and Ta is 0.03 to 0.5%, the remainder is substantially Ni or Ni
and Fe, containing at least 58% or more of Ni, and having an entirely austenitic structure.
JP60162589A 1985-07-23 1985-07-23 High strength / high corrosion resistance alloy Expired - Lifetime JPH0660365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162589A JPH0660365B2 (en) 1985-07-23 1985-07-23 High strength / high corrosion resistance alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162589A JPH0660365B2 (en) 1985-07-23 1985-07-23 High strength / high corrosion resistance alloy

Publications (2)

Publication Number Publication Date
JPS6223949A true JPS6223949A (en) 1987-01-31
JPH0660365B2 JPH0660365B2 (en) 1994-08-10

Family

ID=15757459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162589A Expired - Lifetime JPH0660365B2 (en) 1985-07-23 1985-07-23 High strength / high corrosion resistance alloy

Country Status (1)

Country Link
JP (1) JPH0660365B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459035B2 (en) 2003-06-13 2008-12-02 Hitachi, Ltd. Steam turbine rotor and steam turbine plant
JP2013527805A (en) * 2010-03-31 2013-07-04 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Nickel-based alloy, welding material formed from the alloy, and use of welding material in welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459035B2 (en) 2003-06-13 2008-12-02 Hitachi, Ltd. Steam turbine rotor and steam turbine plant
JP2013527805A (en) * 2010-03-31 2013-07-04 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Nickel-based alloy, welding material formed from the alloy, and use of welding material in welding method

Also Published As

Publication number Publication date
JPH0660365B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JP4484093B2 (en) Ni-base heat-resistant alloy
JP4697357B1 (en) Austenitic heat-resistant alloy
US6060180A (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
US4463061A (en) Boiler tube having improved high temperature mechanical strength, improved high temperature corrosion resistant property and resistance to embrittlement during service
US5849111A (en) Duplex stainless steel
WO2009158332A2 (en) Ni-co-cr high strength and corrosion resistant welding product and method of preparation
JP4154885B2 (en) Welded joint made of Ni-base heat-resistant alloy
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JPS6184359A (en) Heat resistant austenitic cast steel
JP2002226946A (en) Martensitic heat-resistant alloy having excellent high temperature creep rupture strength and ductility and production method therefor
US4689279A (en) Composite containing nickel-base austenitic alloys
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPH07331390A (en) High chromium austenitic heat resistant alloy
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JPS6223949A (en) High strength alloy having high corrosion resistance
JPH0454737B2 (en)
USRE28772E (en) High strength corrosion-resistant stainless steel
JP2002331387A (en) Welding wire for highly touch martensite based-stainless steel
JP2561592B2 (en) Welding material for high Cr ferritic heat resistant steel
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
US3573034A (en) Stress-corrosion resistant stainless steel
JP3254002B2 (en) High temperature bolt material
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel