JPS62238828A - Carbon fiber for composite material - Google Patents

Carbon fiber for composite material

Info

Publication number
JPS62238828A
JPS62238828A JP30237886A JP30237886A JPS62238828A JP S62238828 A JPS62238828 A JP S62238828A JP 30237886 A JP30237886 A JP 30237886A JP 30237886 A JP30237886 A JP 30237886A JP S62238828 A JPS62238828 A JP S62238828A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
coefficient
water
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30237886A
Other languages
Japanese (ja)
Other versions
JPH0444016B2 (en
Inventor
Takashi Tada
多田 尚
Masahiro Saruta
猿田 雅弘
Takashi Murata
村田 多加志
Akira Agata
県 昭
Setsuo Kashiyama
樫山 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JPS62238828A publication Critical patent/JPS62238828A/en
Publication of JPH0444016B2 publication Critical patent/JPH0444016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fiber having excellent mechanical properties, especially compressive strength after impact (CAI), by specifying the content of oxygen-containing functional group on the surface, a water-extractable coefficient and an expansion coefficient of the tow. CONSTITUTION:A carbon fiber having an oxygen-containing functional group content (O1S/C1S) of 0.05-0.3 on the surface measured by X-ray photoelectron spectrometry, a water-extractable coefficient of <=2.0 and an expansion coefficient of two of >=1X10<-3>. The fiber can be produced e.g. by charging 1g of a fiber with electrical charge of 60-600 coulomb, oxidizing the fiber surface with an aqueous solution of nitric acid or heat-treatment at 100-200 deg.C for 1-5min in air containing 1-5vol% O3, washing the surface-oxidized fiber with water of e.g. 4-12 pH and, if necessary, applying a sizing agent (e.g. bisphenol A diglycidyl ether) preferably in an amount of <=0.01wt%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は機械的特性、特に衝撃後の圧縮強度特性に優れ
た炭素41維複合材料に有効な炭素INに関するもので
あり、本発明の炭素繊維を用いた複合材料は航空機をは
じめ、自@J東、一般工業用に広く使用しうるちのであ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to carbon IN which is effective for carbon-41 fiber composite materials having excellent mechanical properties, particularly compressive strength properties after impact. Composite materials using fibers are widely used in aircraft, Japan, and general industrial applications.

〔従来の技術〕[Conventional technology]

従来の炭素繊維複合材料に用いる炭素Il維は出発繊維
としてポリアクリロニトリル系プレカーサーを用いる場
合、まず酸化雰囲気下200〜300℃で耐臭化処理し
、次いで不活性雰囲気下で炭素化して後、一般には気相
もしくは液相酸化してマトリックスとのIIW性を上げ
、次いで後加工での糸切れや毛羽立ちを抑える為、適当
なサイジング剤で処理したものを用いることが誘過であ
る。
When using a polyacrylonitrile precursor as a starting fiber, carbon Il fibers used in conventional carbon fiber composite materials are first treated with odor resistance at 200 to 300°C in an oxidizing atmosphere, then carbonized in an inert atmosphere, and then generally is oxidized in gas phase or liquid phase to improve IIW properties with the matrix, and then treated with an appropriate sizing agent in order to suppress thread breakage and fluffing in post-processing.

しかし、これらの炭素繊維を用いた複合材料は未だに糸
とマトリックスとの接着性が充分でなく、特に衝撃後圧
縮強度(CA I )は、ヨーロッパ公開特許1332
81号公報表■実施例35にみられる通り、68.1に
9/crtr (= 15001b in/in)の衝
撃後で193.2xlO3kPa  (=19.7に9
/rtm2’)のレベルが一般的であり、この実施例3
5に示されるような耐熱性の高いマトリックスを使用し
てのCAIの向上は極めて困難な状況にある。
However, composite materials using these carbon fibers still do not have sufficient adhesion between the yarn and the matrix, and in particular, the compressive strength after impact (CA I) is
No. 81 Publication Table■ As seen in Example 35, after an impact of 68.1 to 9/crtr (= 15001b in/in), 193.2xlO3kPa (=19.7 to 9
/rtm2') level is common, and this Example 3
It is extremely difficult to improve CAI using a highly heat-resistant matrix as shown in No. 5.

又、CA[向上の為にヨーOツバ公開特許133280
号公報の実施例6.7.8では平均値として45.3k
si  (=31. ENKF/rMA2)の性能が1
9られているが、この複合材はプリプレグの居間にイン
ターリーフ(1nterleaf)という高靭性の層を
入れたものであり、その層の介在の為にm雑容積含有率
が上らず、又プリプレグに面の方向性があり、扱い性に
劣るものであった。
Also, CA [Yo O Tsuba Public Patent 133280 to improve
In Example 6.7.8 of the publication, the average value is 45.3k.
The performance of si (=31.ENKF/rMA2) is 1
However, this composite material has a highly tough layer called interleaf in the prepreg, and because of the presence of this layer, the miscellaneous volume content does not increase, and the prepreg The surface had a certain directionality, making it difficult to handle.

一方、航空機業界では機体等の軽量化の目的からCAI
を27Kg/cm2以上とする要求があり、これを満足
させるために特別の層を含まぬ複合材の開発が望まれて
いる。
On the other hand, in the aircraft industry, CAI is used for the purpose of reducing the weight of aircraft, etc.
There is a demand for 27 kg/cm2 or more, and in order to satisfy this demand, it is desired to develop a composite material that does not include a special layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは上述の如き問題点に鑑み、鋭意検討した結
果、後述の如旦特定条件を満足する酸化処理された炭素
繊維を用いることにより同一のマトリックス樹脂を用い
るにも拘らず、その衝撃後の圧縮強度を著しく向上しう
ろことを見出゛し、本発明を完成した。
In view of the above-mentioned problems, the inventors of the present invention have made extensive studies and found that by using carbon fibers that have been oxidized and satisfies the specific conditions described below, even though the same matrix resin is used, the impact The present invention was completed by discovering a scale that significantly improves the subsequent compressive strength.

(問題点を解決するための手段〕 本発明の要旨とするところは、複合材料用炭素mgとし
て、X線光電子分光法によって測定される表面の酸素含
有官能基量(O1S/C15)が0.05〜0.30で
あり、水抽出物係数が2.0以下より好ましくは0.5
以下であり、トウの拡がり係数がlX10’以上であっ
て、好適にはサイジング剤付11iが0.1wt%以下
である炭素v&維を用いることにより、同一のマトリッ
クス樹脂を用いるにも拘らず、その衝撃後圧縮強度を著
しく向上せしめることにある。
(Means for Solving the Problems) The gist of the present invention is that the amount of oxygen-containing functional groups (O1S/C15) on the surface measured by X-ray photoelectron spectroscopy is 0.5 mg as carbon for composite materials. 05 to 0.30, and the water extractable coefficient is 2.0 or less, preferably 0.5
By using carbon v&fiber with a tow spreading coefficient of 1X10' or more and preferably 0.1wt% or less of 11i with a sizing agent, even though the same matrix resin is used, The object is to significantly improve the compressive strength after impact.

本発明で言う水油出物係数は、炭素繊維1〜59を内径
8〜16αのビーカーに入れ、蒸留水を炭素繊維の11
倍(重量比)投入してこれを種内容1ft298 (幅
)X155(奥行)X152(深さ#1I11>、槽内
水温50th5℃の超音波洗浄礪(発振周波数43に1
1z、高周波出力90−)に入れて10分間洗浄し、次
いで上澄み液を回収して1 crrrのセル長の石英’
FJtJVセルに入゛れ、対照液に蒸留水を入れてUV
分光光度計により187〜400rvを走査し、200
nmの吸光度(アプソーバンス)を求め、この吸光度を
ここでは水抽出物係数と呼ぶ。
The water-oil extrusion coefficient referred to in the present invention is calculated by placing carbon fibers 1 to 59 in a beaker with an inner diameter of 8 to 16α, and adding distilled water to the carbon fibers 11 to 59.
(weight ratio) and put it into an ultrasonic cleaning tank (oscillation frequency 43 to 1
1z, high frequency power 90-) for 10 minutes, then the supernatant was collected and a 1 crrr cell length quartz cell was washed for 10 minutes.
Put it in the FJtJV cell, add distilled water as a control solution and apply UV light.
Scan from 187 to 400 rv with a spectrophotometer, and
The absorbance in nm is determined, and this absorbance is referred to herein as the water extract coefficient.

本発明の拡がり係数は第1図に示す通り撚りを戻したト
ウをデニール当り75Iqの張力をかけ50φのバー(
表面加工硬質クロムメッキ#200梨地加工)に対し入
角30’出角45°で線速度ITrL/winで通した
時のパース上の拡がり巾を測定(#III+)シ、それ
をトウデニールで割った値として求めるものである。又
、バー1.2の距離は30 cm、バー2.3の距離は
50cI11である。
The spreading coefficient of the present invention is determined by applying a tension of 75 Iq per denier to the untwisted tow as shown in Fig. 1 with a 50φ bar (
Surface treatment Hard chrome plating #200 (matte finish) was passed through at an entry angle of 30° and an exit angle of 45° at a linear speed of ITrL/win, and the width on the perspective was measured (#III+) and divided by the toe denier. It is determined as a value. Also, the distance between bar 1.2 is 30 cm, and the distance between bar 2.3 is 50 cI11.

対象とする炭素m維は、ポリアクリロニトリル系プレカ
ーサー、ピッチ系プレカーサーいずれから得られるもの
であってもよく、その引張り弾性率ハ1つtOn/mm
l#+2以上、引張す強度t、t 25 OK!j/M
2以上、引張り伸度1.5%以上のものである。
The targeted carbon fibers may be obtained from either a polyacrylonitrile precursor or a pitch precursor, and their tensile modulus is 1tOn/mm.
l#+2 or more, tensile strength t, t 25 OK! j/M
2 or more, and the tensile elongation is 1.5% or more.

本発明の炭素amは、X線光電子分光法によって求めら
れる炭素繊維表面の酸素含有官能基量(01,/C1,
)が0.05〜0.30のものであることが必要である
The carbon am of the present invention has an oxygen-containing functional group amount (01, /C1,
) is required to be 0.05 to 0.30.

0.05未満ではマトリックス樹脂と炭素繊維との接着
性が不足し0.30を越えると繊維強度が低下する為望
ましくない。酸素含有官能基量が0.05〜0.30の
炭素繊維を得るためには、液相処理の場合は、例えば硝
酸水溶液中で処理槽の直前に配置した金属性ガイドロー
ラーを介して炭素tdAHに+IjJ電圧を印加し処理
液中に配した白金製陰穫板との間に炭素繊維1g当り6
0〜600クーロンの電気mを負荷する方法、あるいは
気相処理の場合は、例えば100〜200℃のオゾン1
〜5 vo1%を含む空気雰囲気中で1〜5分処理する
方法等が挙げられる。
If it is less than 0.05, the adhesion between the matrix resin and carbon fibers will be insufficient, and if it exceeds 0.30, the fiber strength will decrease, which is not desirable. In order to obtain carbon fibers having an oxygen-containing functional group content of 0.05 to 0.30, in the case of liquid phase treatment, carbon tdAH 6 per gram of carbon fiber between a platinum shield plate placed in the treatment solution and a +IjJ voltage applied to the
In the case of a method of loading electricity m of 0 to 600 coulombs, or in the case of gas phase treatment, for example, ozone 1 of 100 to 200 °C
Examples include a method of processing for 1 to 5 minutes in an air atmosphere containing 1 to 5 vol%.

これらの表面処理を施した炭素繊維は一般に直ちにサイ
ジング剤で処理されるが、その拡がり係数が1 X 1
0−3に上となるようにサイジング剤と量の関係が満足
されれば、特にサイジング剤の種類は特定されない。い
ずれにしてもマトリックスとの相溶性の高いものが望ま
しい。拡がり係数が1×10−3未満のときは、トウ内
繊維の開繊が不充分となりマトリックス樹脂との接着性
を阻害するので好ましくない。
These surface-treated carbon fibers are generally immediately treated with a sizing agent, but the spreading coefficient is 1 x 1
The type of sizing agent is not particularly specified as long as the relationship between the sizing agent and the amount is satisfied such that it is above 0-3. In any case, it is desirable that the material has high compatibility with the matrix. When the spreading coefficient is less than 1×10 −3 , the fibers within the tow are not sufficiently opened, which impairs the adhesion with the matrix resin, which is not preferable.

上記の条件を満足するサイジング剤の付@陽はQ、1w
t%以下より好ましくは0.01’llt%以下である
With sizing agent that satisfies the above conditions @Yang is Q, 1w
It is less than t%, preferably less than 0.01'llt%.

サイジング剤付着量はJIS  R760168,2V
t酸洗浄法を用いて測定する。
Sizing agent adhesion amount is JIS R760168, 2V
Measure using the acid washing method.

サイジング剤付着聞が0.1wt%を越えると、トウの
拡がり性が悪くなり局部的に繊維と繊維が接着している
為にその部分へのマトリックス樹脂の浸透が阻害される
傾向を示すが、トウを熱風で一度解繊したり、バーを通
して解繊したり又張力下の繊維を叩いて解繊する方法等
を単一もしくは組合せることにより解繊して、拡がり係
数を1×10−3のレベルに上げられるものであれば0
.1wt%より多量のサイジング剤の付着があっても差
支えない。ここで使用するサイジング剤は、マトリック
ス樹脂と馴染み易いという点からビスフェノールAジグ
リシジルエーテル又はそのビスフェノール八との反応物
、あるいはそのグリシジル基をエチレンオキシドから得
られるポリエーテルアルコールと反応させた下記一般式
のような化合物が望ましい。
If the amount of sizing agent attached exceeds 0.1 wt%, the spreadability of the tow deteriorates and fibers locally adhere to each other, which tends to inhibit the penetration of the matrix resin into those areas. The tow is defibrated once with hot air, defibrated through a bar, or defibrated by hitting the fibers under tension, either singly or in combination, to achieve a spreading coefficient of 1 x 10-3. 0 if it can be raised to the level of
.. There is no problem even if more than 1 wt% of the sizing agent is attached. The sizing agent used here is bisphenol A diglycidyl ether or its reaction product with bisphenol 8, or the following general formula in which the glycidyl group is reacted with a polyether alcohol obtained from ethylene oxide, because it is easily compatible with the matrix resin. Such compounds are desirable.

上C 巴−δ よ−一 己 巳 本発明の水抽出物係数が2.0より大である場合には、
炭素繊維の表面に比較的弱い結合力の層が生成しており
、この層を介してマトリックス樹脂が結合する為、特に
衝撃力に対してその弱い結合力の層が破壊すると考えら
れる。
Upper C Tomoe-δ Yo-Ikkimi When the water extractable coefficient of the present invention is greater than 2.0,
A layer of relatively weak bonding force is formed on the surface of the carbon fiber, and the matrix resin is bonded through this layer, so it is thought that the layer of weak bonding force is destroyed especially by impact force.

従ってこの層をより減少することが好ましく、そのレベ
ルは水抽出物係数として2.0以下であることが必要で
ある。
Therefore, it is preferable to further reduce this layer, and its level needs to be 2.0 or less as a water extractable coefficient.

炭素mMiの水抽出物係数を減少するには、炭素繊維を
製造後、表面酸化処理をした後、例えばpH4〜12の
水もしくは水湿液で洗浄する方法が有効である。この洗
浄時超音波洗浄を併用したり更に加熱したりすることは
有効であり、又誘電h11熱を利用することも有効であ
る。
In order to reduce the water extractable coefficient of carbon mmi, it is effective to perform a surface oxidation treatment on the carbon fiber after manufacturing it, and then wash it with water or a water wet solution having a pH of 4 to 12, for example. During this cleaning, it is effective to use ultrasonic cleaning in combination or to further heat it, and it is also effective to use dielectric h11 heat.

〔実簾例〕[Example of real curtain]

以下実施例により、本発明を具体的に説明する。 The present invention will be specifically described below with reference to Examples.

衝撃後圧縮強度の測定は次の方法によった。The post-impact compressive strength was measured by the following method.

NASA  RP  1092に準拠して、パネル寸法
4″X6″X0.25″の板を3″×5″の穴のあいた
スチール製台上に固定した後、その中心に1/2″Rの
ノーズをつけた4、9Kgの分銅を落下せしめ、板厚1
inch当り15001binの衝撃を加えた後そのパ
ネルを圧縮試験することにより、衝撃後圧縮強度を求め
る。
In accordance with NASA RP 1092, a board with panel dimensions of 4" x 6" x 0.25" was fixed on a steel stand with a 3" x 5" hole, and a 1/2" R nose was placed in the center. A weight of 4.9 kg attached was dropped, and the thickness of the plate was 1.
After applying an impact of 15,001 bins per inch, the panel is subjected to a compression test to determine the post-impact compressive strength.

実施例1 アクリロニトリル98wt%、アクリル酸メチル1wt
%、メタクリルM 1 wt%の組成を有する比粘度[
ηSt)]=0.20の重合体をジメチルホルムアミド
を溶媒として湿式紡糸を行ない、引き続き湯浴上5倍に
延伸し、水洗後乾燥して更に乾熱170℃で1.3倍に
延伸して1.2デニールの繊度を有するフィラメント数
6000のアクリル繊維を得た。
Example 1 Acrylonitrile 98wt%, methyl acrylate 1wt
%, specific viscosity with a composition of methacrylic M 1 wt% [
ηSt)]=0.20 was wet-spun using dimethylformamide as a solvent, then stretched 5 times on a hot water bath, washed with water, dried, and further stretched 1.3 times with dry heat at 170°C. Acrylic fibers having a fineness of 1.2 denier and having 6000 filaments were obtained.

X線回析より求められるtaIiの配向度口は90.3
%であった。
The orientation degree of taIi determined by X-ray diffraction is 90.3
%Met.

このアクリル繊維を220℃−240℃−260℃の3
段階の温度ブOファイルを有する熱風循環型の耐炎化炉
を600分間通過しめて耐炎化処理を行なうに際し、繊
維の密度が1.22g/cm3に達するまでに回転ロー
ルの速度差によって15%の伸長を与え、その後繊維と
接触する回転ロールの速度を等速に固定することにより
、繊維の局部的収縮を抑制して耐炎化処理を終了した。
This acrylic fiber was heated at 220℃-240℃-260℃
During the flame-retardant treatment by passing through a hot-air circulating type flame-retardant furnace with a temperature-controlled O file for 600 minutes, the fibers elongate by 15% due to the speed difference of the rotating rolls until the fiber reaches a density of 1.22 g/cm3. was applied, and then the speed of the rotating roll in contact with the fibers was fixed at a constant speed, thereby suppressing local shrinkage of the fibers and completing the flame-retardant treatment.

次に該耐炎化繊維を純粋なN2気流中600℃の第1炭
素化炉中を3分間通過せしめるに際して10%の伸長を
加え、さらに同雰囲気中1200℃の最i0i温度を有
する第2炭素化炉中において400部g/デニールの張
力下に熱処理を行ない引張り強度503Kff/mar
  、弾性率24  ton/ mm 2、密度1.7
9(1/cc、目イ」0.4g/TrLの物性を有する
炭素繊維(I−a>を得た。
The flame-retardant fibers are then passed through a first carbonization furnace at 600°C in a pure N2 stream for 3 minutes, elongated by 10%, and then subjected to a second carbonization process in the same atmosphere with a maximum i0i temperature of 1200°C. Heat treated in a furnace under a tension of 400 parts g/denier, resulting in a tensile strength of 503 Kff/mar.
, elastic modulus 24 ton/mm2, density 1.7
A carbon fiber (I-a>) having physical properties of 9 (1/cc, 0.4 g/TrL) was obtained.

上で得られた炭素繊維は次いで200℃の1.8容量%
03を含む空気中にトウの状態で3分滞在せしめて後、
外径70鴫のステンレス製穴明き紙管にi ooom、
巻きとり後、浴比1/20で清水中に放置し、放置時間
を変えて水抽出物像@2.5.0.8.0.7.0.5
の各レヘルノ炭素11維(I−b)を1nた。この時の
炭素繊維の表面酸素含有官能Walk (015/C1
,) ハ0.15〜0.20であった。次いでこの炭素
繊維をエピコート834(油化シェル社製ビスフェノー
ルA型エポキシ樹脂)をメチルエチルケトンに溶解した
溶液に通すことによりサイジング剤付着患0.01.0
.07.0.2.0.5各W(%の炭素繊維(I−c)
を得た。
The carbon fibers obtained above were then heated to 1.8% by volume at 200°C.
After being allowed to stay in the tow state for 3 minutes in air containing 03,
iooom in a stainless steel perforated paper tube with an outer diameter of 70 mm.
After winding, it was left in clean water at a bath ratio of 1/20, and the water extract image @2.5.0.8.0.7.0.5 was obtained by changing the standing time.
1 n of each Leherno carbon 11 fiber (I-b) was prepared. Surface oxygen-containing functional walk of carbon fiber at this time (015/C1
,) was 0.15 to 0.20. Next, this carbon fiber was passed through a solution of Epicoat 834 (bisphenol A type epoxy resin manufactured by Yuka Shell Co., Ltd.) dissolved in methyl ethyl ketone to reduce the chance of sizing agent adhesion.
.. 07.0.2.0.5 each W (% carbon fiber (I-c)
I got it.

得られた表1に示す各種炭素Il雑に特公昭60−17
289号公報の実施例1に記載されたマトリックス樹脂
のメチルエチルケトン溶液(エポキシ樹脂(ハ)(エピ
コート828、シェル化学製)100部に4.4′ジア
ミノジフ工ニルスルホン9部を加え、隈伴器つき加熱容
器に入れて内温150℃で攪拌下4時間重合せしめ、重
合後水冷したパネル上へ薄膜上に吐出し、重合停止し、
得られた予1ii綜合物@100部に対し、N−(3・
4−ジクロロフェニル)−N’−N’ −ジメチル尿素
3部を加え、50℃で攪拌混合してペースト状物を1q
、このペースト状物60部をメチルエチルケトン40部
と混合し、均一溶液としたもの)を含浸しつつ、ドラム
に巻きつけた後、乾燥し、次いで切り開くことにより、
一方向プリプレグ(糸目付145s/m  、樹脂含有
率33wt%)を得た。
The obtained various carbon materials shown in Table 1 were
To 100 parts of the matrix resin methyl ethyl ketone solution (epoxy resin (III) (Epicote 828, manufactured by Shell Chemical Co., Ltd.) described in Example 1 of Publication No. 289, 9 parts of 4.4'diaminodiphenyl sulfone was added, and the mixture was heated with a shank. The mixture was placed in a container and polymerized for 4 hours with stirring at an internal temperature of 150°C. After polymerization, the mixture was discharged onto a thin film onto a water-cooled panel to stop the polymerization.
N-(3.
Add 3 parts of 4-dichlorophenyl)-N'-N'-dimethylurea and stir and mix at 50°C to make 1q of paste.
, 60 parts of this paste-like material was mixed with 40 parts of methyl ethyl ketone to form a homogeneous solution) and wound around a drum, dried, and then cut open.
A unidirectional prepreg (thickness: 145 s/m 2 , resin content: 33 wt%) was obtained.

このプリプレグを [+4510/−45/90] 4sの受環方性に積層
し、180℃で2vF間硬化させ複合材パネルを得た。
This prepreg was laminated in an annular orientation of [+4510/-45/90] 4s and cured for 2vF at 180°C to obtain a composite panel.

そのコンポジットの繊維容積含有率は表1の通りであっ
た。その後、衝撃後圧縮強度を求めた。結果を併せて表
1に示した。本結果より水抽出物係数が低いこと、拡が
り係数の大きいこと、又、サイジング剤付着量が低い炭
素繊維が高い衝撃後圧縮強度を与えることが明らかであ
る。
The fiber volume content of the composite was as shown in Table 1. Thereafter, the compressive strength after impact was determined. The results are also shown in Table 1. From these results, it is clear that carbon fibers with a low water extractable coefficient, a large spreading coefficient, and a low amount of sizing agent attached provide high compressive strength after impact.

実施例1、比較例1のII後圧縮試験の試験片の破断面
の電子類ta鏡写真(各900倍)を第2及び第3図に
示す。この写真より糸とマトリックスの)B W性が水
hb出物係数の違いにより大きく変わり、水抽出物係数
の大きいものの接着性が低いことが明らかである。
FIGS. 2 and 3 show electronic mirror photographs (each magnified at 900 times) of the fracture surfaces of the test pieces of the II post-compression test of Example 1 and Comparative Example 1. It is clear from this photograph that the BW properties (of the yarn and the matrix) vary greatly depending on the water-HBB extraction coefficient, and that those with a high water-extractable coefficient have low adhesion.

実施例5〜8、比較例5〜8 実施例1において、使用する炭素繊維として2%lil
’1M水溶液中で糸1g当り200クーロンの電気量を
流すことにより、陽極酸化してその後湯洗して表面酸素
含有官能基ffl (01,/C1,)が0.18〜0
.22のものを用いて、又使用するマトリックス樹脂と
して、特開昭59−215314号公報の実施例4の組
成物を用いる他は実施例1と同様にして表2の結果を得
た。
Examples 5 to 8, Comparative Examples 5 to 8 In Example 1, 2% lil was used as the carbon fiber.
'By passing 200 coulombs of electricity per gram of thread in a 1M aqueous solution, it is anodized and then washed with hot water to reduce the surface oxygen-containing functional group ffl (01,/C1,) from 0.18 to 0.
.. The results shown in Table 2 were obtained in the same manner as in Example 1, except that the composition of Example 4 of JP-A-59-215314 was used as the matrix resin.

実施例9〜12、比較例9〜12 実施例1において使用するマトリックス樹脂としてヨー
ロッパ公開特許133281号公報の実施例2の組成物
を用いる他は同様にして表3の結果を得た。
Examples 9 to 12, Comparative Examples 9 to 12 The results shown in Table 3 were obtained in the same manner as in Example 1, except that the composition of Example 2 of European Patent Publication No. 133281 was used as the matrix resin.

比較例13 実施例1で得た炭素繊維(I−a)を200℃の1.8
容1%03を含む空気中にトウの状態で0.5分、8分
滞在させることにより酸化処理をした復、実施例1の通
り清水処理して水抽出物係数0.5とした。この時の表
面酸素含有官能基量(0、、/ C1s)はそれぞれ0
.03.0.4であった。次いで、実施例1のサイジン
グ剤を0.01wt%付着せしめた炭素繊維を得た後、
実施例1と同様にしてコンポジットを作成し、衝wJ後
圧縮強度を求めたところ、それぞれ18に9/1ns2
(VF61 %) 、25に9/a+” (Vf60%
) T:あり、表面酸素含有官能基量が低い時は充分な
性能の得られないことは明らかである。又、高過ぎる場
合にも性能が低下することが伺える。
Comparative Example 13 The carbon fiber (I-a) obtained in Example 1 was heated to 1.8
The tow was oxidized by being left in air containing 1% 03 by volume for 0.5 and 8 minutes, and then treated with clean water as in Example 1 to give a water extractable coefficient of 0.5. At this time, the amount of surface oxygen-containing functional groups (0, , / C1s) is 0, respectively.
.. It was 03.0.4. Next, after obtaining carbon fibers to which 0.01 wt% of the sizing agent of Example 1 was attached,
A composite was prepared in the same manner as in Example 1, and the compressive strength after impact wJ was determined.
(VF61%), 25 to 9/a+” (Vf60%
) T: Yes, and it is clear that sufficient performance cannot be obtained when the amount of surface oxygen-containing functional groups is low. It can also be seen that performance deteriorates when the temperature is too high.

実施例13〜16、比較例14〜17 実施例1において炭素繊維(I−a)を得るに当り、焼
成条件を第2炭素化炉の雰囲気最高m度を1800℃と
することにより引張り強度458Kg/rItIR2、
弾性率30.2 ton/m2、密度1.7709/c
m3、目付0.39s/mの物性の炭素繊維を得た。こ
れを5%重炭酸アンモニウムの水溶液中で糸1g当り2
50クーロンの電気伍を流すことにより陽極酸化してそ
の湯洗後の表面HM含有官能塁身013/CIsが0.
2−0.21のものを得た。又、使用するマトリックス
樹脂として特開昭60−58424号公報の実施例2の
組成物を用いる他は実施例1と同様にして表4の結果を
得た。
Examples 13 to 16, Comparative Examples 14 to 17 In obtaining the carbon fiber (I-a) in Example 1, the tensile strength was 458 kg by setting the firing conditions to a maximum temperature of 1800°C in the atmosphere of the second carbonization furnace. /rItIR2,
Elastic modulus 30.2 ton/m2, density 1.7709/c
A carbon fiber having physical properties of 0.39 s/m and a basis weight of 0.39 s/m was obtained. This was mixed in an aqueous solution of 5% ammonium bicarbonate at 2 ml per gram of yarn.
After being anodized by flowing 50 coulombs of electricity, the surface after washing with hot water has a HM-containing functional base material 013/CIs of 0.
2-0.21 was obtained. The results shown in Table 4 were obtained in the same manner as in Example 1, except that the composition of Example 2 of JP-A-60-58424 was used as the matrix resin.

実施例17、比較例18 実施例1及び比較例1で用いた炭素繊維を用いてヨーロ
ッパ公開特許133281号公報の実施例8のマトリッ
クス樹脂を含浸させる他は実施例1、比較例1と同様に
してコンポジットを作成し衝撃後の圧縮試験を実施した
。結果は表5の通りであった。
Example 17, Comparative Example 18 The same procedure as Example 1 and Comparative Example 1 was carried out except that the carbon fiber used in Example 1 and Comparative Example 1 was impregnated with the matrix resin of Example 8 of European Patent Publication No. 133281. A composite was prepared and a compression test was conducted after impact. The results are shown in Table 5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は拡がり係数測定の方法を示したものである。矢
印はトウの移動方向を示す。 1:分銅 2.3,4:50Φロール 5:炭素繊維トウ 第2図、及び第6図は、それぞれ実施例1および比較例
1で得られた試験片の破断面の粒子構造の電子顕微鏡写
真(各900倍)である。 各図面の左下端の白色部分は長さ10μを示す。
FIG. 1 shows the method of measuring the spread coefficient. Arrows indicate the direction of tow movement. 1: weight 2.3, 4: 50Φ roll 5: carbon fiber tow Figures 2 and 6 are electron micrographs of the particle structure of the fractured surface of the test pieces obtained in Example 1 and Comparative Example 1, respectively. (900 times each). The white portion at the lower left corner of each drawing indicates a length of 10μ.

Claims (3)

【特許請求の範囲】[Claims] (1)X線光電子分光法によつて測定される表面の酸素
含有官能基量(O_1_S/C_1_S)が0.05〜
0.3、水抽出物係数が2.0以下、 トウの拡がり係数が1×10^−^3以上 であることを特徴とする耐衝撃性に優れた複合材料用炭
素繊維。
(1) The amount of oxygen-containing functional groups on the surface (O_1_S/C_1_S) measured by X-ray photoelectron spectroscopy is 0.05 to
0.3, a water extractable coefficient of 2.0 or less, and a tow spreading coefficient of 1×10^-^3 or more. Carbon fiber for composite materials having excellent impact resistance.
(2)サイジング剤付着量が0.1wt%以下であるこ
とを特徴とする特許請求の範囲第1項記載の炭素繊維。
(2) The carbon fiber according to claim 1, wherein the amount of sizing agent deposited is 0.1 wt% or less.
(3)引張り強度が250kg/mm^2以上、引張り
弾性率が19ton/mm^2以上、引張り伸度が1.
5%以上であることを特徴とする特許請求の範囲第1項
記載の炭素繊維。
(3) Tensile strength is 250 kg/mm^2 or more, tensile modulus is 19 ton/mm^2 or more, and tensile elongation is 1.
The carbon fiber according to claim 1, characterized in that the carbon fiber content is 5% or more.
JP30237886A 1985-12-19 1986-12-18 Carbon fiber for composite material Granted JPS62238828A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28670685 1985-12-19
JP60-286706 1985-12-19
JP60-287498 1985-12-20

Publications (2)

Publication Number Publication Date
JPS62238828A true JPS62238828A (en) 1987-10-19
JPH0444016B2 JPH0444016B2 (en) 1992-07-20

Family

ID=17707936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30237886A Granted JPS62238828A (en) 1985-12-19 1986-12-18 Carbon fiber for composite material

Country Status (1)

Country Link
JP (1) JPS62238828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457973A (en) * 1990-06-25 1992-02-25 Idemitsu Kosan Co Ltd Carbon fiber composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711216A (en) * 1980-06-18 1982-01-20 Mitsubishi Rayon Co Ltd Production of carbon fiber
JPS58136838A (en) * 1982-02-08 1983-08-15 Mitsubishi Rayon Co Ltd Production of high-performance carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711216A (en) * 1980-06-18 1982-01-20 Mitsubishi Rayon Co Ltd Production of carbon fiber
JPS58136838A (en) * 1982-02-08 1983-08-15 Mitsubishi Rayon Co Ltd Production of high-performance carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457973A (en) * 1990-06-25 1992-02-25 Idemitsu Kosan Co Ltd Carbon fiber composite material

Also Published As

Publication number Publication date
JPH0444016B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
DE69720650T2 (en) Carbon fiber, acrylic fiber and process for their manufacture
CN106854833B (en) A kind of antistatic ultra high molecular weight polyethylene fiber of lightweight and preparation method thereof
Fei et al. Optimizing fiber/matrix interface by growth MnO2 nanosheets for achieving desirable mechanical and tribological properties
WO2022009796A1 (en) Carbon fiber bundle with adhered sizing agent
EP0252985B1 (en) Carbon fiber for composite materials
JPS62238828A (en) Carbon fiber for composite material
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP4953410B2 (en) Carbon fiber and method for producing the same
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
CN112760972B (en) PBO fiber sizing agent containing benzoxazole diamine compatilizer and application thereof
KR910003351B1 (en) Method for after-treatment of carbon fiber
JP2008248416A (en) Water repellent carbon fiber, and method for producing the same
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JPH01217072A (en) Whisker reinforced plastic
JP4936588B2 (en) Carbon fiber for metal oxide coating and method for producing the same
JP2005256226A (en) Sizing-coated carbon fiber and method for producing the same
JPH1193078A (en) Carbon fiber and its production
JP2020139260A (en) Sizing agent-coated carbon fiber bundles
JPS58214527A (en) Carbon fiber bundle of high strength and elongation
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPS6385167A (en) Surface modified carbon fiber and its production
JPH0329889B2 (en)
JP2004277907A (en) Carbon fiber and method for producing the same
JP2004225191A (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JPS6228411A (en) Production of pitch carbon fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees