JP2004225191A - Polyacrylonitrile-based carbon fiber sheet and method for producing the same - Google Patents

Polyacrylonitrile-based carbon fiber sheet and method for producing the same Download PDF

Info

Publication number
JP2004225191A
JP2004225191A JP2003014264A JP2003014264A JP2004225191A JP 2004225191 A JP2004225191 A JP 2004225191A JP 2003014264 A JP2003014264 A JP 2003014264A JP 2003014264 A JP2003014264 A JP 2003014264A JP 2004225191 A JP2004225191 A JP 2004225191A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
sheet
oxidized
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014264A
Other languages
Japanese (ja)
Other versions
JP4138510B2 (en
Inventor
Kenji Shimazaki
賢司 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2003014264A priority Critical patent/JP4138510B2/en
Publication of JP2004225191A publication Critical patent/JP2004225191A/en
Application granted granted Critical
Publication of JP4138510B2 publication Critical patent/JP4138510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin polyacrylonitrile (PAN)-based carbon fiber sheet including the fiber dispersed well, and having little unevenness in thickness, good post processability and high strength. <P>SOLUTION: The PAN-based carbon fiber sheet comprises homogeneously dispersed carbon fiber A having 8.0-15.0 μm fiber diameter C<SB>A</SB>and carbon fiber B having a fiber diameter C<SB>B</SB>satisfying the formula 1: 0.40<C<SB>B</SB>/C<SB>A</SB><0.80. The content of the carbon fiber B is 4-25 mass%, and the content of the total of the carbon fiber A and the carbon fiber B is ≥95 mass%. The carbon fiber sheet has 0.1-0.5 mm thickness and ≥7 N/cm tensile strength. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリアクリロニトリル系炭素繊維シート及びその製造方法に関する。
【0002】
【従来の技術】
ポリアクリロニトリル(PAN)系酸化繊維は、不融性があり、難燃性に優れ、一般の有機繊維と同様の引張り伸度を示す。また不活性ガス中で炭素化することにより高強度の炭素繊維が得られることが知られている。
【0003】
PAN系酸化繊維は短綿化され、単独又は他のバインダーと分散混合され、湿式の抄紙により紙状のシートや、乾式の不織布製造方式(ニードルパンチによるフェルトも含む)により不織布状のシートに加工される。更に、これらのシートを不活性ガス中にて炭素化することにより紙状や不織布状の炭素化シートを得ることができる。
【0004】
不織布状の炭素化シートに関しては、特許文献1、2に記載されたものがある。
【0005】
特許文献1には、耐炎繊維(酸化繊維)をフェルト加工した後、1800℃以上で炭素化する記載、電池伝導材用の記載、並びに、PAN系酸化繊維フェルト(厚さ20mm、目付3500g/m)を窒素雰囲気下、炭素化する記載などがある。
【0006】
しかし、いずれの記載も、厚さの薄い素材の対象ではなく、強度については、ふれられていない。
【0007】
フェルト作製についてはニードルパンチ方式で一般には行われる。しかし、本発明のシートのように薄いシートで且つ用いる酸化繊維の綿長が短い場合は、特許文献1に記載の方法でフェルト(酸化繊維シート)作製を行うと、そのシートはパンチングにより強度低下を招く。
【0008】
なお、特許文献1には、副成分繊維(原料酸化繊維B)を含有させる記述や、樹脂処理、圧縮処理等の記載はない。
【0009】
特許文献2には、PAN系酸化繊維をウォータージェット方式により不織布を作製する記載、並びに、酸化繊維不織布の厚さ、強度の記載がある。しかし、副成分としてより細い繊維含有する記載や、炭素化に関する記述はない。
【0010】
なお、特許文献2には不織布の原料繊維として綿長51mmの耐炎化繊維(酸化繊維)を用いることが記載されている。しかし、この繊維長の酸化繊維を用いて得られる不織布は、強度は高いが、繊維の分散性については綿長の短い湿式抄紙法により得られるシートに劣る。
【0011】
一般に不織布加工に用いられる酸化繊維は綿長25〜75mmの長繊維である。これを用いて得られる乾式の不織布タイプのシートは、綿長の短い(15mm以下)酸化繊維を用いて得られる湿式の紙(抄紙)タイプのシートに比べ、シート強度がより高いが、シート内の繊維の分散性に劣る。一方、湿式抄紙による場合は、酸化繊維の分散性が良く、厚さのバラツキが少ないシートが作り易い。
【0012】
しかし、湿式抄紙により薄型(低目付)のシートを得ようとした場合、強度が低いシートしか得られない。しかも、この低強度シートは、種々の用途に応用できる為、その様な用途に応用するように連続的に後加工を必要とする場合が多く、この場合は後加工時に裂けや切断を生じ易いなど加工性トラブルを生じ易い。
【0013】
湿式抄紙による酸化繊維シートの高強度化のためには、より細い繊維を用いる方が良い。しかし、抄紙に用いる繊維は細くなるほど、その分散性が低下し、繊維同士の絡みが生じ易くなる。この細い酸化繊維を用いた湿式抄紙工程では、繊維の水への分散時に、繊維同士の収束繊維、繊維塊が生じ、得られた酸化繊維シートの炭素化時におけるシートの強度低下や、炭素化後における炭素繊維シートの強度低下を招く。
【0014】
【特許文献1】
特開平2−139464号公報 (特許請求の範囲、実施例1)
【特許文献2】
特開平9−119052号公報 (段落番号[0013])
【0015】
【発明が解決しようとする課題】
本発明者は、繊維の分散性が良く、厚さのバラツキが少なく、後加工性の良い高強度の薄型の炭素繊維シートを得るために種々検討しているうちに、PAN系酸化繊維シート中の副成分繊維(原料酸化繊維B)として、主成分繊維(原料酸化繊維A)より細い酸化繊維を、所定の範囲に混合組み合わせてシート加工することにより、繊維の分散性が改善された酸化繊維シートを得、得られた酸化繊維シートを樹脂処理し、更に圧縮処理後、出来るだけ張力をかけずに不活性ガス中で焼成・炭素化することにより、上記物性のPAN系炭素繊維シートを得ることができることを知得し、本発明を完成するに到った。
【0016】
従って、本発明の目的とするところは、上記問題を解決したPAN系炭素繊維シート及びその製造方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載するものである。
【0018】
〔1〕 繊維直径Cが8.0〜15.0μmの炭素繊維Aと、繊維直径Cが式1
0.40 < C/C < 0.80 式1
を満たす炭素繊維Bとが、均一に分散含有されたポリアクリロニトリル系炭素繊維シートであって、炭素繊維Bの炭素繊維含有率が4〜25質量%、炭素繊維Aと炭素繊維Bとの合計含有率が95質量%以上、厚さが0.1〜0.5mm、引っ張り強度が7N/cm以上のポリアクリロニトリル系炭素繊維シート。
【0019】
〔2〕 繊維直径Oが11.0〜25.0μm、繊維長が3〜15mmの酸化繊維Aと、繊維直径Oが式2
0.40 < O/O < 0.80 式2
を満たし、繊維長が3〜15mmの酸化繊維Bとが、均一に分散含有されてなり、酸化繊維Bの繊維含有率が4〜25質量%である酸化繊維シートを、樹脂処理後、更に圧縮処理し、厚さを0.1〜1.0mmにした後、不活性ガス中で0.5N/cm以下の張力下、1100〜1700℃の温度で連続的に焼成・炭素化する、繊維直径Cが8.0〜15.0μmの炭素繊維Aと、繊維直径Cが式1
0.40 < C/C < 0.80 式1
を満たす炭素繊維Bとが、均一に分散含有されたポリアクリロニトリル系炭素繊維シートであって、炭素繊維Bの炭素繊維含有率が4〜25質量%、炭素繊維Aと炭素繊維Bとの合計含有率が95質量%以上、厚さが0.1〜0.5mm、引っ張り強度が7N/cm以上のポリアクリロニトリル系炭素繊維シートの製造方法。
【0020】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0021】
本発明のPAN系炭素繊維シートは、繊維直径Cが8.0〜15.0μmの炭素繊維Aと、繊維直径Cが式1
0.40 < C/C < 0.80 式1
を満たす炭素繊維Bとが、均一に分散含有されたポリアクリロニトリル系炭素繊維シートであって、炭素繊維Bの炭素繊維含有率が4〜25質量%、炭素繊維Aと炭素繊維Bとの合計含有率が95質量%以上、厚さが0.1〜0.5mm、引っ張り強度が7N/cm以上の炭素繊維シートである。
【0022】
本発明のPAN系炭素繊維シートは、その物性が上記範囲内にあれば、その製造方法としては、特に限定されるものではないが、例えば以下の製造方法により製造することができる。
【0023】
〔酸化繊維A、B〕
炭素繊維シート原料の酸化繊維A(主成分)、酸化繊維B(副成分)は何れも、PAN系酸化繊維であり、例えば市販のPAN系繊維を空気中、高温で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得られるものを用いることができる。
【0024】
なお、炭素繊維シートの原料として考えられる酸化繊維ついては、PAN系酸化繊維以外に、ピッチ系、フェノール系、レーヨン系等の酸化繊維があるが、PAN系酸化繊維が最も高強度の炭素繊維シートが得られる。
【0025】
酸化繊維Aの繊維直径Oは11.0〜25.0μmである。酸化繊維Aの繊維直径Oが11.0μm未満の場合は、得られる酸化繊維シート及び炭素繊維シートの強度が低下するので好ましくない。酸化繊維Aの繊維直径Oが25.0μmを超える場合は、得られる酸化繊維シート及び炭素繊維シートの強度が低下し、所期のシート厚さの薄いものが得られ難いので好ましくない。
【0026】
酸化繊維Bについては、酸化繊維シート中の酸化繊維B含有率が4〜25質量%であり、酸化繊維Aとの直径比O/Oが0.40〜0.80である。この範囲以外の場合は、所期物性の炭素繊維シートが得られない。
【0027】
酸化繊維A、酸化繊維Bの何れも、その繊維長(カット長)は3〜15mmである。繊維長が3mm未満の場合は、得られる酸化繊維シート及び炭素繊維シートの強度が低下するので好ましくない。繊維長が15mmを超える場合は、得られる酸化繊維シートにおける繊維の分散性が低下し、更にこの酸化繊維シートが炭素化されてなる炭素繊維シートの強度が低下するので好ましくない。
【0028】
酸化繊維A、酸化繊維Bの何れも、その比重は、特に限定されないが、1.35〜1.45が好ましい。
【0029】
酸化繊維A、酸化繊維Bの何れも、その乾強度は15kgf/mm(147N/mm)以上が好ましい。乾強度が15kgf/mm(147N/mm)未満の場合は、これら酸化繊維A、Bをシート化して得られる酸化繊維シートの強度低下、更にこの酸化繊維シートが炭素化されてなる炭素繊維シートの強度低下による微粉末発生が増加するので好ましくない。
【0030】
なお、酸化繊維A、酸化繊維Bにおける乾強度は、JIS L 1015により測定される物性値である。
【0031】
〔バインダー繊維〕
炭素繊維シート原料としては必要に応じ、レーヨン繊維、セルローズ繊維、ポリエステル繊維、フェノール繊維、ポリビニール繊維、ポリアミド繊維等のバインダー繊維を、酸化繊維シート中に混合して用いてもよい。
【0032】
酸化繊維シート中のバインダー繊維の含有率は30質量%以下が好ましい。バインダー繊維含有率が30質量%を超える場合は、この酸化繊維シートを炭素化して得られる炭素繊維シートの強度が低下するので好ましくない。
【0033】
〔酸化繊維シート〕
上述した酸化繊維A、酸化繊維Bなどの原料酸化繊維は、必要に応じバインダー繊維を加え、シート加工して原料酸化繊維等が均一に分散含有されてなる酸化繊維シートにする。
【0034】
シート加工方法については特に限定はされないが、原料酸化繊維等を湿式抄紙して紙状にする湿式抄紙法、原料酸化繊維等を乾式方式によりウエッブを作製した後ウォータージェット方式により不織布を作製する不織布加工方法等を用いることができる。
【0035】
上記シート加工方法の中でも、繊維長3〜15mmの短繊維の原料酸化繊維についてはシート加工が容易なことから、湿式抄紙法が特に好ましい。
【0036】
酸化繊維シートの厚さは0.20〜0.80mmが好ましい。
【0037】
酸化繊維シートの嵩密度は1.0g/cm以下が後工程での圧縮処理による厚さコントロールがし易いので好ましい。酸化繊維シートの嵩密度が1.0g/cmを超えると厚さ低減化に対するコントロールが難しい。
【0038】
〔樹脂処理〕
上述した酸化繊維シートには、圧縮処理する前に、強度向上効果及び厚さ低減効果をより発揮させることを目的として、樹脂処理を行う。樹脂処理により、炭素化時の厚さ復元を抑制し、厚さの薄い素材を得易くなる。
【0039】
樹脂の種類は熱可塑性、熱硬化性樹脂のいずれでもよいが、後工程で高温(100〜350℃)圧縮処理される際に軟化し、繊維間で融着し、かつ焼成炭素化時に僅かでも炭素化し残留する樹脂を用いることが好ましい。例えば、ポリビニルアルーコール(PVA)、カルボキシメチルセルローズ(CMC)、エポキシ、フェノールノボラック、アラミド、ポリイミド等の樹脂が好ましい。なお、水分散性又は水に溶解性の高いものが取扱性の点でより好ましい。
【0040】
樹脂の付着量は、樹脂の種類や、炭素化後の織物の目標とする硬さにより最適量は異なるが、通常0.2〜10質量%の範囲が好ましい。樹脂の付着量が10質量%を超える場合、焼成炭素化して得られる炭素繊維シートは、柔軟性がなくなり、脆くなるので好ましくない。
【0041】
樹脂処理の方法は浸漬法が好ましい。この方法によれば最も均一に樹脂添着が可能である。樹脂処理時の温度は常温(25℃)〜90℃の範囲が好ましい。
【0042】
〔圧縮処理〕
上述した酸化繊維シートを、樹脂処理後又は処理せずに、100〜350℃の温度下、圧力0.5〜20MPaにて圧縮処理し、圧縮処理後の酸化繊維シートの厚さを0.1〜1.0mmにする。
【0043】
圧縮処理後の酸化繊維シートの厚さが0.1mm未満の場合は、酸化繊維シートの強度が低く炭素化が難しい。圧縮処理後の酸化繊維シートの厚さが1.0mmを超える場合は、所期の薄型炭素繊維シートが得られない。
【0044】
圧縮処理時の温度が100℃未満の場合は、圧縮処理による酸化繊維シートの強度向上効果がない。圧縮処理時の温度が350℃を超える場合は、繊維軟化損傷のためシート強度が低下する。
【0045】
圧縮処理時の圧力が0.5MPa℃未満の場合は、酸化繊維シートの強度向上効果や、厚さの低減効果がない。圧縮処理時の圧力が20MPaを超える場合は、繊維損傷のためシート強度が低下する。
【0046】
この圧縮処理時の温度及び圧力は、樹脂処理時の樹脂の種類及び目標とする炭素繊維シートの厚さにより適宜調整する。
【0047】
〔焼成・炭素化〕
圧縮処理後、酸化繊維シートを、窒素ガス中などの不活性ガス中で0.5N/cm以下の張力下、1100〜1700℃の温度で連続的に焼成・炭素化する。1100〜1700℃の温度での焼成時間は0.5〜20分間が好ましい。
【0048】
焼成時の温度が1100℃未満の場合は、得られる炭素繊維シートの強度が低下するので好ましくない。焼成時の温度が1700℃を超える場合は、炭素繊維シートの強度が低下し、微粉末が発生するので好ましくない。
【0049】
以上の本発明製造方法の一例により、前述の本発明のPAN系炭素繊維シートを製造することができる。以下、本発明のPAN系炭素繊維シートについて詳細に説明する。
【0050】
本発明のPAN系炭素繊維シートは、炭素繊維A(主成分)と炭素繊維B(副成分)とが均一に分散含有されてなる炭素繊維シートである。
【0051】
炭素繊維Aの繊維直径Cは8.0〜15.0μmである。炭素繊維Aの繊維直径Cが8.0μm未満の場合は、炭素繊維シートの強度が低下するので好ましくない。炭素繊維Aの繊維直径Cが15.0μmを超える場合は、薄層の炭素繊維シートが得られ難いので好ましくない。
【0052】
炭素繊維Bと炭素繊維Aとの直径比C/Cは0.40〜0.80である。繊維直径比C/Cが0.40未満の場合、繊維直径比C/Cが0.80を超える場合の何れの場合も、炭素繊維シートの強度が低下するので好ましくない。
【0053】
炭素繊維Bの炭素繊維含有率は4〜25質量%である。炭素繊維Bの炭素繊維含有率が4質量%未満の場合は、炭素繊維Bによる強度向上効果がなく、炭素繊維シートの強度が低下するので好ましくない。炭素繊維Bの炭素繊維含有率が25質量%を超える場合は、繊維の分散性低下に伴い炭素繊維シートの強度が低下するので好ましくない。
【0054】
炭素繊維Aと炭素繊維Bとの合計含有率は95質量%以上である。
【0055】
本発明のPAN系炭素繊維シートの厚さは0.1〜0.5mmである。シートの厚さが0.1mm未満の場合は、炭素繊維シートの原料となる酸化繊維シートの強度が低く炭素化が難しい。シートの厚さが0.5mmを超える場合は、所期の薄型炭素繊維シートではない。
【0056】
本発明のPAN系炭素繊維シートの引っ張り強度は7N/cm以上である。引っ張り強度が7N/cm未満の場合は、炭素化前の酸化繊維シートの引っ張り強度も低く、この酸化繊維シートの炭素化時に伸びや切断を生じ易い。炭素繊維シートの後加工(樹脂処理、セラミック塗布処理、カーボンブラック処理など)時に過度な張力がかかると伸びや切断を生じ易い。
【0057】
なお、本発明のPAN系炭素繊維シートの形状は、上記物性を満たすものであれば湿式の抄紙加工による炭素繊維紙、及び乾式の不織布加工による炭素繊維不織布等の何れの形状でもよい。
【0058】
【実施例】
本発明を以下の実施例及び比較例により詳述する。
【0059】
以下の実施例及び比較例の条件により炭素繊維シートを作製した。原料酸化繊維A、原料酸化繊維B、バインダー繊維、酸化繊維シート及び炭素繊維シートの諸物性値を、前述又は以下の方法により測定した。
【0060】
繊維比重:アルキメデス法(溶媒アセトン)により測定した。
【0061】
厚さ:直径30mmの円形圧板で200gfを負荷したとき(2.8kPa)の厚さを測定した。
【0062】
目付:シートの寸法及び120℃での乾燥質量より、単位面積当たりの質量を算出した。
【0063】
嵩密度:上記条件により測定した厚さ及び目付から算出した。
【0064】
炭素繊維シート中の炭素繊維A(主成分)及び炭素繊維B(副成分)の繊維直径、並びに、炭素繊維含有率:
測定対象シートを50mm角にカットし、この50mm角のシートを更に3mm間隔に短冊状にカットした。次いで各短冊の単繊維をピンセットでほぐした後、200mlビーカーに入れ、1vol%のエタノール水溶液を150mlビーカーに入れ、攪拌分散させる。この分散液をスポイトで採取し、繊維をプレパラートの上に載せ、倍率200倍で顕微鏡で顕微鏡写真撮影を行う。この顕微鏡写真より検体数n=100について繊維直径を測定した。繊維直径についてはμm単位で小数1桁まで求めた。
【0065】
この繊維直径について、横軸を繊維直径、縦軸を繊維の個数としてヒストグラムにまとめると、太い繊維(炭素繊維A)のピークと細い繊維(炭素繊維B)のピークとが出現した。
【0066】
このピークの±10%の繊維直径における繊維の個数より、各繊維直径の平均値を算出し、測定対象が炭素繊維の場合はそれぞれ、Cμm及びCμmとした。
【0067】
炭素繊維Bと炭素繊維Aの質量比は、
(炭素繊維Bの個数×Cの自乗×原料酸化繊維Bの繊維長)/(炭素繊維Aの個数×Cの自乗×原料酸化繊維Aの繊維長)
の式を用いて算出した。
【0068】
炭素繊維Aの繊維含有率、炭素繊維Bの繊維含有率、及び炭素繊維Aと炭素繊維Bとの合計含有率は、以下の方法で求めた。
【0069】
測定対象シート100mm角を120℃、2hrs乾燥、精秤後、熱濃硫酸(80℃)300ml中で30分処理した。次いで、この酸処理シートを放冷した後、H5質量%水溶液を100ml加え、1hrs放置した。この放置後のシートを磁性フィルターで濾過し純水で洗浄した。この洗浄後のシートの乾燥質量より炭素繊維Aと炭素繊維Bとの合計含有率を求めた。
【0070】
この炭素繊維Aと炭素繊維Bとの合計含有率と、上記炭素繊維Bと炭素繊維Aの質量比とから、それぞれ炭素繊維B及び炭素繊維Aの繊維含有率を算出した。
【0071】
シートの引張強度;幅20mm,長さ200mmの試験片をつかみ間隔100mm、引張速度100mm/minにて測定した。
【0072】
X線結晶サイズ:広角X線回折測定での2θのピークの半値幅と下記のシェラーの式
X線結晶サイズ(nm)=(k×λ)/β×cosθ
k:装置定数 0.90
λ:X線波長 0.154nm
β:2θ=26.0°付近の最大ピークの半値幅
より求めた。
【0073】
実施例1
表1に示すように、原料酸化繊維Aとして繊維直径(O)15.1μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度21.0kgf/mm(206N/mm)〕を繊維含有率で95.0質量%と、原料酸化繊維Bとして繊維直径(O)9.1μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度22.5kgf/mm(221N/mm)〕を繊維含有率で5.0質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.60、厚さ0.6mm、目付120g/cm、嵩密度0.20g/cm〕を作製した。
【0074】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.8質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.30mmまで圧縮処理し、目付122g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0075】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0076】
得られた炭素繊維シートは、炭素繊維直径(C)11.1μmの炭素繊維Aの含有率が94.5質量%、炭素繊維直径(C)6.5 μmの炭素繊維Bの含有率が5.0質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.59、炭素繊維含有率〔表1中の炭素繊維(A+B)含有率〕が99.5質量%、厚さが0.31mm、目付が74g/m、嵩密度が0.24g/cm、引っ張り強度が8N/cm、X線結晶サイズが2.2nmであり、良好な物性の炭素繊維シートであった。
【0077】
実施例2
表1に示すように、原料酸化繊維Aとして繊維直径(O)14.9μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度22.4kgf/mm(220N/mm)〕を繊維含有率で85.0質量%と、原料酸化繊維Bとして繊維直径(O)9.1μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度25.3kgf/mm(248N/mm)〕を繊維含有率で15.0質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.61、厚さ0.55mm、目付119g/cm、嵩密度0.22g/cm〕を作製した。
【0078】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.5質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.28mmまで圧縮処理し、目付121g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0079】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0080】
得られた炭素繊維シートは、炭素繊維直径(C)11.0μmの炭素繊維Aの含有率が85.0質量%、炭素繊維直径(C)6.3μmの炭素繊維Bの含有率が14.9質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.57、炭素繊維含有率〔表1中の炭素繊維(A+B)含有率〕が99.9質量%、厚さが0.28mm、目付が73g/m、嵩密度が0.26g/cm、引っ張り強度が15.5N/cm、X線結晶サイズが2.25nmであり、良好な物性の炭素繊維シートであった。
物であった。
【0081】
実施例3
表1に示すように、原料酸化繊維Aとして繊維直径(O)15.0μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度20.5kgf/mm(201N/mm)〕を繊維含有率で78.5質量%と、原料酸化繊維Bとして繊維直径(O)9.0μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度26.0kgf/mm(255N/mm)〕を繊維含有率で21.5質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.60、厚さ0.53mm、目付115g/cm、嵩密度0.22g/cm〕を作製した。
【0082】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.5質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.27mmまで圧縮処理し、目付117g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0083】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0084】
得られた炭素繊維シートは、炭素繊維直径(C)10.9μmの炭素繊維Aの含有率が78.5質量%、炭素繊維直径(C)6.4μmの炭素繊維Bの含有率が21.3質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.59、炭素繊維含有率〔表1中の炭素繊維(A+B)含有率〕が99.8質量%、厚さが0.26mm、目付が70g/m、嵩密度が0.27g/cm、引っ張り強度が13.5N/cm、X線結晶サイズが2.27nmであり、良好な物性の炭素繊維シートであった。
【0085】
実施例4
表1に示すように、原料酸化繊維Aとして繊維直径(O)13.1μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度24.3kgf/mm(238N/mm)〕を繊維含有率で84.9質量%と、原料酸化繊維Bとして繊維直径(O)8.9μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度27.4kgf/mm(269N/mm)〕を繊維含有率で15.1質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.68、厚さ0.57mm、目付120g/cm、嵩密度0.21g/cm〕を作製した。
【0086】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、2.0質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.29mmまで圧縮処理し、目付122g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0087】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0088】
得られた炭素繊維シートは、炭素繊維直径(C)9.5μmの炭素繊維Aの含有率が85.0質量%、炭素繊維直径(C)6.4μmの炭素繊維Bの含有率が14.8質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.67、炭素繊維含有率〔表1中の炭素繊維(A+B)含有率〕が99.8質量%、厚さが0.29mm、目付が73g/m、嵩密度が0.25g/cm、引っ張り強度が12.5N/cm、X線結晶サイズが2.24nmであり、良好な物性の炭素繊維シートであった。
【0089】
比較例1
表1に示すように、原料酸化繊維Aとして繊維直径(O)15.2μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度19.3kgf/mm(189N/mm)〕を繊維含有率で96.8質量%と、原料酸化繊維Bとして繊維直径(O)9.2μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度25.4kgf/mm(249N/mm)〕を繊維含有率で3.2質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.61、厚さ0.72mm、目付120g/cm、嵩密度0.17g/cm〕を作製した。
【0090】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.5質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.35mmまで圧縮処理し、目付122g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0091】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0092】
得られた炭素繊維シートは、炭素繊維直径(C)11.2μmの炭素繊維Aの含有率が97.0質量%、炭素繊維直径(C)6.5μmの炭素繊維Bの含有率が2.8質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.58、炭素繊維含有率〔表1中の炭素繊維(A+B)含有率〕が99.8質量%、厚さが0.38mm、目付が73g/m、嵩密度が0.19g/cm、引っ張り強度が5.2N/cm、X線結晶サイズが2.24nmであり、良好な物性の炭素繊維シートではなかった。表1中×で示す箇所が本発明の構成から逸脱している。
【0093】
【表1】

Figure 2004225191
【0094】
比較例2
表2に示すように、原料酸化繊維Aとして繊維直径(O)15.1μmのPAN系酸化繊維〔比重1.39、カット長7mm、乾強度21.0kgf/mm(206N/mm)〕を繊維含有率で71.5質量%と、原料酸化繊維Bとして繊維直径(O)9.0μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度22.5kgf/mm(221N/mm)〕を繊維含有率で28.5質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.60、厚さ0.55mm、目付114g/cm、嵩密度0.21g/cm〕を作製した。
【0095】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.6質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.30mmまで圧縮処理し、目付122g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0096】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0097】
得られた炭素繊維シートは、炭素繊維直径(C)10.9μmの炭素繊維Aの含有率が72.7質量%、炭素繊維直径(C)6.3μmの炭素繊維Bの含有率が27.0質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.58、炭素繊維含有率〔表2中の炭素繊維(A+B)含有率〕が99.7質量%、厚さが0.32mm、目付が73g/m、嵩密度が0.23g/cm、引っ張り強度が3.2N/cm、X線結晶サイズが2.20nmであり、良好な物性の炭素繊維シートではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0098】
比較例3
表2に示すように、原料酸化繊維Aとして繊維直径(O)15.1μmのPAN系酸化繊維〔比重1.39、カット長51mm、乾強度21.0kgf/mm(206N/mm)〕を繊維含有率で85.0質量%と、原料酸化繊維Bとして繊維直径(O)5.5μmのPAN系酸化繊維〔比重1.38、カット長31mm、乾強度29.3kgf/mm(287N/mm)〕を繊維含有率で15.0質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.36、厚さ0.62mm、目付120g/cm、嵩密度0.19g/cm〕を作製した。
【0099】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.6質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.35mmまで圧縮処理し、目付122g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0100】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0101】
得られた炭素繊維シートは、炭素繊維直径(C)11.3μmの炭素繊維Aの含有率が85.0質量%、炭素繊維直径(C)3.9μmの炭素繊維Bの含有率が14.6質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.35、炭素繊維含有率〔表2中の炭素繊維(A+B)含有率〕が99.6質量%、厚さが0.38mm、目付が74g/m、嵩密度が0.19g/cm、引っ張り強度が4.2N/cm、X線結晶サイズが2.22nmであり、良好な物性の炭素繊維シートではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0102】
比較例4
表2に示すように、原料酸化繊維Aとして繊維直径(O)15.2μmのPAN系酸化繊維〔比重1.39、カット長51mm、乾強度19.3kgf/mm(189N/mm)〕を繊維含有率で85.0質量%と、原料酸化繊維Bとして繊維直径(O)12.5μmのPAN系酸化繊維〔比重1.37、カット長51mm、乾強度24.8kgf/mm(243N/mm)〕を繊維含有率で15.0質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.82、厚さ0.59mm、目付121g/cm、嵩密度0.21g/cm〕を作製した。
【0103】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、1.7質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.31mmまで圧縮処理し、目付123g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0104】
この酸化繊維シートを窒素雰囲気下、張力0.2N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0105】
得られた炭素繊維シートは、炭素繊維直径(C)10.9μmの炭素繊維Aの含有率が85.0質量%、炭素繊維直径(C)9.3μmの炭素繊維Bの含有率が14.7質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.85、炭素繊維含有率〔表2中の炭素繊維(A+B)含有率〕が99.7質量%、厚さが0.32mm、目付が74g/m、嵩密度が0.23g/cm、引っ張り強度が3.5N/cm、X線結晶サイズが2.15nmであり、良好な物性の炭素繊維シートではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0106】
実施例5
表2に示すように、原料酸化繊維Aとして繊維直径(O)14.9μmのPAN系酸化繊維〔比重1.39、カット長5mm、乾強度20.0kgf/mm(196N/mm)〕を繊維含有率で92.0質量%と、原料酸化繊維Bとして繊維直径(O)9.0μmのPAN系酸化繊維〔比重1.37、カット長5mm、乾強度26.0kgf/mm(255N/mm)〕を繊維含有率で5.0質量%と、バインダー繊維として繊維直径12.0μmのレーヨン繊維(比重1.22)を繊維含有率で3.0質量%とを、水中にて分散させ均一に混綿後、連続的に抄紙し、酸化繊維シート〔原料酸化繊維Aと原料酸化繊維Bとの繊維直径比(O/O)0.60、厚さ0.28mm、目付115g/cm、嵩密度0.41g/cm〕を作製した。
【0107】
さらに、得られた酸化繊維シートをPVA水溶液(濃度1.0質量%)にて浸漬処理し、2.0質量%添着せしめた後、温度150℃、圧力15MPaにて厚さ0.24mmまで圧縮処理し、目付117g/mの樹脂・圧縮処理後の酸化繊維シートを得た。
【0108】
この酸化繊維シートを窒素雰囲気下、張力0.1N/cm、1500℃、2分間連続的に焼成・炭素化することによって炭素繊維シートを得た。
【0109】
得られた炭素繊維シートは、炭素繊維直径(C)11.2μmの炭素繊維Aの含有率が94.8質量%、炭素繊維直径(C)6.4μmの炭素繊維Bの含有率が5.1質量%、炭素繊維Aと炭素繊維Bとの繊維直径比(C/C)が0.57、炭素繊維含有率〔表2中の炭素繊維(A+B)含有率〕が99.9質量%、厚さが0.25mm、目付が71/m、嵩密度が0.28g/cm、引っ張り強度が11.0N/cm、X線結晶サイズが2.00nmであり、良好な物性の炭素繊維シートであった。
【0110】
【表2】
Figure 2004225191
【0111】
【発明の効果】
本発明のPAN系炭素繊維シートは、主成分炭素繊維(炭素繊維A)と副成分炭素繊維(炭素繊維B)とが均一に分散含有されたPAN系炭素繊維シートであって、炭素繊維Aの繊維直径C、炭素繊維Bと炭素繊維Aとの繊維直径比C/C、炭素繊維Bの炭素繊維含有率、炭素繊維Aと炭素繊維Bとの合計含有率、厚さ、引っ張り強度などの諸物性が所定範囲にあるので、繊維の分散性が良く、厚さのバラツキが少なく、後加工性の良い高強度の薄型のPAN系炭素繊維シートである。
【0112】
このPAN系炭素繊維シートを製造するに当たっては、本発明の製造方法:PAN系酸化繊維シート中の副成分繊維(原料酸化繊維B)として、主成分繊維(原料酸化繊維A)より細い酸化繊維を、所定の範囲に混合組み合わせてシート加工することにより、繊維の分散性が改善された酸化繊維シートを得、得られた酸化繊維シートを樹脂処理し、更に圧縮処理後、出来るだけ張力をかけずに不活性ガス中で焼成・炭素化することを特徴とする製造方法により、加工時の裂けや切断を生じ易いなど加工性トラブルを生ずることなく、繊維の分散時に、繊維同士の収束繊維、繊維塊が生じ、得られた酸化繊維シートの炭素化時におけるシートの強度低下や、炭素化後における炭素繊維シートの強度低下を招くなど製造時トラブルを生ずることなく、上記PAN系炭素繊維シートを安定して得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyacrylonitrile-based carbon fiber sheet and a method for producing the same.
[0002]
[Prior art]
Polyacrylonitrile (PAN) -based oxidized fibers are infusible, have excellent flame retardancy, and exhibit the same tensile elongation as ordinary organic fibers. It is known that carbonization in an inert gas can provide high-strength carbon fibers.
[0003]
The PAN-based oxidized fiber is shortened, singly or dispersed and mixed with another binder, and processed into a paper-like sheet by wet papermaking or a nonwoven-like sheet by a dry nonwoven fabric manufacturing method (including felt by needle punch). Is done. Further, by carbonizing these sheets in an inert gas, a paper-like or nonwoven-like carbonized sheet can be obtained.
[0004]
Patent Documents 1 and 2 disclose non-woven carbonized sheets.
[0005]
Patent Document 1 describes that a flame-resistant fiber (oxidized fiber) is subjected to felt processing and then carbonized at 1800 ° C. or more, a description for a battery conductive material, and a PAN-based oxidized fiber felt (thickness: 20 mm, basis weight: 3500 g / m 2). 2 ) In a nitrogen atmosphere.
[0006]
However, none of the descriptions is directed to a material having a small thickness, and the strength is not described.
[0007]
The felt is generally produced by a needle punch method. However, when a thin sheet such as the sheet of the present invention is used and the cotton length of the oxidized fiber to be used is short, if the felt (oxidized fiber sheet) is produced by the method described in Patent Document 1, the strength of the sheet decreases due to punching. Invite.
[0008]
Note that Patent Document 1 does not include a description of including a subcomponent fiber (raw material oxidized fiber B), a resin treatment, a compression treatment, and the like.
[0009]
Patent Literature 2 includes a description of preparing a nonwoven fabric of a PAN-based oxidized fiber by a water jet method, and a description of the thickness and strength of the oxidized fiber nonwoven fabric. However, there is no description containing finer fibers as an accessory component, nor is there any description about carbonization.
[0010]
In addition, Patent Document 2 discloses that as a raw material fiber of the nonwoven fabric, an oxidized fiber having a cotton length of 51 mm (oxidized fiber) is used. However, the nonwoven fabric obtained by using the oxidized fiber having this fiber length has a high strength, but the dispersibility of the fiber is inferior to a sheet obtained by a wet papermaking method having a short cotton length.
[0011]
Generally, the oxidized fiber used for the nonwoven fabric processing is a long fiber having a cotton length of 25 to 75 mm. The dry-type nonwoven fabric sheet obtained by using this has higher sheet strength than the wet paper (papermaking) type sheet obtained by using oxidized fiber having a short cotton length (15 mm or less), Poor fiber dispersibility. On the other hand, in the case of using wet papermaking, a sheet having a good dispersibility of the oxidized fiber and a small variation in thickness is easily produced.
[0012]
However, when trying to obtain a thin (low-weight) sheet by wet papermaking, only a sheet having low strength can be obtained. Moreover, since this low-strength sheet can be applied to various uses, it is often necessary to continuously perform post-processing so as to apply to such uses, and in this case, tearing or cutting is likely to occur during post-processing. Such as workability troubles are likely to occur.
[0013]
In order to increase the strength of the oxidized fiber sheet by wet papermaking, it is better to use finer fibers. However, the thinner the fibers used for papermaking, the lower the dispersibility and the more likely the fibers are entangled. In the wet papermaking process using this thin oxidized fiber, when the fibers are dispersed in water, converging fibers and fiber clumps are generated between the fibers, and the resulting oxidized fiber sheet has a reduced strength at the time of carbonization, This causes a reduction in the strength of the carbon fiber sheet later.
[0014]
[Patent Document 1]
JP-A-2-139464 (Claims, Example 1)
[Patent Document 2]
JP-A-9-119052 (paragraph number [0013])
[0015]
[Problems to be solved by the invention]
The present inventor has studied various methods to obtain a high-strength thin carbon fiber sheet having a good fiber dispersibility, a small thickness variation and a good post-processability. Oxidized fiber with improved dispersibility of fibers by mixing and combining oxidized fibers finer than the main component fiber (raw oxidized fiber A) in a predetermined range as a subcomponent fiber (raw oxidized fiber B) A PAN-based carbon fiber sheet having the above physical properties is obtained by obtaining a sheet, subjecting the obtained oxidized fiber sheet to a resin treatment, further compressing, and calcining and carbonizing in an inert gas without applying tension as much as possible. Knowing that it is possible, they have completed the present invention.
[0016]
Accordingly, it is an object of the present invention to provide a PAN-based carbon fiber sheet which solves the above problems and a method for producing the same.
[0017]
[Means for Solving the Problems]
The present invention that achieves the above object is as described below.
[0018]
[1] Fiber diameter C A Is 8.0-15.0 μm carbon fiber A and fiber diameter C B Is Equation 1
0.40 <C B / C A <0.80 Equation 1
Is a polyacrylonitrile-based carbon fiber sheet uniformly dispersed and contained, wherein the carbon fiber content of carbon fiber B is 4 to 25% by mass, and the total content of carbon fiber A and carbon fiber B A polyacrylonitrile-based carbon fiber sheet having a ratio of 95% by mass or more, a thickness of 0.1 to 0.5 mm, and a tensile strength of 7 N / cm or more.
[0019]
[2] Fiber diameter O A Is oxidized fiber A having a fiber length of 3 to 15 mm and a fiber diameter O of 11.0 to 25.0 μm. B Is Equation 2
0.40 <O B / O A <0.80 Equation 2
Oxidized fiber B having a fiber length of 3 to 15 mm is uniformly dispersed and contained, and the fiber content of the oxidized fiber B is 4 to 25% by mass. After processing to a thickness of 0.1 to 1.0 mm, the fiber diameter is continuously fired and carbonized at a temperature of 1100 to 1700 ° C. under a tension of 0.5 N / cm or less in an inert gas. C A Is 8.0-15.0 μm carbon fiber A and fiber diameter C B Is Equation 1
0.40 <C B / C A <0.80 Equation 1
Is a polyacrylonitrile-based carbon fiber sheet uniformly dispersed and contained, wherein the carbon fiber content of carbon fiber B is 4 to 25% by mass, and the total content of carbon fiber A and carbon fiber B A method for producing a polyacrylonitrile-based carbon fiber sheet having a ratio of 95% by mass or more, a thickness of 0.1 to 0.5 mm, and a tensile strength of 7 N / cm or more.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0021]
The PAN-based carbon fiber sheet of the present invention has a fiber diameter C A Is 8.0-15.0 μm carbon fiber A and fiber diameter C B Is Equation 1
0.40 <C B / C A <0.80 Equation 1
Is a polyacrylonitrile-based carbon fiber sheet uniformly dispersed and contained, wherein the carbon fiber content of carbon fiber B is 4 to 25% by mass, and the total content of carbon fiber A and carbon fiber B The carbon fiber sheet has a ratio of 95% by mass or more, a thickness of 0.1 to 0.5 mm, and a tensile strength of 7 N / cm or more.
[0022]
The production method of the PAN-based carbon fiber sheet of the present invention is not particularly limited as long as its physical properties are within the above range, but can be produced by, for example, the following production method.
[0023]
[Oxidized fibers A and B]
Both the oxidized fiber A (main component) and the oxidized fiber B (subcomponent) as carbon fiber sheet raw materials are PAN-based oxidized fibers. For example, a cyclization reaction is performed by treating a commercially available PAN-based fiber at a high temperature in the air. Which is obtained by a flame-proofing treatment for increasing the amount of oxygen bond to make it infusible and flame-retardant.
[0024]
In addition, as for the oxidized fiber considered as a raw material of the carbon fiber sheet, in addition to the PAN-based oxidized fiber, there are pitch-based, phenol-based, rayon-based and other oxidized fibers, and the PAN-based oxidized fiber has the highest strength carbon fiber sheet. can get.
[0025]
Fiber diameter O of oxidized fiber A A Is 11.0 to 25.0 μm. Fiber diameter O of oxidized fiber A A Is less than 11.0 μm, the strength of the resulting oxidized fiber sheet and carbon fiber sheet is undesirably reduced. Fiber diameter O of oxidized fiber A A Is more than 25.0 μm, the strength of the resulting oxidized fiber sheet and carbon fiber sheet decreases, and it is difficult to obtain a desired sheet thickness, which is not preferable.
[0026]
As for the oxidized fiber B, the oxidized fiber B content in the oxidized fiber sheet is 4 to 25% by mass, and the diameter ratio O to the oxidized fiber A is O. B / O A Is 0.40 to 0.80. If the ratio is out of this range, a carbon fiber sheet having desired physical properties cannot be obtained.
[0027]
The fiber length (cut length) of each of the oxidized fiber A and the oxidized fiber B is 3 to 15 mm. When the fiber length is less than 3 mm, the strengths of the obtained oxidized fiber sheet and carbon fiber sheet are undesirably reduced. When the fiber length exceeds 15 mm, the dispersibility of the fibers in the obtained oxidized fiber sheet is reduced, and the strength of the carbon fiber sheet obtained by carbonizing the oxidized fiber sheet is not preferable.
[0028]
The specific gravity of each of the oxidized fiber A and the oxidized fiber B is not particularly limited, but is preferably 1.35 to 1.45.
[0029]
The dry strength of each of the oxidized fibers A and B is 15 kgf / mm. 2 (147 N / mm 2 Is preferred. Dry strength is 15kgf / mm 2 (147 N / mm 2 In the case of less than), the strength of the oxidized fiber sheet obtained by forming the oxidized fibers A and B into a sheet is reduced, and the generation of fine powder due to the reduced strength of the carbon fiber sheet obtained by carbonizing the oxidized fiber sheet is increased. Not preferred.
[0030]
In addition, the dry strength of the oxidized fiber A and the oxidized fiber B is a property value measured according to JIS L1015.
[0031]
(Binder fiber)
As the carbon fiber sheet raw material, if necessary, a binder fiber such as rayon fiber, cellulose fiber, polyester fiber, phenol fiber, polyvinyl fiber, polyamide fiber or the like may be mixed in the oxidized fiber sheet and used.
[0032]
The content of the binder fiber in the oxidized fiber sheet is preferably 30% by mass or less. If the binder fiber content exceeds 30% by mass, the strength of the carbon fiber sheet obtained by carbonizing this oxidized fiber sheet is undesirably reduced.
[0033]
(Oxidized fiber sheet)
The raw material oxidized fibers such as the oxidized fiber A and the oxidized fiber B described above are added with a binder fiber as necessary, and processed into a sheet to obtain an oxidized fiber sheet in which the raw material oxidized fiber and the like are uniformly dispersed and contained.
[0034]
The sheet processing method is not particularly limited, but a wet papermaking method in which the raw material oxidized fibers and the like are made into a paper by wet papermaking, a nonwoven fabric in which the raw material oxidized fibers and the like are made into a web by a dry method and then a water jet method is used to form a nonwoven fabric A processing method or the like can be used.
[0035]
Among the above sheet processing methods, wet papermaking is particularly preferable for raw material oxidized fibers of short fibers having a fiber length of 3 to 15 mm, since sheet processing is easy.
[0036]
The thickness of the oxidized fiber sheet is preferably from 0.20 to 0.80 mm.
[0037]
The bulk density of the oxidized fiber sheet is 1.0 g / cm 3 The following is preferred because the thickness can be easily controlled by a compression treatment in a later step. The bulk density of the oxidized fiber sheet is 1.0 g / cm 3 When it exceeds, it is difficult to control the thickness reduction.
[0038]
(Resin treatment)
The above-mentioned oxidized fiber sheet is subjected to a resin treatment before the compression treatment for the purpose of exhibiting a strength improving effect and a thickness reducing effect more. Resin treatment suppresses thickness restoration during carbonization and facilitates obtaining a thin material.
[0039]
The type of the resin may be either a thermoplastic resin or a thermosetting resin. However, the resin softens when subjected to a high-temperature (100 to 350 ° C.) compression treatment in a later step, fuses between the fibers, and even a little during firing carbonization. It is preferable to use a resin that is carbonized and remains. For example, resins such as polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), epoxy, phenol novolak, aramid, and polyimide are preferable. In addition, the thing with high water dispersibility or water solubility is more preferable at the point of handleability.
[0040]
The optimum amount of the resin adhered varies depending on the type of the resin and the target hardness of the woven fabric after carbonization, but is usually preferably in the range of 0.2 to 10% by mass. If the amount of the applied resin exceeds 10% by mass, the carbon fiber sheet obtained by firing and carbonizing loses flexibility and becomes brittle, which is not preferable.
[0041]
The resin treatment method is preferably an immersion method. According to this method, the resin can be most uniformly applied. The temperature at the time of the resin treatment is preferably in the range of normal temperature (25 ° C) to 90 ° C.
[0042]
[Compression processing]
The above-mentioned oxidized fiber sheet is subjected to a compression treatment at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa after or without resin treatment, and the thickness of the oxidized fiber sheet after the compression treatment is set to 0.1. To 1.0 mm.
[0043]
When the thickness of the oxidized fiber sheet after the compression treatment is less than 0.1 mm, the strength of the oxidized fiber sheet is low and carbonization is difficult. If the thickness of the oxidized fiber sheet after the compression treatment exceeds 1.0 mm, a desired thin carbon fiber sheet cannot be obtained.
[0044]
If the temperature during the compression treatment is lower than 100 ° C., there is no effect of improving the strength of the oxidized fiber sheet by the compression treatment. If the temperature at the time of the compression treatment exceeds 350 ° C., the sheet strength decreases due to fiber softening damage.
[0045]
If the pressure during the compression treatment is less than 0.5 MPa ° C., there is no effect of improving the strength of the oxidized fiber sheet or reducing the thickness. If the pressure during the compression treatment exceeds 20 MPa, the sheet strength decreases due to fiber damage.
[0046]
The temperature and pressure during the compression treatment are appropriately adjusted according to the type of the resin during the resin treatment and the target thickness of the carbon fiber sheet.
[0047]
[Firing and carbonization]
After the compression treatment, the oxidized fiber sheet is continuously fired and carbonized at a temperature of 1100 to 1700 ° C. in an inert gas such as a nitrogen gas under a tension of 0.5 N / cm or less. The firing time at a temperature of 1100 to 1700 ° C is preferably 0.5 to 20 minutes.
[0048]
If the temperature at the time of firing is lower than 1100 ° C., the strength of the obtained carbon fiber sheet is undesirably reduced. If the temperature during firing exceeds 1700 ° C., the strength of the carbon fiber sheet decreases, and fine powder is generated, which is not preferable.
[0049]
The above-described PAN-based carbon fiber sheet of the present invention can be manufactured by one example of the manufacturing method of the present invention. Hereinafter, the PAN-based carbon fiber sheet of the present invention will be described in detail.
[0050]
The PAN-based carbon fiber sheet of the present invention is a carbon fiber sheet in which carbon fiber A (main component) and carbon fiber B (subcomponent) are uniformly dispersed and contained.
[0051]
Fiber diameter C of carbon fiber A A Is 8.0 to 15.0 μm. Fiber diameter C of carbon fiber A A Is less than 8.0 μm, the strength of the carbon fiber sheet is undesirably reduced. Fiber diameter C of carbon fiber A A Is more than 15.0 μm, it is not preferable because it is difficult to obtain a thin carbon fiber sheet.
[0052]
Diameter ratio C between carbon fiber B and carbon fiber A B / C A Is 0.40 to 0.80. Fiber diameter ratio C B / C A Is less than 0.40, the fiber diameter ratio C B / C A Is more than 0.80, it is not preferable because the strength of the carbon fiber sheet is reduced.
[0053]
The carbon fiber content of the carbon fiber B is 4 to 25% by mass. If the carbon fiber content of the carbon fiber B is less than 4% by mass, the strength improvement effect of the carbon fiber B is not obtained, and the strength of the carbon fiber sheet is undesirably reduced. If the carbon fiber content of the carbon fiber B exceeds 25% by mass, the strength of the carbon fiber sheet decreases with a decrease in the dispersibility of the fiber, which is not preferable.
[0054]
The total content of carbon fiber A and carbon fiber B is 95% by mass or more.
[0055]
The thickness of the PAN-based carbon fiber sheet of the present invention is 0.1 to 0.5 mm. When the thickness of the sheet is less than 0.1 mm, the strength of the oxidized fiber sheet as a raw material of the carbon fiber sheet is low, and it is difficult to carbonize. If the thickness of the sheet exceeds 0.5 mm, it is not the expected thin carbon fiber sheet.
[0056]
The tensile strength of the PAN-based carbon fiber sheet of the present invention is 7 N / cm or more. When the tensile strength is less than 7 N / cm, the tensile strength of the oxidized fiber sheet before carbonization is low, and the oxidized fiber sheet is likely to be stretched or cut during carbonization. If excessive tension is applied during post-processing of the carbon fiber sheet (resin treatment, ceramic coating treatment, carbon black treatment, etc.), elongation and cutting are likely to occur.
[0057]
The shape of the PAN-based carbon fiber sheet of the present invention may be any shape such as a carbon fiber paper formed by wet papermaking and a carbon fiber nonwoven fabric formed by dry nonwoven fabric as long as the above physical properties are satisfied.
[0058]
【Example】
The present invention will be described in detail by the following Examples and Comparative Examples.
[0059]
Carbon fiber sheets were produced under the conditions of the following Examples and Comparative Examples. Various physical property values of the raw material oxidized fiber A, the raw material oxidized fiber B, the binder fiber, the oxidized fiber sheet, and the carbon fiber sheet were measured by the methods described above or the following methods.
[0060]
Fiber specific gravity: Measured by Archimedes method (solvent acetone).
[0061]
Thickness: The thickness at a load of 200 gf (2.8 kPa) measured by a circular pressure plate having a diameter of 30 mm was measured.
[0062]
Basis weight: The mass per unit area was calculated from the dimensions of the sheet and the dry mass at 120 ° C.
[0063]
Bulk density: Calculated from the thickness and basis weight measured under the above conditions.
[0064]
Fiber diameter of carbon fiber A (main component) and carbon fiber B (subcomponent) in carbon fiber sheet, and carbon fiber content:
The sheet to be measured was cut into a 50 mm square, and the 50 mm square sheet was further cut into strips at 3 mm intervals. Next, the individual fibers of each strip are loosened with tweezers, put into a 200 ml beaker, put a 1 vol% aqueous ethanol solution into a 150 ml beaker, and stir and disperse. The dispersion is collected with a dropper, the fiber is placed on a preparation, and a micrograph is taken with a microscope at a magnification of 200 times. From this micrograph, the fiber diameter was measured for n = 100 samples. The fiber diameter was determined to one decimal place in μm units.
[0065]
When the horizontal axis represents the fiber diameter and the vertical axis represents the number of fibers in the histogram, the peak of the thick fiber (carbon fiber A) and the peak of the thin fiber (carbon fiber B) appeared.
[0066]
From the number of fibers at a fiber diameter of ± 10% of this peak, the average value of each fiber diameter is calculated. A μm and C B μm.
[0067]
The mass ratio of carbon fiber B to carbon fiber A is
(Number of carbon fibers B x C B Square x fiber length of raw material oxidized fiber B) / (number of carbon fibers A x C A Square x fiber length of raw material oxidized fiber A)
It calculated using the formula of.
[0068]
The fiber content of carbon fiber A, the fiber content of carbon fiber B, and the total content of carbon fiber A and carbon fiber B were determined by the following methods.
[0069]
A 100 mm square sheet to be measured was dried at 120 ° C. for 2 hours, precisely weighed, and then treated in 300 ml of hot concentrated sulfuric acid (80 ° C.) for 30 minutes. Then, after allowing the acid-treated sheet to cool, 2 O 2 100 ml of a 5% by mass aqueous solution was added and left for 1 hr. The sheet after standing was filtered with a magnetic filter and washed with pure water. The total content of carbon fiber A and carbon fiber B was determined from the dry mass of the washed sheet.
[0070]
The fiber content of carbon fiber B and carbon fiber A was calculated from the total content of carbon fiber A and carbon fiber B and the mass ratio of carbon fiber B and carbon fiber A, respectively.
[0071]
Tensile strength of the sheet: A test piece having a width of 20 mm and a length of 200 mm was measured at a grip interval of 100 mm and a tensile speed of 100 mm / min.
[0072]
X-ray crystal size: The half-value width of the 2θ peak in wide-angle X-ray diffraction measurement and the following Scherrer's formula
X-ray crystal size (nm) = (k × λ) / β × cos θ
k: equipment constant 0.90
λ: X-ray wavelength 0.154 nm
β: half value width of the maximum peak near 2θ = 26.0 °
I asked more.
[0073]
Example 1
As shown in Table 1, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.1 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 21.0 kgf / mm 2 (206N / mm 2 )] Is 95.0% by mass in terms of fiber content, and the fiber diameter (O B ) 9.1 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 22.5 kgf / mm 2 (221 N / mm 2 )] At a fiber content of 5.0% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and oxidized fiber sheet [fiber diameter ratio of raw material oxidized fiber A and raw material oxidized fiber B ( O B / O A ) 0.60, thickness 0.6 mm, basis weight 120 g / cm 2 , Bulk density 0.20g / cm 3 ] Was produced.
[0074]
Further, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.8% by mass, and then compressed to a thickness of 0.30 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 122 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0075]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0076]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 11.1 μm carbon fiber A was 94.5% by mass, and the carbon fiber diameter (C B ) The content of 6.5 μm carbon fiber B is 5.0% by mass, and the fiber diameter ratio of carbon fiber A to carbon fiber B (C B / C A ) Was 0.59, the carbon fiber content [carbon fiber (A + B) content in Table 1] was 99.5% by mass, the thickness was 0.31 mm, and the basis weight was 74 g / m. 2 , Bulk density is 0.24g / cm 3 , The tensile strength was 8 N / cm, the X-ray crystal size was 2.2 nm, and the carbon fiber sheet had good physical properties.
[0077]
Example 2
As shown in Table 1, as the raw material oxidized fiber A, the fiber diameter (O A ) 14.9 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 22.4 kgf / mm 2 (220 N / mm 2 )] At a fiber content of 85.0% by mass, and a fiber diameter (O B ) 9.1 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 25.3 kgf / mm 2 (248 N / mm 2 )] At a fiber content of 15.0% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B ( O B / O A ) 0.61, thickness 0.55 mm, basis weight 119 g / cm 2 , Bulk density 0.22g / cm 3 ] Was produced.
[0078]
Further, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.5% by mass, and then compressed to a thickness of 0.28 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 121 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0079]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0080]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 11.0 μm carbon fiber A was 85.0% by mass, and the carbon fiber diameter (C B ) The content of 6.3 μm carbon fiber B is 14.9% by mass, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Was 0.57, the carbon fiber content [carbon fiber (A + B) content in Table 1] was 99.9% by mass, the thickness was 0.28 mm, and the basis weight was 73 g / m. 2 , Bulk density 0.26g / cm 3 , Tensile strength was 15.5 N / cm, X-ray crystal size was 2.25 nm, and it was a carbon fiber sheet having good physical properties.
It was a thing.
[0081]
Example 3
As shown in Table 1, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.0 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 20.5 kgf / mm 2 (201 N / mm 2 )] At a fiber content of 78.5% by mass, and a fiber diameter (O B ) 9.0 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 26.0 kgf / mm 2 (255 N / mm 2 )] In a fiber content of 21.5% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and oxidized fiber sheet [fiber diameter ratio of raw material oxidized fiber A and raw material oxidized fiber B ( O B / O A ) 0.60, thickness 0.53 mm, basis weight 115 g / cm 2 , Bulk density 0.22g / cm 3 ] Was produced.
[0082]
Furthermore, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.5% by mass, and then compressed to a thickness of 0.27 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 117 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0083]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0084]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 10.9 μm carbon fiber A was 78.5% by mass, and the carbon fiber diameter (C B ) The content of 6.4 μm carbon fiber B is 21.3 mass%, and the fiber diameter ratio of carbon fiber A to carbon fiber B (C B / C A ) Was 0.59, the carbon fiber content [carbon fiber (A + B) content in Table 1] was 99.8% by mass, the thickness was 0.26 mm, and the basis weight was 70 g / m. 2 , Bulk density is 0.27 g / cm 3 , The tensile strength was 13.5 N / cm, the X-ray crystal size was 2.27 nm, and the carbon fiber sheet had good physical properties.
[0085]
Example 4
As shown in Table 1, as the raw material oxidized fiber A, the fiber diameter (O A ) 13.1 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 24.3 kgf / mm 2 (238 N / mm 2 )] At a fiber content of 84.9% by mass, and a fiber diameter (O B ) 8.9 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 27.4 kgf / mm 2 (269 N / mm 2 )] At a fiber content of 15.1% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw material oxidized fiber A and raw material oxidized fiber B ( O B / O A ) 0.68, thickness 0.57 mm, basis weight 120 g / cm 2 , Bulk density 0.21 g / cm 3 ] Was produced.
[0086]
Furthermore, the obtained oxidized fiber sheet was immersed in an aqueous PVA solution (concentration: 1.0% by mass), impregnated with 2.0% by mass, and then compressed to a thickness of 0.29 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 122 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0087]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0088]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 9.5 μm carbon fiber A is 85.0% by mass, and the carbon fiber diameter (C B ) The content of 6.4 μm carbon fiber B is 14.8 mass%, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Is 0.67, the carbon fiber content [carbon fiber (A + B) content in Table 1] is 99.8 mass%, the thickness is 0.29 mm, and the basis weight is 73 g / m. 2 , Bulk density is 0.25g / cm 3 , The tensile strength was 12.5 N / cm, the X-ray crystal size was 2.24 nm, and the carbon fiber sheet had good physical properties.
[0089]
Comparative Example 1
As shown in Table 1, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.2 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 19.3 kgf / mm 2 (189 N / mm 2 )] At a fiber content of 96.8% by mass, and a fiber diameter (O B ) 9.2 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 25.4 kgf / mm 2 (249 N / mm 2 )] At a fiber content of 3.2% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B ( O B / O A ) 0.61, thickness 0.72 mm, basis weight 120 g / cm 2 , Bulk density 0.17g / cm 3 ] Was produced.
[0090]
Furthermore, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.5% by mass, and then compressed to a thickness of 0.35 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 122 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0091]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0092]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 11.2 μm carbon fiber A is 97.0 mass%, and the carbon fiber diameter (C B ) The content of 6.5 μm carbon fiber B is 2.8 mass%, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Was 0.58, the carbon fiber content [carbon fiber (A + B) content in Table 1] was 99.8% by mass, the thickness was 0.38 mm, and the basis weight was 73 g / m. 2 , Bulk density is 0.19 g / cm 3 , The tensile strength was 5.2 N / cm, the X-ray crystal size was 2.24 nm, and it was not a carbon fiber sheet having good physical properties. The portions indicated by x in Table 1 deviate from the configuration of the present invention.
[0093]
[Table 1]
Figure 2004225191
[0094]
Comparative Example 2
As shown in Table 2, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.1 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 7 mm, dry strength 21.0 kgf / mm 2 (206N / mm 2 )] At a fiber content of 71.5% by mass, and a fiber diameter (O B ) 9.0 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 22.5 kgf / mm 2 (221 N / mm 2 )] At a fiber content of 28.5% by mass, dispersed in water, uniformly mixed, and then continuously made into paper. Then, an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B ( O B / O A ) 0.60, thickness 0.55 mm, basis weight 114 g / cm 2 , Bulk density 0.21 g / cm 3 ] Was produced.
[0095]
Furthermore, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.6% by mass, and then compressed to a thickness of 0.30 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 122 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0096]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0097]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 10.9 μm carbon fiber A was 72.7% by mass, and the carbon fiber diameter (C B ) The content of 6.3 μm carbon fiber B is 27.0% by mass, and the fiber diameter ratio of carbon fiber A to carbon fiber B (C B / C A ) Was 0.58, the carbon fiber content [carbon fiber (A + B) content in Table 2] was 99.7% by mass, the thickness was 0.32 mm, and the basis weight was 73 g / m. 2 , Bulk density is 0.23g / cm 3 , The tensile strength was 3.2 N / cm, the X-ray crystal size was 2.20 nm, and it was not a carbon fiber sheet having good physical properties. The portions indicated by x in Table 2 deviate from the configuration of the present invention.
[0098]
Comparative Example 3
As shown in Table 2, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.1 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 51 mm, dry strength 21.0 kgf / mm 2 (206N / mm 2 )] At a fiber content of 85.0% by mass, and a fiber diameter (O B ) 5.5 μm PAN-based oxidized fiber [specific gravity 1.38, cut length 31 mm, dry strength 29.3 kgf / mm 2 (287 N / mm 2 )] At a fiber content of 15.0% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B ( O B / O A ) 0.36, thickness 0.62 mm, basis weight 120 g / cm 2 , Bulk density 0.19g / cm 3 ] Was produced.
[0099]
Furthermore, the obtained oxidized fiber sheet was immersed in a PVA aqueous solution (concentration: 1.0% by mass), impregnated with 1.6% by mass, and then compressed to a thickness of 0.35 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 122 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0100]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0101]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 11.3 μm carbon fiber A was 85.0% by mass, and the carbon fiber diameter (C B ) The content of 3.9 μm carbon fiber B is 14.6 mass%, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Was 0.35, the carbon fiber content [carbon fiber (A + B) content in Table 2] was 99.6% by mass, the thickness was 0.38 mm, and the basis weight was 74 g / m. 2 , Bulk density is 0.19 g / cm 3 , The tensile strength was 4.2 N / cm, the X-ray crystal size was 2.22 nm, and it was not a carbon fiber sheet having good physical properties. The portions indicated by x in Table 2 deviate from the configuration of the present invention.
[0102]
Comparative Example 4
As shown in Table 2, as the raw material oxidized fiber A, the fiber diameter (O A ) 15.2 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 51 mm, dry strength 19.3 kgf / mm 2 (189 N / mm 2 )] At a fiber content of 85.0% by mass, and a fiber diameter (O B ) 12.5 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 51 mm, dry strength 24.8 kgf / mm 2 (243N / mm 2 )] At a fiber content of 15.0% by mass, dispersed in water, uniformly mixed, then continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B ( O B / O A ) 0.82, thickness 0.59 mm, basis weight 121 g / cm 2 , Bulk density 0.21 g / cm 3 ] Was produced.
[0103]
Further, the obtained oxidized fiber sheet was immersed in an aqueous PVA solution (concentration: 1.0% by mass), and impregnated with 1.7% by mass, and then compressed to a thickness of 0.31 mm at a temperature of 150 ° C and a pressure of 15 MPa. Treated, basis weight 123 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0104]
This oxidized fiber sheet was continuously fired and carbonized for 2 minutes at a tension of 0.2 N / cm at 1500 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet.
[0105]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 10.9 μm carbon fiber A was 85.0% by mass, and the carbon fiber diameter (C B ) The content of 9.3 μm carbon fiber B is 14.7 mass%, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Is 0.85, the carbon fiber content [carbon fiber (A + B) content in Table 2] is 99.7% by mass, the thickness is 0.32 mm, and the basis weight is 74 g / m. 2 , Bulk density is 0.23 g / cm 3 , The tensile strength was 3.5 N / cm, the X-ray crystal size was 2.15 nm, and it was not a carbon fiber sheet having good physical properties. The portions indicated by x in Table 2 deviate from the configuration of the present invention.
[0106]
Example 5
As shown in Table 2, as the raw material oxidized fiber A, the fiber diameter (O A ) 14.9 μm PAN-based oxidized fiber [specific gravity 1.39, cut length 5 mm, dry strength 20.0 kgf / mm 2 (196 N / mm 2 )] With a fiber content of 92.0% by mass, and a fiber diameter (O B ) 9.0 μm PAN-based oxidized fiber [specific gravity 1.37, cut length 5 mm, dry strength 26.0 kgf / mm 2 (255 N / mm 2 )] Was dispersed in water, and 5.0% by mass of a fiber content and 3.0% by mass of a rayon fiber having a fiber diameter of 12.0 μm (specific gravity 1.22) as a binder fiber were 3.0% by mass in water. , And continuously paper-made, and an oxidized fiber sheet [fiber diameter ratio of raw oxidized fiber A and raw oxidized fiber B (O B / O A ) 0.60, thickness 0.28 mm, basis weight 115 g / cm 2 , Bulk density 0.41 g / cm 3 ] Was produced.
[0107]
Furthermore, the obtained oxidized fiber sheet was immersed in an aqueous PVA solution (concentration: 1.0% by mass), impregnated with 2.0% by mass, and then compressed to a thickness of 0.24 mm at a temperature of 150 ° C. and a pressure of 15 MPa. Treated, basis weight 117 g / m 2 The resin-compressed oxidized fiber sheet was obtained.
[0108]
The carbon fiber sheet was obtained by continuously firing and carbonizing the oxidized fiber sheet under a nitrogen atmosphere at a tension of 0.1 N / cm at 1500 ° C. for 2 minutes.
[0109]
The obtained carbon fiber sheet has a carbon fiber diameter (C A ) The content of 11.2 μm carbon fiber A was 94.8% by mass, and the carbon fiber diameter (C B ) The content of 6.4 μm carbon fiber B is 5.1% by mass, and the fiber diameter ratio of carbon fiber A and carbon fiber B (C B / C A ) Was 0.57, the carbon fiber content [carbon fiber (A + B) content in Table 2] was 99.9% by mass, the thickness was 0.25 mm, and the basis weight was 71 / m. 2 , Bulk density 0.28g / cm 3 , The tensile strength was 11.0 N / cm, the X-ray crystal size was 2.00 nm, and the carbon fiber sheet had good physical properties.
[0110]
[Table 2]
Figure 2004225191
[0111]
【The invention's effect】
The PAN-based carbon fiber sheet of the present invention is a PAN-based carbon fiber sheet in which a main component carbon fiber (carbon fiber A) and an auxiliary component carbon fiber (carbon fiber B) are uniformly dispersed and contained. Fiber diameter C A , Fiber diameter ratio C between carbon fiber B and carbon fiber A B / C A Since various properties such as carbon fiber content of carbon fiber B, total content of carbon fiber A and carbon fiber B, thickness, and tensile strength are within predetermined ranges, fiber dispersibility is good and thickness variation. This is a high-strength and thin PAN-based carbon fiber sheet with little post-processing and good post-processing properties.
[0112]
In producing this PAN-based carbon fiber sheet, an oxidized fiber thinner than the main fiber (raw oxidized fiber A) is used as a subcomponent fiber (raw oxidized fiber B) in the production method of the present invention: PAN-based oxidized fiber sheet. By mixing and processing a sheet in a predetermined range, an oxidized fiber sheet having improved fiber dispersibility is obtained, and the obtained oxidized fiber sheet is subjected to resin treatment. In the production method characterized by firing and carbonizing in an inert gas, without causing workability troubles such as tearing or cutting during processing, converging fibers between fibers, Agglomeration does not occur and causes no trouble at the time of production, such as lowering the strength of the obtained oxidized fiber sheet during carbonization, or lowering the strength of the carbon fiber sheet after carbonization. It can be obtained by the PAN-based carbon fiber sheet stably.

Claims (2)

繊維直径Cが8.0〜15.0μmの炭素繊維Aと、繊維直径Cが式1
0.40 < C/C < 0.80 式1
を満たす炭素繊維Bとが、均一に分散含有されたポリアクリロニトリル系炭素繊維シートであって、炭素繊維Bの炭素繊維含有率が4〜25質量%、炭素繊維Aと炭素繊維Bとの合計含有率が95質量%以上、厚さが0.1〜0.5mm、引っ張り強度が7N/cm以上のポリアクリロニトリル系炭素繊維シート。
Carbon fibers A fiber diameter C A is 8.0~15.0Myuemu, fiber diameter C B has the formula 1
0.40 <C B / C A < 0.80 Equation 1
Is a polyacrylonitrile-based carbon fiber sheet uniformly dispersed and contained, wherein the carbon fiber content of carbon fiber B is 4 to 25% by mass, and the total content of carbon fiber A and carbon fiber B A polyacrylonitrile-based carbon fiber sheet having a ratio of 95% by mass or more, a thickness of 0.1 to 0.5 mm, and a tensile strength of 7 N / cm or more.
繊維直径Oが11.0〜25.0μm、繊維長が3〜15mmの酸化繊維Aと、繊維直径Oが式2
0.40 < O/O < 0.80 式2
を満たし、繊維長が3〜15mmの酸化繊維Bとが、均一に分散含有されてなり、酸化繊維Bの繊維含有率が4〜25質量%である酸化繊維シートを、樹脂処理後、更に圧縮処理し、厚さを0.1〜1.0mmにした後、不活性ガス中で0.5N/cm以下の張力下、1100〜1700℃の温度で連続的に焼成・炭素化する、繊維直径Cが8.0〜15.0μmの炭素繊維Aと、繊維直径Cが式1
0.40 < C/C < 0.80 式1
を満たす炭素繊維Bとが、均一に分散含有されたポリアクリロニトリル系炭素繊維シートであって、炭素繊維Bの炭素繊維含有率が4〜25質量%、炭素繊維Aと炭素繊維Bとの合計含有率が95質量%以上、厚さが0.1〜0.5mm、引っ張り強度が7N/cm以上のポリアクリロニトリル系炭素繊維シートの製造方法。
Fiber diameter O A is 11.0~25.0Myuemu, oxide fibers A fiber length is 3 to 15 mm, fiber diameter O B has the formula 2
0.40 <O B / O A < 0.80 Equation 2
Oxidized fiber B having a fiber length of 3 to 15 mm is uniformly dispersed and contained, and the fiber content of the oxidized fiber B is 4 to 25% by mass. After processing to a thickness of 0.1 to 1.0 mm, the fiber diameter is continuously fired and carbonized at a temperature of 1100 to 1700 ° C. under a tension of 0.5 N / cm or less in an inert gas. and C a carbon fiber a of 8.0~15.0Myuemu, fiber diameter C B has the formula 1
0.40 <C B / C A < 0.80 Equation 1
Is a polyacrylonitrile-based carbon fiber sheet uniformly dispersed and contained, wherein the carbon fiber content of carbon fiber B is 4 to 25% by mass, and the total content of carbon fiber A and carbon fiber B A method for producing a polyacrylonitrile-based carbon fiber sheet having a ratio of 95% by mass or more, a thickness of 0.1 to 0.5 mm, and a tensile strength of 7 N / cm or more.
JP2003014264A 2003-01-23 2003-01-23 Polyacrylonitrile-based carbon fiber sheet and method for producing the same Expired - Fee Related JP4138510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014264A JP4138510B2 (en) 2003-01-23 2003-01-23 Polyacrylonitrile-based carbon fiber sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014264A JP4138510B2 (en) 2003-01-23 2003-01-23 Polyacrylonitrile-based carbon fiber sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004225191A true JP2004225191A (en) 2004-08-12
JP4138510B2 JP4138510B2 (en) 2008-08-27

Family

ID=32902358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014264A Expired - Fee Related JP4138510B2 (en) 2003-01-23 2003-01-23 Polyacrylonitrile-based carbon fiber sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4138510B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241600A (en) * 2005-02-03 2006-09-14 Toho Tenax Co Ltd Method for producing carbon fiber sheet
JP2007031912A (en) * 2005-07-29 2007-02-08 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt and method for producing them
JP2011219907A (en) * 2010-04-14 2011-11-04 Toho Tenax Co Ltd Carbon fiber sheet, heat-treated frame resistant fiber sheet and manufacturing method thereof
CN102485980A (en) * 2010-12-06 2012-06-06 财团法人工业技术研究院 Polyacrylonitrile fiber precursor plasticizer, composition and preparation method of carbon fiber thereof
JP2013155475A (en) * 2013-02-27 2013-08-15 Toray Ind Inc Method for producing carbon fiber web
KR20190063221A (en) 2017-11-29 2019-06-07 주식회사 엘지화학 Method for preparing polyacrylonitrile based fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210866A (en) * 1985-07-08 1987-01-19 Toshiba Corp Electrode substrate for fuel cell
JPS6440698A (en) * 1987-08-07 1989-02-10 Oji Paper Co Production of porous carbon plate
JPH09324390A (en) * 1996-06-07 1997-12-16 Toray Ind Inc Carbon fiber paper and porous carbon board
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP2003221770A (en) * 2002-01-24 2003-08-08 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber nonwoven fabric, and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210866A (en) * 1985-07-08 1987-01-19 Toshiba Corp Electrode substrate for fuel cell
JPS6440698A (en) * 1987-08-07 1989-02-10 Oji Paper Co Production of porous carbon plate
JPH09324390A (en) * 1996-06-07 1997-12-16 Toray Ind Inc Carbon fiber paper and porous carbon board
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP2003221770A (en) * 2002-01-24 2003-08-08 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber nonwoven fabric, and method for producing the same
JP3954850B2 (en) * 2002-01-24 2007-08-08 東邦テナックス株式会社 Polyacrylonitrile-based carbon fiber nonwoven fabric and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241600A (en) * 2005-02-03 2006-09-14 Toho Tenax Co Ltd Method for producing carbon fiber sheet
JP4705379B2 (en) * 2005-02-03 2011-06-22 東邦テナックス株式会社 Method for producing carbon fiber sheet
JP2007031912A (en) * 2005-07-29 2007-02-08 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt and method for producing them
JP4632043B2 (en) * 2005-07-29 2011-02-16 東邦テナックス株式会社 Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP2011219907A (en) * 2010-04-14 2011-11-04 Toho Tenax Co Ltd Carbon fiber sheet, heat-treated frame resistant fiber sheet and manufacturing method thereof
CN102485980A (en) * 2010-12-06 2012-06-06 财团法人工业技术研究院 Polyacrylonitrile fiber precursor plasticizer, composition and preparation method of carbon fiber thereof
JP2013155475A (en) * 2013-02-27 2013-08-15 Toray Ind Inc Method for producing carbon fiber web
KR20190063221A (en) 2017-11-29 2019-06-07 주식회사 엘지화학 Method for preparing polyacrylonitrile based fiber

Also Published As

Publication number Publication date
JP4138510B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
TWI406983B (en) Flame resistance, carbon fiber and method for producing the same
KR100759102B1 (en) Preparation method of two-phase carbon nanofibers and activated carbon nanofibers by electrospinning from polyacrylonitrile/pitch blend solutions
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
Wahab et al. Post-electrospinning thermal treatments on poly (4-methyl-1-pentene) nanofiber membranes for improved mechanical properties
US6303096B1 (en) Pitch based carbon fibers
JP2004225191A (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JP5635740B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
TWI422633B (en) Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber
JP2020033687A (en) Ultrafine carbon fiber mixture, method for producing the same, and carbon-based conductive assistant
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP4582905B2 (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
Gu et al. Electrical conductive and structural characterization of electrospun aligned carbon nanofibers membrane
JP2005183325A (en) Carbon fiber sheet for polymer electrolyte gas diffusion layer and its manufacturing method
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2005029921A (en) Oxidized fiber mixed paper and method for producing the same
JPH11158737A (en) Production of carbon fiber felt
JP2584497B2 (en) Carbon fiber sheet
CN115323825B (en) Preparation method of high-electric-conductivity and high-heat-conductivity graphite fiber paper
JPH05330915A (en) Production of carbon/carbon composite material
JP2008218859A (en) Electromagnetic wave absorber
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees