JP2006241600A - Method for producing carbon fiber sheet - Google Patents

Method for producing carbon fiber sheet Download PDF

Info

Publication number
JP2006241600A
JP2006241600A JP2005030607A JP2005030607A JP2006241600A JP 2006241600 A JP2006241600 A JP 2006241600A JP 2005030607 A JP2005030607 A JP 2005030607A JP 2005030607 A JP2005030607 A JP 2005030607A JP 2006241600 A JP2006241600 A JP 2006241600A
Authority
JP
Japan
Prior art keywords
component
fiber sheet
carbon fiber
carbon
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005030607A
Other languages
Japanese (ja)
Other versions
JP4705379B2 (en
Inventor
Atsushi Kawakami
敦 河上
Yusuke Takami
祐介 高見
Kazuma Kurokawa
一真 黒川
Masanori Wada
正典 和田
Munehisa Koyama
宗央 小山
Shigeki Matsumura
茂起 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Teijin Advanced Papers Japan Ltd
Mishima Paper Manufacturing Co Ltd
Teijin Ltd
Original Assignee
DuPont Teijin Advanced Papers Japan Ltd
Mishima Paper Manufacturing Co Ltd
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DuPont Teijin Advanced Papers Japan Ltd, Mishima Paper Manufacturing Co Ltd, Toho Tenax Co Ltd filed Critical DuPont Teijin Advanced Papers Japan Ltd
Priority to JP2005030607A priority Critical patent/JP4705379B2/en
Publication of JP2006241600A publication Critical patent/JP2006241600A/en
Application granted granted Critical
Publication of JP4705379B2 publication Critical patent/JP4705379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber sheet without forming a distortion on calcinating and satisfying physical properties such as a good ventilating property, sufficient strength, etc. <P>SOLUTION: This carbon fiber sheet is produced by heat compression-treating an oxidized fiber crude sheet obtained by blending/containing the following 3 components, A, B, C, wherein, A: an oxidized fiber having 2.0-25.0 mm fiber length; B: an organic polymer having 30-70 mass% residual carbon ratio; and C: an organic polymer having 0.5-20.0 mass% residual carbon ratio, by 50-95 pts.mass blended amount of the A component, 50-5 pts.mass blended amount of the B component, and 0.3-5.0 (C)/(B) blending ratio of the C component to the B component under 100-350°C temperature and 0.30-20 MPa pressure to obtain an oxidized fiber sheet having 1.0-0.2 g/cm<SP>3</SP>bulk density, and then calcinating the same under an inert gas atmosphere, at 1,300-2,500°C temperature for carbonizing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化繊維シートを焼成して炭素繊維シートを製造する方法に関する。   The present invention relates to a method for producing a carbon fiber sheet by firing an oxidized fiber sheet.

炭素材料は、耐熱性、耐食性、耐薬品性に優れ、導電性を有することから、電極材料、電磁波遮蔽材料として使用されている。特に電極材用途には、気体又は液体の透過性に優れたシートが要望されている。   Carbon materials are excellent in heat resistance, corrosion resistance, chemical resistance, and have conductivity, and are therefore used as electrode materials and electromagnetic shielding materials. In particular, a sheet excellent in gas or liquid permeability is desired for use as an electrode material.

炭素材料がシート状である場合は、加工性、施工性、取扱性が良い。シート状の炭素材料として、炭素繊維強化材料シート(C/Cペーパー)等の炭素繊維シートがある。   When the carbon material is in the form of a sheet, workability, workability, and handleability are good. As the sheet-like carbon material, there is a carbon fiber sheet such as a carbon fiber reinforced material sheet (C / C paper).

C/Cペーパーは、例えば炭素繊維とポリビニルアルコールを始めとするバインダー繊維とを混抄し、得られた炭素繊維紙をフェノール樹脂などの熱硬化性樹脂に含浸加工し、硬化加工した後に、窒素雰囲気下で2000℃前後の温度で焼成することで得られる。   C / C paper is a mixture of carbon fiber and binder fiber such as polyvinyl alcohol, and the resulting carbon fiber paper is impregnated with a thermosetting resin such as a phenol resin, cured, and then subjected to a nitrogen atmosphere. It can be obtained by firing at a temperature around 2000 ° C.

このC/Cペーパーの製造工程において、一般に熱硬化性樹脂に含浸し、熱プレス加工した後のシートは硬くなって、しなやかさ及び/又は強度が低下する。しなやかさ及び/又は強度が低下すると、シートはロールに巻き取ることが困難になるためシートの形態は枚葉とせざるを得ず、焼成はバッチ式になる。その結果、生産効率が低下して非常に製造コストがかかる。   In the production process of the C / C paper, the sheet after impregnated with a thermosetting resin and hot-pressed is generally hardened, and the flexibility and / or strength is lowered. When the suppleness and / or strength is reduced, the sheet becomes difficult to be wound on a roll, so the form of the sheet must be a single sheet, and the baking becomes a batch type. As a result, the production efficiency is reduced and the manufacturing cost is very high.

これらの問題を解決する手段として、炭素繊維の表面積比を特定の範囲にコントロールする方法(例えば、特許文献1参照)、焼成時にエンドレスベルトを用いる方法(例えば、特許文献2参照)、樹脂含浸量を適度な範囲にコントロールする方法(例えば、特許文献3参照)、2種類以上の炭素繊維を組み合わせる方法(例えば、特許文献4参照)などが提案されている。   As means for solving these problems, a method of controlling the surface area ratio of carbon fibers within a specific range (for example, see Patent Document 1), a method of using an endless belt at the time of firing (for example, see Patent Document 2), a resin impregnation amount For example, a method of controlling the carbon fiber within an appropriate range (for example, see Patent Document 3), a method of combining two or more types of carbon fibers (for example, see Patent Document 4), and the like have been proposed.

しかし、しなやかさ及び/又は強度の低下防止、並びに、製造コストの低減等について満足するものは得られていない。   However, nothing satisfying the suppleness and / or strength reduction prevention and the production cost reduction has been obtained.

上記以外の炭素繊維シートの製造方法として、酸化繊維を抄紙用原料に用いて炭素繊維シートを製造する方法がある(例えば、特許文献5、6参照)。酸化繊維は、炭素繊維に比べ、繊維伸度が高く、抄紙時の加工性が良い。そのため、炭素化処理前の酸化繊維シートを容易に製造することができる。   As a method for producing a carbon fiber sheet other than the above, there is a method for producing a carbon fiber sheet using oxidized fiber as a papermaking raw material (see, for example, Patent Documents 5 and 6). Oxidized fibers have higher fiber elongation than carbon fibers and good processability during paper making. Therefore, the oxidized fiber sheet before the carbonization treatment can be easily manufactured.

しかし、特許文献5の炭素繊維シートの製造方法は、抄紙工程後、フェノール樹脂含浸の必要があり、工程が煩雑である。また、特許文献6の製造方法で製造される炭素繊維シートは、充分な強度が得られない。また、この炭素繊維シートは充分な通気性を有していない。
特開2003−183994号公報 (特許請求の範囲、段落番号[0005]〜[0008]) 特開2004−259711号公報 (段落番号[0043]、[0072]) 特開2002−302557号公報 (特許請求の範囲、段落番号[0026]) 特開2001−283878号公報 (特許請求の範囲、段落番号[0011]〜[0024]) 特開2004−183164号公報 (特許請求の範囲、段落番号[0031]〜[0036]) 特開2004−27435号公報 (特許請求の範囲、段落番号[0047]〜[0053])
However, the method for producing a carbon fiber sheet of Patent Document 5 requires a phenol resin impregnation after the paper making process, and the process is complicated. Moreover, the carbon fiber sheet manufactured by the manufacturing method of Patent Document 6 cannot obtain sufficient strength. Moreover, this carbon fiber sheet does not have sufficient air permeability.
JP 2003-183994 A (claims, paragraph numbers [0005] to [0008]) JP 2004-259711 A (paragraph numbers [0043], [0072]) JP 2002-302557 A (Claims, paragraph number [0026]) JP 2001-283878 A (Claims, paragraph numbers [0011] to [0024]) JP 2004-183164 A (claims, paragraph numbers [0031] to [0036]) JP 2004-27435 A (claims, paragraph numbers [0047] to [0053])

本発明者の属する研究グループは、繊維の分散性が良好で且つ難燃性に優れた酸化繊維混抄紙(酸化繊維シート)及びその製造方法を発明し、先に出願した(特願2003−195642)。しかし、該酸化繊維シートを焼成して得られる炭素繊維シートの一部は、焼成時にゆがみを生じ易いものであった。また、良好な通気性、充分な強度を有しない等その物性は満足できるものではなかった。   The research group to which the inventor belongs has invented an oxidized fiber mixed paper (oxidized fiber sheet) having excellent fiber dispersibility and excellent flame retardancy, and a method for producing the same, and has filed an application earlier (Japanese Patent Application No. 2003-195642). ). However, some of the carbon fiber sheets obtained by firing the oxidized fiber sheet are likely to be distorted during firing. Also, the physical properties such as good air permeability and insufficient strength were not satisfactory.

本発明者は、上記問題を解決するために種々検討しているうちに、所定繊維長の酸化繊維のA成分と、高残炭率を有する有機高分子のB成分と、低残炭率を有する有機高分子のC成分とを所定配合割合で混合含有して得られる酸化繊維シートを焼成することにより、焼成時にゆがみを生じないで且つ良好な通気性、充分な強度を有する等の物性を満足する炭素繊維シートが得られることを知得した。   While various studies have been made by the present inventor to solve the above problems, the A component of the oxidized fiber having a predetermined fiber length, the B component of the organic polymer having a high residual carbon ratio, and the low residual carbon ratio are obtained. By firing the oxidized fiber sheet obtained by mixing and containing the C component of the organic polymer having a predetermined blending ratio, physical properties such as no distortion during firing and good air permeability and sufficient strength are obtained. It was learned that a satisfactory carbon fiber sheet can be obtained.

また、焼成時及び焼成後のシートはしなやかさ及び/又は強度が適正であり、容易にロールに巻き取ることができるため焼成は連続式が可能になる。その結果、生産効率が向上して製造コストを低減できる可能性があることを本発明者は知得し、本発明を完成するに至った。   Further, the sheet after firing and after firing has appropriate flexibility and / or strength, and can be easily wound up on a roll, so that firing can be continuous. As a result, the present inventor has learned that production efficiency may be improved and manufacturing costs may be reduced, and the present invention has been completed.

従って、本発明の目的とするところは、上記問題を解決した炭素繊維シートの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a carbon fiber sheet that solves the above-described problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 以下の3成分A、B、C
A:繊維長2.0〜15.0mmの酸化繊維
B:残炭率30〜70質量%を有する有機高分子
C:残炭率0.5〜20.0質量%を有する有機高分子
について、A成分の配合量50〜95質量部、B成分の配合量50〜5質量部、B成分に対するC成分の配合割合C/B0.3〜5.0で混合含有してなる酸化繊維粗シートを、100〜350℃の温度下、圧力0.30〜20MPaの条件で熱圧縮処理して、嵩密度1.0〜0.2g/cm3の酸化繊維シートを得、次いでこれを不活性ガス雰囲気下、1300〜2500℃の温度で焼成し炭素化する炭素繊維シートの製造方法。
[1] The following three components A, B, C
A: Oxidized fiber having a fiber length of 2.0 to 15.0 mm B: Organic polymer having a residual carbon ratio of 30 to 70% by mass C: Organic polymer having a residual carbon ratio of 0.5 to 20.0% by mass A rough oxidized fiber sheet comprising 50 to 95 parts by mass of component A, 50 to 5 parts by mass of component B, and C / B 0.3 to 5.0 in proportion of component C to component B , Under a temperature of 100 to 350 ° C. under a pressure of 0.30 to 20 MPa, an oxide fiber sheet having a bulk density of 1.0 to 0.2 g / cm 3 is obtained, and then this is treated with an inert gas atmosphere. Below, the manufacturing method of the carbon fiber sheet baked and carbonized at the temperature of 1300-2500 degreeC.

〔2〕 A成分が繊維太さ0.8〜3.3dtex、繊維長2.0〜15.0mmの酸化繊維である〔1〕に記載の炭素繊維シートの製造方法。   [2] The method for producing a carbon fiber sheet according to [1], wherein the component A is an oxidized fiber having a fiber thickness of 0.8 to 3.3 dtex and a fiber length of 2.0 to 15.0 mm.

〔3〕 B成分が芳香族ポリアミドである〔1〕に記載の炭素繊維シートの製造方法。   [3] The method for producing a carbon fiber sheet according to [1], wherein the B component is an aromatic polyamide.

〔4〕 C成分がポリエステル繊維である〔1〕に記載の炭素繊維シートの製造方法。   [4] The method for producing a carbon fiber sheet according to [1], wherein the C component is a polyester fiber.

本発明の炭素繊維シートの製造方法は、所定繊維長の酸化繊維のA成分と、高残炭率を有する有機高分子のB成分と、低残炭率を有する有機高分子のC成分とを所定配合割合で混合含有して得られる酸化繊維シートを焼成することを特徴としており、焼成時にゆがみを生じないで且つ良好な通気性、充分な強度を有する等の物性を満足する炭素繊維シートが得られる。   The method for producing a carbon fiber sheet of the present invention comprises an A component of oxidized fibers having a predetermined fiber length, an organic polymer B component having a high carbon residue, and an organic polymer C component having a low carbon residue. A carbon fiber sheet characterized by firing an oxidized fiber sheet obtained by mixing and containing at a predetermined blending ratio, which does not cause distortion at the time of firing and has satisfactory physical properties such as good air permeability and sufficient strength. can get.

また、本発明の製造方法で得られる炭素繊維シートは、その焼成時のしなやかさ及び/又は強度が適正であり、容易にロールに巻き取ることができるので、連続焼成が可能になる。このように、本発明の炭素繊維シートの製造方法によれば、生産効率が向上して製造コストを低減できる。   In addition, the carbon fiber sheet obtained by the production method of the present invention has appropriate flexibility and / or strength at the time of firing, and can be easily wound up on a roll, so that continuous firing is possible. Thus, according to the carbon fiber sheet manufacturing method of the present invention, the production efficiency can be improved and the manufacturing cost can be reduced.

本発明で製造される炭素繊維シートは、電導性、耐熱性が高く、通気性をコントロールし易いので、燃料電池、レドックスフロー電池、亜鉛臭素電池、亜鉛塩素電池、食塩電解等の電極材に特に適している。   The carbon fiber sheet produced in the present invention has high conductivity, heat resistance, and easy air permeability control, so it is particularly suitable for electrode materials such as fuel cells, redox flow batteries, zinc bromine batteries, zinc chlorine batteries, and salt electrolysis. Is suitable.

以下、本発明の炭素繊維シートの製造方法について、詳細に説明する。   Hereinafter, the manufacturing method of the carbon fiber sheet of this invention is demonstrated in detail.

〔原料酸化繊維シート〕
本発明の炭素繊維シートの製造用原料酸化繊維シートは、後述する、所定繊維長の酸化繊維のA成分と、高残炭率を有する有機高分子のB成分と、低残炭率を有する有機高分子のC成分とを混合含有してなる酸化繊維シートである。
[Raw material oxidized fiber sheet]
The raw material oxidized fiber sheet for producing the carbon fiber sheet of the present invention includes an A component of an oxidized fiber having a predetermined fiber length, an organic polymer B component having a high residual carbon ratio, and an organic material having a low residual carbon ratio. It is an oxidized fiber sheet formed by mixing and containing a polymer C component.

〔A成分〕
A成分は、例えば市販のポリアクリロニトリル(PAN)系繊維を空気中、高温で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得られる酸化繊維を用いることができる。
[Component A]
The component A is obtained by, for example, a flameproofing treatment in which a commercially available polyacrylonitrile (PAN) fiber is treated in air at a high temperature to cause a cyclization reaction and increase the amount of oxygen bonds to make it infusible and flame retardant. Oxidized fibers can be used.

上記PAN系繊維は、例えばアクリロニトリルの単独重合体又はアクリロニトリルを95質量%以上含有する単量体を重合した共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   The PAN-based fiber is prepared by spinning, washing, drying, or drawing a spinning solution containing a homopolymer of acrylonitrile or a copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method. It can be obtained by performing such processing. As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

なお、A成分として考えられる酸化繊維については、PAN系酸化繊維以外に、ピッチ系、フェノール系、レーヨン系等の酸化繊維があるが、PAN系酸化繊維が最も高強度の酸化繊維シート及び炭素繊維シートが得られる。   In addition to the PAN-based oxidized fibers, the oxidized fibers considered as the component A include pitch-based, phenol-based, rayon-based oxidized fibers, etc., but the PAN-based oxidized fibers have the highest strength oxidized fiber sheet and carbon fiber. A sheet is obtained.

A成分である酸化繊維の配合量は、A成分と後述のB成分との合計配合量100質量部に対して50〜95質量部、好ましくは60〜85質量部である。   The compounding quantity of the oxidized fiber which is A component is 50-95 mass parts with respect to 100 mass parts of total compounding quantities of A component and below-mentioned B component, Preferably it is 60-85 mass parts.

A成分の配合量が50質量部未満の場合、酸化繊維シートの焼成により得られる炭素繊維シートは、空隙が大きく通気性が良好である。しかし、炭素繊維成分はA成分に由来しているので、A成分の配合量が50質量部未満の場合、炭素繊維シート中の炭素繊維成分が少なくなるために炭素繊維シートの強度は弱くなる。   When the blending amount of the component A is less than 50 parts by mass, the carbon fiber sheet obtained by firing the oxidized fiber sheet has large voids and good air permeability. However, since the carbon fiber component is derived from the A component, when the blending amount of the A component is less than 50 parts by mass, the carbon fiber component in the carbon fiber sheet is reduced, so that the strength of the carbon fiber sheet is weakened.

A成分の配合量が95質量部を超える場合、その分B成分に由来する熱分解炭素質が少なくなる。この熱分解炭素質は、炭素繊維シート中で炭素繊維同士を結合させるのに寄与する。このことから、A成分の配合量が95質量部を超える場合、炭素繊維シートの強度が発現しない。また、A成分の配合量が95質量部を超える場合、その分炭素繊維の数が多くなるために炭素繊維シートにおける空隙が小さくなり、通気性が悪くなる。   When the blending amount of the A component exceeds 95 parts by mass, the pyrolytic carbon derived from the B component is reduced accordingly. This pyrolytic carbonaceous material contributes to bonding carbon fibers in the carbon fiber sheet. From this, when the compounding quantity of A component exceeds 95 mass parts, the intensity | strength of a carbon fiber sheet does not express. Moreover, when the compounding quantity of A component exceeds 95 mass parts, since the number of carbon fibers increases correspondingly, the space | gap in a carbon fiber sheet becomes small and air permeability worsens.

A成分である酸化繊維の繊維長(カット長)は2.0〜15.0mmである。繊維長が2.0mm未満の場合は、得られる酸化繊維シートの強度が低下するので好ましくない。繊維長が15.0mmを超える場合は、得られる酸化繊維シートにおける繊維の分散性が低下するので好ましくない。   The fiber length (cut length) of the oxidized fiber which is the component A is 2.0 to 15.0 mm. When the fiber length is less than 2.0 mm, the strength of the resulting oxidized fiber sheet is lowered, which is not preferable. When the fiber length exceeds 15.0 mm, the dispersibility of the fibers in the resulting oxidized fiber sheet is lowered, which is not preferable.

なお、繊維長は、JIS R 3420に準拠して測定する。   The fiber length is measured according to JIS R 3420.

A成分及び後述のC成分の繊維太さは、裁断加工前の繊維をJIS L 1013に準拠して測定することにより求められる。   The fiber thicknesses of the A component and the C component described later are determined by measuring the fiber before cutting according to JIS L 1013.

A成分である酸化繊維の比重は1.20〜1.60が好ましい。   The specific gravity of the oxidized fiber as the component A is preferably 1.20 to 1.60.

A成分である酸化繊維の繊維太さは、特に限定されないが、0.8〜3.3dtexのものを用いることができる。   Although the fiber thickness of the oxidized fiber which is A component is not specifically limited, The thing of 0.8-3.3 dtex can be used.

〔B成分〕
B成分は、残炭率30〜70質量%を有する有機高分子である。この有機高分子は、後述するC成分と比較して高残炭率を有し、炭素化時及び炭素化後にバインダー成分として作用するためシートの強度保持性に優れている。
[B component]
The B component is an organic polymer having a residual carbon ratio of 30 to 70% by mass. This organic polymer has a high residual carbon ratio compared to the C component described later, and is excellent in strength retention of the sheet because it acts as a binder component during and after carbonization.

残炭率は、熱分析装置を用い、窒素雰囲気下、1000℃まで加熱した後の重量減少率により測定することができる。本例では測定時の窒素流量を200ml/min、昇温速度10℃/minとして行っている。   The residual carbon ratio can be measured by the weight reduction rate after heating to 1000 ° C. in a nitrogen atmosphere using a thermal analyzer. In this example, the flow rate of nitrogen at the time of measurement is 200 ml / min, and the heating rate is 10 ° C./min.

上記有機高分子バインダーとしては、芳香族ポリアミド(アラミド)、フェノール樹脂、ポリイミド、PAN等の有機高分子のパウダー状、ペレット状、短繊維状、パルプ状等の形状物が利用できる。   As the organic polymer binder, it is possible to use organic polymers such as aromatic polyamide (aramid), phenol resin, polyimide, PAN, etc., such as powder, pellet, short fiber, and pulp.

これらの形状物のなかでも、抄紙時の分散性、焼成後の炭素繊維シートの厚さ斑、ゆがみ、強度などを考慮すると、パルプ状、ファイブリッド状の物が好ましい。なお、酸化繊維シートの均質性を向上させる目的にはパルプ状の物が好ましい。また、酸化繊維シートやの炭素繊維シートの強度を向上させる目的にはファイブリッド状の物が好ましく、特にメタ系ポリアミドのファイブリッドがより好ましい。   Among these shapes, pulp-like and fibrid-like materials are preferable in consideration of dispersibility during papermaking, thickness unevenness, distortion and strength of the carbon fiber sheet after firing. In addition, a pulp-like thing is preferable for the purpose of improving the homogeneity of the oxidized fiber sheet. Further, for the purpose of improving the strength of the oxidized fiber sheet or carbon fiber sheet, a fibrid product is preferable, and a meta-polyamide fibrid is particularly preferable.

ファイブリッドとは、微小フィブリルを有する薄葉状、鱗片状の小片又はランダムにフィブリル化した微小短繊維の総称である。例えば、特公昭35−11851号公報、特公昭37−5732号公報などに記載の、有機高分子重合体溶液を沈澱剤及び剪断力の生ずる系にて混合することにより製造されるファイブリッドや、特公昭59−603号公報に記載の光学的異方性を示す高分子重合体溶液から形成した分子配向性を有する成形物に叩解等の機械的剪断力を与えてランダムにフィブリル化させたファイブリッドが例示される。   Fibrid is a general term for thin leaf-like, scaly pieces having fine fibrils, or short microfibers randomly fibrillated. For example, a fibrid produced by mixing an organic polymer solution in a system in which a precipitant and a shearing force are generated, as described in JP-B-35-11851, JP-B-37-5732, and the like, Five fibrillated randomly by applying mechanical shearing force such as beating to a molded article having molecular orientation formed from a polymer solution having optical anisotropy described in JP-B-59-603 A lid is exemplified.

パルプ状とは、繊維状物を擦り潰してフィブリル化した微細繊維である。   The pulp form is a fine fiber obtained by crushing a fibrous material to form a fibril.

B成分に用いる形状としては、特に前者の製造方法によるものが最適である。   As the shape used for the B component, the one based on the former manufacturing method is particularly optimal.

B成分の上記残炭率を有する有機高分子バインダーの配合量は、A成分とB成分との合計配合量100質量部に対して50〜5質量部、好ましくは40〜15質量部である。   The compounding quantity of the organic polymer binder which has the said remaining carbon ratio of B component is 50-5 mass parts with respect to 100 mass parts of total compounding quantities of A component and B component, Preferably it is 40-15 mass parts.

B成分の配合量が50質量部を超える場合、前述したように酸化繊維シートの焼成により得られる炭素繊維シートは、空隙が大きく通気性が良好であるが、炭素繊維シート中の炭素繊維成分が少なくなるために炭素繊維シートの強度は弱くなる。   When the blending amount of component B exceeds 50 parts by mass, the carbon fiber sheet obtained by firing the oxidized fiber sheet as described above has a large gap and good air permeability, but the carbon fiber component in the carbon fiber sheet is Since it decreases, the strength of the carbon fiber sheet becomes weak.

B成分の配合量が5質量部未満の場合、前述したように炭素繊維シートの強度が発現しない。また、炭素繊維の数が多くなる分、炭素繊維シートにおける空隙が小さくなり、通気性が悪くなる。   When the compounding quantity of B component is less than 5 mass parts, the intensity | strength of a carbon fiber sheet does not express as mentioned above. In addition, as the number of carbon fibers increases, the voids in the carbon fiber sheet are reduced, and air permeability is deteriorated.

B成分の上記残炭率を有する有機高分子が繊維状の場合、繊維長は、0.8〜2.0mmが好ましい。B成分の繊維長が2.0mmを超える場合は、B成分が焼成後に粒状で残り、焼成後の炭素繊維シートの厚さ斑、ゆがみの発生の要因となるので好ましくない。B成分の繊維長が0.8mm未満の場合は、抄紙後の酸化繊維シートにおける強度の低下、歩留りの低下の要因となるので好ましくない。   When the organic polymer having the above-mentioned residual carbon ratio of the component B is fibrous, the fiber length is preferably 0.8 to 2.0 mm. When the fiber length of the B component exceeds 2.0 mm, the B component remains in a granular state after firing, which is a cause of occurrence of thickness unevenness and distortion of the carbon fiber sheet after firing. When the fiber length of the component B is less than 0.8 mm, it is not preferable because it causes a decrease in strength and a decrease in yield in the oxidized fiber sheet after papermaking.

〔C成分〕
C成分は、残炭率0.5〜20.0質量%を有する有機高分子である。この前記B成分と比較して低残炭率を有する有機高分子としては、ポリエステル繊維、ポリオレフィン繊維などが利用できる。ポリエステル繊維としては、ポリエチレンテレフタレート(PET)繊維、ポリブチルテレフタレート(PBT)繊維、ポリアリレート(PAT)繊維、及びそれらに類する共重合物からなる複合繊維などが例示できる。ポリオレフィン繊維としては、ポリプロピレン(PP)繊維、及びそれに類する共重合物からなる複合繊維などが例示できる。
[C component]
Component C is an organic polymer having a residual carbon ratio of 0.5 to 20.0% by mass. As the organic polymer having a low residual carbon ratio as compared with the component B, polyester fibers, polyolefin fibers, and the like can be used. Examples of the polyester fiber include polyethylene terephthalate (PET) fiber, polybutyl terephthalate (PBT) fiber, polyarylate (PAT) fiber, and a composite fiber made of a similar copolymer. Examples of the polyolefin fibers include polypropylene (PP) fibers and composite fibers made of a copolymer similar thereto.

これらC成分の繊維は、抄紙時、熱処理時の加工性、焼成時のバインダーとしての機能から未延伸のポリエステル繊維、ポリエステル/ポリエステル共重合物からなる芯/鞘構造の複合繊維、ポリプロピレン繊維、並びに、ポリプロピレン/ポリエチレン及びそれに類する共重合物からなる芯/鞘構造の複合繊維などが好ましい。これらの繊維の中から適宜選択し焼成時のバインダーとして使用できるが、未延伸のポリエステル繊維が特に好ましい。   These C component fibers include undrawn polyester fibers, core / sheath composite fibers composed of polyester / polyester copolymers, polypropylene fibers, and the processability during papermaking, heat treatment, and function as a binder during firing. In addition, a composite fiber having a core / sheath structure made of polypropylene / polyethylene and a similar copolymer is preferable. Although it can select suitably from these fibers and can use it as a binder at the time of baking, an unstretched polyester fiber is especially preferable.

B成分に対するC成分の配合割合C/Bは0.3〜5.0であり、好ましくは0.5〜2.5である。   The compounding ratio C / B of the C component to the B component is 0.3 to 5.0, preferably 0.5 to 2.5.

B成分に対するC成分の配合割合C/Bが5.0を超える場合は、炭素繊維同士を結合させるのに寄与するB成分の作用が低下するため、得られる炭素繊維シート強度を低下させるので好ましくない。   When the blending ratio C / B of the C component with respect to the B component exceeds 5.0, the action of the B component that contributes to bonding the carbon fibers to each other is reduced, so that the strength of the obtained carbon fiber sheet is preferably reduced. Absent.

B成分に対するC成分の配合割合C/Bが0.3未満の場合は、炭素繊維同士を結合させるのに寄与するB成分の作用が強くなり過ぎるため、得られる炭素繊維シートに被膜を形成し、通気性と強度を低下させるので好ましくない。   When the blending ratio C / B of the C component to the B component is less than 0.3, the action of the B component that contributes to bonding the carbon fibers becomes too strong, so a coating is formed on the resulting carbon fiber sheet. This is not preferable because it reduces air permeability and strength.

C成分の上記残炭率を有する有機高分子が繊維状の場合は繊維長は、2.0〜15.0mmが好ましい。   In the case where the organic polymer having the carbon residue rate of component C is fibrous, the fiber length is preferably 2.0 to 15.0 mm.

C成分である有機高分子繊維太さは、特に限定されないが、0.1〜3.3dtexのものを用いることができる。   The thickness of the organic polymer fiber that is the component C is not particularly limited, but 0.1 to 3.3 dtex can be used.

〔抄紙〕
上述したA成分と、B成分と、C成分とを、例えば湿式抄紙して酸化繊維粗シートにする。
[Paper]
The above-mentioned A component, B component, and C component are made into, for example, wet paper making into an oxidized fiber coarse sheet.

〔熱圧縮処理〕
上述した酸化繊維粗シートを、100〜350℃の温度下、圧力0.30〜20MPaの条件で熱圧縮処理による均質化処理を施して酸化繊維シートにする。この熱圧縮処理により、均質化処理後の酸化繊維シートは、嵩密度が1.0〜0.2g/cm3に制御される。
[Heat compression treatment]
The above-mentioned oxidized fiber coarse sheet is subjected to a homogenization process by a thermal compression process at a temperature of 100 to 350 ° C. and a pressure of 0.30 to 20 MPa to obtain an oxidized fiber sheet. By this thermal compression treatment, the bulk density of the oxidized fiber sheet after the homogenization treatment is controlled to 1.0 to 0.2 g / cm 3 .

熱圧縮処理による均質化処理は、例えばカレンダー加工、プレス加工で行うことができる。   The homogenization process by the heat compression process can be performed by, for example, calendar processing or press processing.

〔炭素化処理〕
上記酸化繊維シートは、窒素等の不活性ガス雰囲気下、500℃を経由して1300〜2500℃で焼成し炭素化して炭素繊維シートを得る。1300℃の温度に至る経過は、ある程度時間をかけて昇温することが好ましい。昇温は、直線的に、段階的に、更には曲線的に適宜温度を高めることが好ましい。
[Carbonization treatment]
The oxidized fiber sheet is baked and carbonized at 1300 to 2500 ° C. via 500 ° C. in an inert gas atmosphere such as nitrogen to obtain a carbon fiber sheet. In the course of reaching a temperature of 1300 ° C., it is preferable to raise the temperature over a certain period of time. It is preferable to raise the temperature appropriately, linearly, stepwise, and further in a curved line.

以上の製造方法で得られた炭素繊維シートは、平均細孔径が10〜35μm、通気度が10000ml/min以上であり、その表面に膜状炭化物が形成されること無く、曲げ強さは10MPa以上である。   The carbon fiber sheet obtained by the above production method has an average pore diameter of 10 to 35 μm, an air permeability of 10,000 ml / min or more, a film-like carbide is not formed on the surface, and a bending strength of 10 MPa or more. It is.

また、この炭素繊維シートは、厚さが50〜400μm、目付が20〜180g/m2、嵩密度が0.2〜0.6g/cm3に制御される。 The carbon fiber sheet is controlled to have a thickness of 50 to 400 μm, a basis weight of 20 to 180 g / m 2 , and a bulk density of 0.2 to 0.6 g / cm 3 .

本発明を以下の実施例及び比較例により詳述する。   The present invention is described in detail by the following examples and comparative examples.

以下の実施例及び比較例の条件により炭素繊維シートを作製した。A成分、B成分、C成分、及び炭素繊維シートの諸物性値を、前述の方法又は以下の方法により測定した。   Carbon fiber sheets were produced under the conditions of the following examples and comparative examples. Various physical properties of the A component, the B component, the C component, and the carbon fiber sheet were measured by the above-described method or the following method.

A成分の比重:アルキメデス法(溶媒アセトン)により測定した。   Specific gravity of component A: measured by Archimedes method (solvent acetone).

炭素繊維シートの厚さ:直径5mmの円盤状圧板で荷重1.2Nを負荷したときの厚さを測定した。   Carbon fiber sheet thickness: The thickness when a load of 1.2 N was applied with a disk-shaped pressure plate having a diameter of 5 mm was measured.

炭素繊維シートの目付:100mm角のシートを120℃、1時間乾燥させた質量より、単位面積当たりの質量を算出した。   Carbon fiber sheet weight: The mass per unit area was calculated from the mass of a 100 mm square sheet dried at 120 ° C. for 1 hour.

炭素繊維シート嵩密度:上記条件により測定した厚さ及び目付から算出した。   Carbon fiber sheet bulk density: Calculated from the thickness and basis weight measured under the above conditions.

炭素繊維シートの通気度:ISO2965−1997により測定した。   Air permeability of carbon fiber sheet: Measured according to ISO 2965-1997.

炭素繊維シートの平均細孔径:JIS K 3832−1990により測定した。   Average pore diameter of carbon fiber sheet: Measured according to JIS K 3832-1990.

炭素繊維シートの曲げ強さ:ISO2493−1992に準じ曲げ長さ1mmの条件で破断したときの荷重を測定し、JIS K 7171−1994に記載の曲げ応力の算出方法(σ=3FL/bh2、ここでσは曲げ強さ、Fは破断時の荷重、Lは支点間距離(1mm)、bは試験片の幅、hは試験片の厚さである)に従って求めた。 Bending strength of carbon fiber sheet: A load when fractured under the condition of a bending length of 1 mm according to ISO 2493-1992 was measured, and a bending stress calculation method described in JIS K 7171-1994 (σ = 3FL / bh 2 , Where σ is the bending strength, F is the load at break, L is the distance between fulcrums (1 mm), b is the width of the test piece, and h is the thickness of the test piece).

炭素繊維シートの紙管への巻取り性:6inch紙管(外径150mm)に巻き取ることができるか否かにより評価した。   Winding property of carbon fiber sheet to paper tube: Evaluated by whether or not it can be wound on a 6 inch paper tube (outer diameter 150 mm).

実施例1
A成分(繊維太さ1.3dtex、比重1.35、繊維長5.0mmのPAN系酸化繊維)と、B成分(残炭率50質量%、繊維長1.20mmのアラミドファイブリッド)と、C成分(残炭率17.0質量%、繊維太さ2.50dtex、繊維長5.0mmのPET繊維)とを表1に示す配合割合で混合し、湿式抄紙し、PAN系酸化繊維粗シートを得た。この粗シートを温度120℃、圧力0.5MPaの条件下に圧縮処理することにより、表1に示す酸化繊維シートを得た。この酸化繊維シートを窒素ガス雰囲気下、500℃で10分間、2000℃で10分間焼成することにより表1に示す炭素繊維シートを得た。尚、残炭率は繊維の分子量、架橋成分量により調整した。
Example 1
Component A (fiber thickness 1.3 dtex, specific gravity 1.35, PAN-based oxidized fiber having a fiber length of 5.0 mm), and component B (residual carbon ratio 50 mass%, fiber length 1.20 mm aramid fibrid), Component C (residual carbon ratio: 17.0% by mass, fiber thickness: 2.50 dtex, fiber length: 5.0 mm PET fiber) is mixed at the blending ratio shown in Table 1, wet papermaking, and a PAN-based oxidized fiber coarse sheet Got. The rough sheet was compressed under the conditions of a temperature of 120 ° C. and a pressure of 0.5 MPa to obtain oxidized fiber sheets shown in Table 1. The oxidized fiber sheet was baked in a nitrogen gas atmosphere at 500 ° C. for 10 minutes and at 2000 ° C. for 10 minutes to obtain carbon fiber sheets shown in Table 1. The residual carbon ratio was adjusted by the molecular weight of the fiber and the amount of the crosslinking component.

得られた炭素繊維シートは、表1に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 1.

実施例2
A成分と、B成分と、C成分とを表1に示す配合割合で混合した以外は、実施例1と同様に湿式抄紙、圧縮処理して表1に示す酸化繊維シートを得、次いでこれを焼成して表1に示す炭素繊維シートを得た。
Example 2
Except for mixing the A component, the B component, and the C component at the blending ratios shown in Table 1, wet papermaking and compression treatment were performed in the same manner as in Example 1 to obtain an oxidized fiber sheet shown in Table 1, and this was then used. The carbon fiber sheet shown in Table 1 was obtained by firing.

得られた炭素繊維シートは、表1に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 1.

実施例3
A成分に繊維太さ2.2dtex、比重1.42、繊維長5.0mmのPAN系酸化繊維を用い、A成分と、B成分と、C成分とを表1に示す配合割合で混合した以外は、実施例1と同様に湿式抄紙、圧縮処理して表1に示す酸化繊維シートを得、次いでこれを焼成して表1に示す炭素繊維シートを得た。
Example 3
PAN-based oxidized fiber having a fiber thickness of 2.2 dtex, a specific gravity of 1.42, and a fiber length of 5.0 mm was used as the A component, and the A component, the B component, and the C component were mixed at a blending ratio shown in Table 1. In the same manner as in Example 1, wet papermaking and compression treatment were performed to obtain an oxidized fiber sheet shown in Table 1, and then this was fired to obtain a carbon fiber sheet shown in Table 1.

得られた炭素繊維シートは、表1に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 1.

実施例4
A成分に繊維太さ2.2dtex、比重1.42、繊維長5.0mmのPAN系酸化繊維を用いた以外は、実施例2と同様に湿式抄紙、圧縮処理して表1に示す酸化繊維シートを得、次いでこれを焼成して表1に示す炭素繊維シートを得た。
Example 4
Except for using PAN-based oxidized fiber having a fiber thickness of 2.2 dtex, a specific gravity of 1.42 and a fiber length of 5.0 mm as the A component, wet papermaking and compression treatment are performed as shown in Table 1 in the same manner as in Example 2. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 1.

得られた炭素繊維シートは、表1に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 1.

実施例5
A成分に繊維太さ3.3dtex、比重1.43、繊維長5.0mmのPAN系酸化繊維を用いた以外は、実施例2と同様に湿式抄紙、圧縮処理して表1に示す酸化繊維シートを得、次いでこれを焼成して表1に示す炭素繊維シートを得た。
Example 5
Oxidized fibers shown in Table 1 after wet papermaking and compression treatment as in Example 2 except that PAN-based oxidized fibers having a fiber thickness of 3.3 dtex, a specific gravity of 1.43, and a fiber length of 5.0 mm were used as the A component. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 1.

得られた炭素繊維シートは、表1に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 1.

Figure 2006241600
比較例1
A成分と、B成分と、C成分とを表2に示す配合割合で混合した以外は、実施例1と同様に湿式抄紙、圧縮処理して表2に示す酸化繊維シートを得、次いでこれを焼成して表2に示す炭素繊維シートを得た。
Figure 2006241600
Comparative Example 1
Except for mixing the A component, the B component, and the C component in the mixing ratio shown in Table 2, wet papermaking and compression treatment were performed in the same manner as in Example 1 to obtain an oxidized fiber sheet shown in Table 2, and then The carbon fiber sheet shown in Table 2 was obtained by firing.

酸化繊維シートの構成は、A成分の配合量、B成分の配合量、B成分に対するC成分の配合割合C/Bの何れも本発明の構成から逸脱している。   The composition of the oxidized fiber sheet deviates from the composition of the present invention in the blending amount of the A component, the blending amount of the B component, and the blending ratio C / B of the C component with respect to the B component.

得られた炭素繊維シートは、表2に示すように、通気度、強度が不充分であった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 2, the obtained carbon fiber sheet was insufficient in air permeability and strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例2
A成分と、B成分と、C成分とを表2に示す配合割合で混合した以外は、実施例3と同様に湿式抄紙、圧縮処理して表2に示す酸化繊維シートを得、次いでこれを焼成して表2に示す炭素繊維シートを得た。
Comparative Example 2
Except that the A component, B component, and C component were mixed at the blending ratio shown in Table 2, wet papermaking and compression treatment were performed in the same manner as in Example 3 to obtain an oxidized fiber sheet shown in Table 2, and then The carbon fiber sheet shown in Table 2 was obtained by firing.

酸化繊維シートの構成は、A成分の配合量、B成分の配合量、B成分に対するC成分の配合割合C/Bの何れも本発明の構成から逸脱している。   The composition of the oxidized fiber sheet deviates from the composition of the present invention in the blending amount of the A component, the blending amount of the B component, and the blending ratio C / B of the C component with respect to the B component.

得られた炭素繊維シートは、表2に示すように、通気度が不充分であり、強度は測定ができない程低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 2, the obtained carbon fiber sheet had insufficient air permeability, and its strength was so low that it could not be measured. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例3
A成分と、B成分と、C成分とを表2に示す配合割合で混合した以外は、実施例4と同様に湿式抄紙、圧縮処理して表2に示す酸化繊維シートを得、次いでこれを焼成して表2に示す炭素繊維シートを得た。
Comparative Example 3
Except for mixing the A component, the B component, and the C component in the mixing ratio shown in Table 2, wet papermaking and compression treatment were performed in the same manner as in Example 4 to obtain an oxidized fiber sheet shown in Table 2, and then The carbon fiber sheet shown in Table 2 was obtained by firing.

酸化繊維シートの構成は、B成分に対するC成分の配合割合C/Bが本発明の構成から逸脱している。   In the configuration of the oxidized fiber sheet, the blending ratio C / B of the C component to the B component deviates from the configuration of the present invention.

得られた炭素繊維シートは、表2に示すように、強度が不充分であった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 2, the obtained carbon fiber sheet was insufficient in strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例4
A成分と、B成分と、C成分とを表2に示す配合割合で混合した以外は、実施例2と同様に湿式抄紙、圧縮処理して表2に示す酸化繊維シートを得、次いでこれを焼成して表2に示す炭素繊維シートを得た。
Comparative Example 4
Except for mixing the A component, the B component, and the C component at the blending ratio shown in Table 2, wet papermaking and compression treatment were performed in the same manner as in Example 2 to obtain an oxidized fiber sheet shown in Table 2, and then The carbon fiber sheet shown in Table 2 was obtained by firing.

酸化繊維シートの構成は、A成分の配合量、B成分の配合量が本発明の構成から逸脱している。   The composition of the oxidized fiber sheet differs from the composition of the present invention in the amount of component A and the amount of component B.

得られた炭素繊維シートは、表2に示すように、強度は測定ができない程低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 2, the obtained carbon fiber sheet had such a low strength that it could not be measured. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

Figure 2006241600
実施例6
A成分に繊維太さ2.2dtex、比重1.42、繊維長3.0mmのPAN系酸化繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表3に示す酸化繊維シートを得、次いでこれを焼成して表3に示す炭素繊維シートを得た。
Figure 2006241600
Example 6
Except for using PAN-based oxidized fiber having a fiber thickness of 2.2 dtex, a specific gravity of 1.42, and a fiber length of 3.0 mm as the A component, wet papermaking and compression treatment are performed as shown in Table 3 in the same manner as in Example 4. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 3.

得られた炭素繊維シートは、表3に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 3.

実施例7
A成分に繊維太さ2.2dtex、比重1.42、繊維長14.0mmのPAN系酸化繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表3に示す酸化繊維シートを得、次いでこれを焼成して表3に示す炭素繊維シートを得た。
Example 7
Oxidized fibers shown in Table 3 after wet papermaking and compression treatment as in Example 4 except that PAN-based oxidized fibers having a fiber thickness of 2.2 dtex, a specific gravity of 1.42, and a fiber length of 14.0 mm were used as the A component. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 3.

得られた炭素繊維シートは、表3に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 3.

比較例5
A成分に繊維太さ2.2dtex、比重1.42、繊維長1.5mmのPAN系酸化繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表3に示す酸化繊維シートを得、次いでこれを焼成して表3に示す炭素繊維シートを得た。
Comparative Example 5
Except for using PAN-based oxidized fibers having a fiber thickness of 2.2 dtex, a specific gravity of 1.42, and a fiber length of 1.5 mm as the A component, wet papermaking and compression treatment are performed as shown in Table 3 in the same manner as in Example 4. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 3.

得られた炭素繊維シートは、表3に示すように、通気性が悪く低い曲げ強度のものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 3, the obtained carbon fiber sheet had poor air permeability and low bending strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例6
A成分に繊維太さ2.2dtex、比重1.42、繊維長16.0mmのPAN系酸化繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表3に示す酸化繊維シートを得、次いでこれを焼成して表3に示す炭素繊維シートを得た。
Comparative Example 6
Oxidized fibers shown in Table 3 after wet papermaking and compression treatment as in Example 4 except that PAN-based oxidized fibers having a fiber thickness of 2.2 dtex, a specific gravity of 1.42, and a fiber length of 16.0 mm were used as the A component. A sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 3.

得られた炭素繊維シートは、表3に示すように、繊維分散性が悪いため、通気斑を生ずるとともに曲げ強度の低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 3, the obtained carbon fiber sheet was poor in fiber dispersibility, and thus produced air spots and had low bending strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

Figure 2006241600
実施例8
B成分に残炭率35質量%、繊維長5.0mmのPAN系繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表4に示す酸化繊維シートを得、次いでこれを焼成して表4に示す炭素繊維シートを得た。
Figure 2006241600
Example 8
Except for using a PAN-based fiber having a residual carbon ratio of 35 mass% and a fiber length of 5.0 mm as the B component, wet papermaking and compression treatment were performed in the same manner as in Example 4 to obtain an oxidized fiber sheet shown in Table 4, and then Were fired to obtain a carbon fiber sheet shown in Table 4.

得られた炭素繊維シートは、表4に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet having good physical properties as shown in Table 4.

実施例9
B成分に残炭率65質量%、繊維長5.0mmのフェノールノボラック繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表4に示す酸化繊維シートを得、次いでこれを焼成して表3に示す炭素繊維シートを得た。
Example 9
Except for using a phenol novolac fiber having a residual carbon ratio of 65 mass% and a fiber length of 5.0 mm as the B component, wet papermaking and compression treatment were performed in the same manner as in Example 4 to obtain an oxidized fiber sheet shown in Table 4, and then Were fired to obtain a carbon fiber sheet shown in Table 3.

得られた炭素繊維シートは、表4に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet having good physical properties as shown in Table 4.

比較例7
B成分に残炭率25質量%、繊維長5.0mmのフェノールノボラック繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表4に示す酸化繊維シートを得、次いでこれを焼成して表4に示す炭素繊維シートを得た。
Comparative Example 7
Except for using a phenol novolac fiber having a residual carbon ratio of 25% by mass and a fiber length of 5.0 mm as the B component, wet papermaking and compression treatment were performed in the same manner as in Example 4 to obtain an oxidized fiber sheet shown in Table 4, and then Were fired to obtain a carbon fiber sheet shown in Table 4.

得られた炭素繊維シートは、表4に示すように、通気性が悪く曲げ強度が低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 4, the obtained carbon fiber sheet had poor air permeability and low bending strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例8
B成分に残炭率75質量%、繊維長5.0mmのフェノールノボラック繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表4に示す酸化繊維シートを得、次いでこれを焼成して表4に示す炭素繊維シートを得た。
Comparative Example 8
Except for using a phenol novolac fiber having a residual carbon ratio of 75 mass% and a fiber length of 5.0 mm as the B component, wet papermaking and compression treatment were performed in the same manner as in Example 4 to obtain an oxidized fiber sheet shown in Table 4, and then Were fired to obtain a carbon fiber sheet shown in Table 4.

得られた炭素繊維シートは、表4に示すように、曲げ強度の低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   The obtained carbon fiber sheet had a low bending strength as shown in Table 4. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

Figure 2006241600
実施例10
C成分に残炭率7.0質量%、繊維太さ2.11dtex、繊維長5.0mmのポリビニルアルコール系繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表5に示す酸化繊維シートを得、次いでこれを焼成して表5に示す炭素繊維シートを得た。
Figure 2006241600
Example 10
Table 5 shows wet papermaking and compression treatment in the same manner as in Example 4 except that polyvinyl alcohol fibers having a residual carbon ratio of 7.0% by mass, a fiber thickness of 2.11 dtex, and a fiber length of 5.0 mm were used as the C component. The carbon fiber sheet shown in Table 5 was obtained by baking this and then firing this.

得られた炭素繊維シートは、表5に示すように、良好な物性の炭素繊維シートであった。   The obtained carbon fiber sheet was a carbon fiber sheet with good physical properties as shown in Table 5.

比較例9
C成分に残炭率0.3質量%、繊維太さ2.15dtex、繊維長5.0mmのポリエチレン繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表5に示す酸化繊維シートを得、次いでこれを焼成して表5に示す炭素繊維シートを得た。
Comparative Example 9
Table 5 shows wet papermaking and compression treatment in the same manner as in Example 4 except that polyethylene fiber having a residual carbon ratio of 0.3 mass%, a fiber thickness of 2.15 dtex, and a fiber length of 5.0 mm was used as the C component. An oxidized fiber sheet was obtained and then fired to obtain a carbon fiber sheet shown in Table 5.

得られた炭素繊維シートは、表5に示すように、通気性は高く平均細孔直径は拡大したが、脆く炭素末の発生多く曲げ強度は低いものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 5, the obtained carbon fiber sheet had high air permeability and an increased average pore diameter, but was brittle and generated a lot of carbon powder with low bending strength. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

比較例10
C成分に残炭率25.0質量%、繊維太さ2.00dtex、繊維長5.0mmのフェノールノボラック繊維を用いた以外は、実施例4と同様に湿式抄紙、圧縮処理して表5に示す酸化繊維シートを得、次いでこれを焼成して表5に示す炭素繊維シートを得た。
Comparative Example 10
Table 5 shows wet papermaking and compression treatment in the same manner as in Example 4 except that a phenol novolac fiber having a residual carbon ratio of 25.0 mass%, a fiber thickness of 2.00 dtex, and a fiber length of 5.0 mm was used as the C component. The obtained oxidized fiber sheet was obtained and then fired to obtain the carbon fiber sheet shown in Table 5.

得られた炭素繊維シートは、表5に示すように、通気性は低下し、曲げ強度は低く測定不可のものであった。また、6inch紙管(外径150mm)へ巻き取ることができず、良好な物性の炭素繊維シートではなかった。   As shown in Table 5, the obtained carbon fiber sheet had low air permeability, low bending strength, and was unmeasurable. Moreover, it was not able to wind up to a 6 inch paper tube (outer diameter 150 mm), and was not a carbon fiber sheet having good physical properties.

Figure 2006241600
Figure 2006241600

Claims (4)

以下の3成分A、B、C
A:繊維長2.0〜15.0mmの酸化繊維
B:残炭率30〜70質量%を有する有機高分子
C:残炭率0.5〜20.0質量%を有する有機高分子
について、A成分の配合量50〜95質量部、B成分の配合量50〜5質量部、B成分に対するC成分の配合割合C/B0.3〜5.0で混合含有してなる酸化繊維粗シートを、100〜350℃の温度下、圧力0.30〜20MPaの条件で熱圧縮処理して、嵩密度1.0〜0.2g/cm3の酸化繊維シートを得、次いでこれを不活性ガス雰囲気下、1300〜2500℃の温度で焼成し炭素化する炭素繊維シートの製造方法。
The following three components A, B, C
A: Oxidized fiber having a fiber length of 2.0 to 15.0 mm B: Organic polymer having a residual carbon ratio of 30 to 70% by mass C: Organic polymer having a residual carbon ratio of 0.5 to 20.0% by mass A rough oxidized fiber sheet comprising 50 to 95 parts by mass of component A, 50 to 5 parts by mass of component B, and C / B 0.3 to 5.0 in proportion of component C to component B , Under a temperature of 100 to 350 ° C. under a pressure of 0.30 to 20 MPa, an oxide fiber sheet having a bulk density of 1.0 to 0.2 g / cm 3 is obtained, and then this is treated with an inert gas atmosphere. Below, the manufacturing method of the carbon fiber sheet baked and carbonized at the temperature of 1300-2500 degreeC.
A成分が繊維太さ0.8〜3.3dtex、繊維長2.0〜15.0mmの酸化繊維である請求項1に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 1, wherein the component A is an oxidized fiber having a fiber thickness of 0.8 to 3.3 dtex and a fiber length of 2.0 to 15.0 mm. B成分が芳香族ポリアミドである請求項1に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 1, wherein the component B is an aromatic polyamide. C成分がポリエステル繊維である請求項1に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 1, wherein the component C is a polyester fiber.
JP2005030607A 2005-02-03 2005-02-07 Method for producing carbon fiber sheet Expired - Fee Related JP4705379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030607A JP4705379B2 (en) 2005-02-03 2005-02-07 Method for producing carbon fiber sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005027329 2005-02-03
JP2005027329 2005-02-03
JP2005030607A JP4705379B2 (en) 2005-02-03 2005-02-07 Method for producing carbon fiber sheet

Publications (2)

Publication Number Publication Date
JP2006241600A true JP2006241600A (en) 2006-09-14
JP4705379B2 JP4705379B2 (en) 2011-06-22

Family

ID=37048287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030607A Expired - Fee Related JP4705379B2 (en) 2005-02-03 2005-02-07 Method for producing carbon fiber sheet

Country Status (1)

Country Link
JP (1) JP4705379B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027435A (en) * 2002-06-26 2004-01-29 Toho Tenax Co Ltd Carbon fiber sheet and method for producing the same
JP2004225191A (en) * 2003-01-23 2004-08-12 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber sheet and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027435A (en) * 2002-06-26 2004-01-29 Toho Tenax Co Ltd Carbon fiber sheet and method for producing the same
JP2004225191A (en) * 2003-01-23 2004-08-12 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber sheet and method for producing the same

Also Published As

Publication number Publication date
JP4705379B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
JP2009283259A (en) Porous carbon electrode base material
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP2006104643A (en) Blended felt and carbon fiber felt
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
JP2007268735A (en) Carbon fiber sheet and its manufacturing method
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP4705379B2 (en) Method for producing carbon fiber sheet
KR101425305B1 (en) Manufacturing method of carbon fiber paper using PAN fibrid
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP6167562B2 (en) Carbon fiber nonwoven fabric manufacturing method and nonwoven fabric
JP4138510B2 (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JPH09231984A (en) Carbon fiber for porous electrode base board for phosphoric acid fuel cell
JP2004111341A (en) Manufacturing method of carbon fiber woven fabric or nonwoven fabric for fuel cell gas diffusion layer
JP2005183325A (en) Carbon fiber sheet for polymer electrolyte gas diffusion layer and its manufacturing method
JPH11158737A (en) Production of carbon fiber felt
US20040036190A1 (en) Gas diffusion electrode manufacturing method and fuel cell
JP2003239163A (en) High-density flame-resistant fiber nonwoven fabric, carbon fiber nonwoven fabric and method for producing the same
JP2002194650A (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP2013082570A (en) Carbon fiber sheet for battery electrode substrate and method for producing the same
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2015022838A (en) Porous conductive sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees