JPS62238815A - Polyester fiber for clothing use - Google Patents

Polyester fiber for clothing use

Info

Publication number
JPS62238815A
JPS62238815A JP7709186A JP7709186A JPS62238815A JP S62238815 A JPS62238815 A JP S62238815A JP 7709186 A JP7709186 A JP 7709186A JP 7709186 A JP7709186 A JP 7709186A JP S62238815 A JPS62238815 A JP S62238815A
Authority
JP
Japan
Prior art keywords
polyester
cooling crystallization
crystallization peak
speed
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7709186A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ito
伊藤 良光
Kenichiro Oka
岡 研一郎
Masanori Mineo
嶺尾 昌紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7709186A priority Critical patent/JPS62238815A/en
Publication of JPS62238815A publication Critical patent/JPS62238815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled polyester fibers, having the cooling crystallization peak temperature, peak half-width value thereof, birefringence, residual elongation and intrinsic viscosity present within respective specific ranges and suitable for high-speed warping, knitting and weaving. CONSTITUTION:Polyester fibers obtained by specifying the cooling crystallization peak temperature measured by a differential scanning calorimeter at >=195 deg.C, preferably >=200 deg.C, half-width value thereof at <=10 deg.C, preferably <=7 deg.C, birefringence at 0.09-0.130, preferably 0.09-0.120, residual elongation at 40-60% and intrinsic viscosity at 0.50-0.635, preferably 0.50-0.61. The above- mentioned fibers are produced by a method for adding a phosphonic acid compound in an amount of 0.01-1.0mol% based on an acid component constituting the polyester, spinning the resultant blend at a high speed of >=5,000m/min, etc. A high strength is attained while sustaining a high elongation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速整経、高速製編織に適した衣料用ポリエス
テル繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polyester fiber for clothing suitable for high-speed warping, high-speed weaving and weaving.

〔従来の技術〕[Conventional technology]

ポリエステル、特にポリエチレンテレフタレート繊維は
高強度、高ヤング率、耐熱寸法安定性等多くの優れた特
性を有するため衣料用分野Vこ大量に利用されている。
Polyester, especially polyethylene terephthalate fiber, has many excellent properties such as high strength, high Young's modulus, and heat-resistant dimensional stability, and is therefore widely used in the clothing field.

かかるポリエステル繊維は一般にはテレフタル酸あるい
はテレフタル酸ジアルキルとエチレングリコールとを出
発原料としてエステル化あるいはエステル交換反応後、
重縮合反応を経て得られたポリエステルを溶融状態で紡
糸ノズルから押出し、1000〜5500m15+の紡
糸速度で巻き取り、次いで延伸することによって得る。
Such polyester fibers are generally produced by esterifying or transesterifying terephthalic acid or dialkyl terephthalate and ethylene glycol as starting materials, and then
It is obtained by extruding the polyester obtained through the polycondensation reaction from a spinning nozzle in a molten state, winding it up at a spinning speed of 1000 to 5500 m15+, and then stretching it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かくして得られたポリエステル延伸糸は一般的には糸強
度的52/d 、伸度30〜35%であり、極めて強固
かつ安定した分子構造を有しているため、高次工程の処
理速度全早めた場合、特に1000 m/min以上の
整経速度や800 rpm以上の製織速度の場合、糸切
れや単糸切れが発生しやすいという問題点を有している
。このため、このような高次工程の高速処理に対しては
、近年極めて高度な交絡処理を施す等の対策がとられて
いる。かかる延伸糸製造工程は、紡糸工程と延伸工程の
2工程を必要とするため、さらに高度な交絡処理工程が
付加されることは、生産面から必ずしも有用な方法では
ない。また高度な交絡処理は、交絡部が織物中にも残存
しやすく、織物品位を低下せしめる原因のひとつになっ
ている。
The polyester drawn yarn thus obtained generally has a yarn strength of 52/d and an elongation of 30 to 35%, and has an extremely strong and stable molecular structure, so it can speed up the processing speed of higher-order processes. In particular, when the warping speed is 1000 m/min or more or the weaving speed is 800 rpm or more, yarn breakage or single yarn breakage tends to occur. For this reason, in recent years, countermeasures have been taken to achieve high-speed processing in such high-order steps, such as applying extremely sophisticated confounding processing. Since such a drawn yarn production process requires two steps, a spinning step and a drawing step, adding a more advanced entanglement treatment step is not necessarily a useful method from a production standpoint. In addition, the highly entangled treatment tends to cause entangled portions to remain in the fabric, which is one of the causes of degrading the quality of the fabric.

一方、近年製糸合理化プロセスとして紡糸速度5000
m/分以上の高速紡糸によって、紡糸工程のみで実用可
能な繊維物性を有するポリエステル繊維が工業化されよ
うとしている。
On the other hand, in recent years, the spinning speed has been increased to 5000 as a streamlining process.
By spinning at high speeds of m/min or higher, polyester fibers with practical fiber properties that can be produced only through the spinning process are about to be industrialized.

しかしながら、生産性の面からは極めて有利な実用可能
なポリエステル繊維の製造法とはいえ、例えば紡速60
00 m/m、in付近で巻き取られたポリエステル繊
維は、前述した2工程の延伸糸に比較して、強度、ヤン
グ率が低く、力学的特性が劣っている。しかし一方、低
強度、低ヤング率ではあるが、得られる糸の伸度が約5
0チと延伸糸にくらべ高いため、衝撃力を吸収しやすく
、高次加工の高速化に対して、糸切れ、単糸切れしにく
いという利点を有している。
However, although this is an extremely advantageous and practical method for producing polyester fiber from the viewpoint of productivity, for example,
The polyester fiber wound around 00 m/m, in has a lower strength, a lower Young's modulus, and is inferior in mechanical properties than the above-mentioned two-step drawn yarn. However, although the strength and Young's modulus are low, the elongation of the yarn obtained is approximately 5.
Since it has a higher zero-chip than a drawn yarn, it has the advantage of easily absorbing impact force and being less prone to yarn breakage and single yarn breakage when performing high-speed processing.

それ故、前述した2工程法による延伸糸の高強度と、高
速紡糸法による高伸度という高次工程通過性にとって好
ましい物性を具備することができれば極めて工業的に有
利である。
Therefore, it would be extremely advantageous industrially if the drawn yarn could have physical properties such as high strength by the two-step method described above and high elongation by the high-speed spinning method, which are favorable for passing through higher steps.

本発明者らは上述した物性を具備するポリエステル繊維
を製造するため、紡糸、延伸工程はもとより、供給する
ポリエステルの分子量、結晶化特性をも変更して検討し
た結果、得られるポリエステル繊維の分子量、結晶化特
性とに密接な関係があることを見い出し、本発明に達し
たのである。
In order to produce polyester fibers having the above-mentioned physical properties, the present inventors investigated not only the spinning and drawing processes but also the molecular weight and crystallization properties of the supplied polyester.As a result, the molecular weight of the resulting polyester fibers, They discovered that there is a close relationship with crystallization properties and arrived at the present invention.

本発明の目的は高次加工時の工程通過性の改善された高
速整経、高速製編織に適したポリエステル繊維を提供す
ることにある。
An object of the present invention is to provide a polyester fiber suitable for high-speed warping, high-speed weaving, and improved process passability during high-order processing.

〔発明の構成〕[Structure of the invention]

前記した本発明の目的は差動走査型熱量計で測定した冷
却結晶化ピーク温度(Tc’)が195員 ℃以上、冷却結晶化ピーク半値幅(W)が10℃以下、
複屈折率(Δn)が0.09以上0. + 30以下、
残留伸度40%以上60%以下で、かつ極限粘度(〔η
〕)が0.50以上0.635以下である衣料用ポリエ
ステル繊維tこよって達成できる。
The object of the present invention described above is that the cooling crystallization peak temperature (Tc') measured by a differential scanning calorimeter is 195 degrees Celsius or higher, the cooling crystallization peak half width (W) is 10 degrees Celsius or lower,
Birefringence (Δn) is 0.09 or more. +30 or less,
The residual elongation is 40% or more and 60% or less, and the intrinsic viscosity ([η
]) is 0.50 or more and 0.635 or less.

さらに詳細に本発明を説明する。本発明の第一の構成要
件は、差動走査型熱量計で測定した冷却結晶化ピーク温
度(Tc’)と冷却結晶化ピークの半価幅(W)の規定
にある。本発明のポリエステル繊維の差動走査型熱量計
での冷却結晶化ピーク温度(Tc’)は195℃以上と
する必要があり、好ましくは200℃以上であることが
製織時の糸切れなどの効果をより発揮する点で好ましい
The present invention will be explained in more detail. The first constituent feature of the present invention lies in the definition of the cooling crystallization peak temperature (Tc') and the half width (W) of the cooling crystallization peak measured with a differential scanning calorimeter. The cooling crystallization peak temperature (Tc') of the polyester fiber of the present invention measured by a differential scanning calorimeter must be 195°C or higher, and preferably 200°C or higher to prevent thread breakage during weaving. This is preferable in that it exhibits the following effects more effectively.

次に本発明の第二の構成要件は差動走査型熱量計で測定
した冷却結晶化ピークの半価幅(W)は10℃以下とす
る必要があり、好ましくは7℃以下で、より一層本発明
の効果が発揮される。
Next, the second component of the present invention is that the half width (W) of the cooling crystallization peak measured by a differential scanning calorimeter must be 10°C or less, preferably 7°C or less, and even more The effects of the present invention are exhibited.

冷却結晶化ピークの半価幅(W)が10℃より大きい場
合には、たとえ冷却結晶化ピーク温度(Tc’)が19
5℃以上であっても整経時あるいは製織時に糸切れや単
糸切れなどが発生する。
If the half width (W) of the cooling crystallization peak is greater than 10°C, even if the cooling crystallization peak temperature (Tc') is 19
Even at temperatures above 5°C, thread breakage and single thread breakage occur during warping or weaving.

本発明で規定する冷却結晶化ピーク温度とは詳細には後
述するが差動走査型熱量計で測定する際、ポリエステル
繊維を300℃で5分間溶融放置後、16℃/分の降温
速度下の降温過程で出現する冷却結晶化ピークの温度で
あり、また冷却結晶化ピークの半価幅(W)とは詳細に
は後述するが、冷却結晶化ピークの半価幅のことである
The cooling crystallization peak temperature specified in the present invention will be described in detail later, but when measured with a differential scanning calorimeter, the peak temperature of cooling crystallization specified in the present invention is determined by melting the polyester fiber at 300°C for 5 minutes, and then lowering the temperature at a cooling rate of 16°C/min. This is the temperature of the cooling crystallization peak that appears during the temperature-lowering process, and the half-width (W) of the cooling crystallization peak is the half-width of the cooling crystallization peak, which will be described in detail later.

本発明におけるポリエステル繊維の繊維物性は複屈折Δ
nを0.09以上、0.130以下にする必要があり、
好ましくは0.09以上、0.120以下である。0.
09未満であると、そのままでは実用に耐え得るほど機
械的性質の高いポリエステル繊維になり得す、得られる
織物の品位も不良となる。また、0.130より犬ぎい
と、高次工程で、単糸毛羽や糸切れになりやすい。又残
留伸度は40%以上、60%以下である。残留伸度が4
0%未満では高次加工時の種々の衝撃に対し吸収力が少
なく単糸切れ、糸切れが生じやすく工程通過性を悪くす
る。60%を超えると繊維の構造が不安定で、わずかな
外力に対しても変形を生じやすく実用的な織編物用繊維
とはなり得ない。
The fiber physical properties of the polyester fiber in the present invention are birefringence Δ
It is necessary to set n to 0.09 or more and 0.130 or less,
Preferably it is 0.09 or more and 0.120 or less. 0.
If it is less than 09, the resulting polyester fiber may have mechanical properties high enough to withstand practical use, but the quality of the resulting fabric will also be poor. In addition, it is more likely than 0.130 to cause single yarn fuzz and yarn breakage in higher-order processes. Further, the residual elongation is 40% or more and 60% or less. Residual elongation is 4
If it is less than 0%, it has little ability to absorb various shocks during high-order processing, and single thread breakage and thread breakage are likely to occur, impairing process passability. If it exceeds 60%, the structure of the fiber is unstable and easily deforms even under the slightest external force, making it impossible to provide a practical fiber for woven or knitted fabrics.

また、本発明のポリエステル繊維の極限粘度〔η〕は0
.50以上、0.635以下とすることが不可欠である
。好ましくは0.50以上、0.61以下である。極限
粘度〔η〕が0.50未満であると、機械的特性の低い
糸となり、高次加工時の種々の衝撃に対し、糸切れが生
じやすく工程通過性を悪くする。極限粘度〔η〕が0.
635を超えると、例え冷却結晶化ピーク温度が195
℃以上、冷却結晶化ピーク半価幅(W)が10’C以下
であっても複屈折Δn及び伸度の低い糸となり高次加工
時の衝撃に対する吸収力がなくなり単糸切れ、糸切れが
発生する。また極限粘度〔η〕が0.635を超えるポ
リマは、溶融紡糸性、特に高速紡糸性が不安定で、糸切
れのない均一な織物用原糸を得ることが困難である。
Furthermore, the intrinsic viscosity [η] of the polyester fiber of the present invention is 0.
.. It is essential that it be 50 or more and 0.635 or less. Preferably it is 0.50 or more and 0.61 or less. If the intrinsic viscosity [η] is less than 0.50, the yarn will have poor mechanical properties, and will easily break due to various impacts during high-order processing, impairing process passability. Intrinsic viscosity [η] is 0.
If it exceeds 635, even if the cooling crystallization peak temperature is 195
℃ or more, even if the cooling crystallization peak half width (W) is 10'C or less, the yarn will have low birefringence Δn and low elongation, and will have no ability to absorb shock during high-order processing, resulting in single yarn breakage and thread breakage. Occur. Further, a polymer having an intrinsic viscosity [η] of more than 0.635 has unstable melt spinnability, especially high-speed spinnability, and it is difficult to obtain a uniform yarn for textiles without yarn breakage.

以上述べたように、本願発明のポリエステル繊維は、従
来の延伸糸にくらべ比較的複屈折率Δ・nが低いtこも
かかわらず、高い冷却結晶化ピーク温度(Tc’)と小
さい半価幅(W)を有しているため、糸強度は高く、ま
た複屈折Δnが低いことが糸の伸度を高く保ち、糸条の
タフネスを向上せしめていると考えられる。
As mentioned above, the polyester fiber of the present invention has a high cooling crystallization peak temperature (Tc') and a small half-width ( W), the yarn strength is high, and the low birefringence Δn is thought to keep the elongation of the yarn high and improve the toughness of the yarn.

本発明のポリエステル繊維を構成するポリエステルとは
、テレフタル酸成分とエチレングリコール成分からなる
ポリエチレンテレフタレートを主たる対象とするが、テ
レフタル酸成分の一部(通常20モル多以下)を他の二
官能性カルボン酸成分で置き換えたポリエステルであっ
ても、またエチレングリコール成分の一部(通常20モ
ルチ以下)を他のジオール成分で置き換えたポリエステ
ルであってもよい。更に、各種添加剤、例えば艶消剤、
易滑剤、難燃剤、制電剤、親水剤、着色剤等を必要に応
じて共重合又は混合したポリエステルであってモヨい。
The polyester constituting the polyester fiber of the present invention is mainly polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component, but a portion (usually 20 moles or less) of the terephthalic acid component is replaced with other difunctional carbon dioxide. It may be a polyester in which an acid component is substituted, or a polyester in which a part of the ethylene glycol component (usually 20 molt or less) is replaced with another diol component. Furthermore, various additives such as matting agents,
It is a polyester that is copolymerized or mixed with lubricant, flame retardant, antistatic agent, hydrophilic agent, coloring agent, etc. as necessary.

以下をこポリエステル繊維の製造方法の具体例を説明す
る。
A specific example of the method for producing this polyester fiber will be described below.

マステレフタル酸とエチレングリコールとを出発原料と
してポリエチレンテレフタレートを製造する際、ポリエ
ステルの重縮合反応段階で添加するリン化合物の種類及
びその使用量を適宜選択することが望ましい。しかるに
リン化合物の種類及びその使用量を=概に特定化するこ
とは困難である。例えば、ホ7ホン酸化合物全ポリエス
テルを構成する酸成分に対して0.01〜1.0モル係
添加して得たポリエステルを本発明のポリエステル繊維
の紡糸原料ポリエステルとして用いることが好ましい。
When producing polyethylene terephthalate using masterphthalic acid and ethylene glycol as starting materials, it is desirable to appropriately select the type and amount of the phosphorus compound added in the polyester polycondensation reaction step. However, it is difficult to generally specify the type of phosphorus compound and the amount used. For example, it is preferable to use a polyester obtained by adding 0.01 to 1.0 mole of a 7-phonic acid compound to the acid component constituting the entire polyester as the raw material polyester for spinning the polyester fiber of the present invention.

かかるポリエステルを5000m/分以上の紡糸速度で
超高速紡糸することによって本発明の目的とするポリエ
ステル繊維が得られる。
The polyester fiber targeted by the present invention can be obtained by ultra-high-speed spinning such polyester at a spinning speed of 5000 m/min or more.

紡糸原料ポリエステルはポリエステルの重縮合反応段階
で次の一般式〔I〕および〔■〕のようなホスホン酸化
合物を添加し、製造する。
The spinning raw material polyester is produced by adding phosphonic acid compounds represented by the following general formulas [I] and [■] during the polycondensation reaction step of polyester.

〔I〕〔■〕 前記一般式CI)で表わされるホスホン酸化合物の具体
例としては、フェニルホスホン酸、メチルホスホン酸、
フェニルホスホン酸モノメチホスホン酸ジメチルエステ
ル、エチルホスホン酸ジメチルエステル、フェニルホス
ホン酸ジフェニルエステル、フェニルホスホン酸ジエチ
レンクリコールエステル、フェニルホスホン酸シグロビ
レングリコールエステル、フェニルホスホン酸シフチレ
ングリコールエステル、メチルホスホン酸ジエチレング
リコールエステル、メチルホスホン酸ジプロピレングリ
コールエステル等が挙げられる。
[I] [■] Specific examples of the phosphonic acid compound represented by the general formula CI) include phenylphosphonic acid, methylphosphonic acid,
Phenylphosphonic acid monomethyphosphonic acid dimethyl ester, ethylphosphonic acid dimethyl ester, phenylphosphonic acid diphenyl ester, phenylphosphonic acid diethylene glycol ester, phenylphosphonic acid cyglobylene glycol ester, phenylphosphonic acid cyphthylene glycol ester, methylphosphonic acid diethylene glycol ester , methylphosphonic acid dipropylene glycol ester, and the like.

また、一般式〔■〕であられされるホスホン酸化合物の
具体例としてはフェニルホスホン酸とエチレングリコー
ル、フロピレンゲリコールまたはブチレングリコールと
の環状エステル、メチルホスホン酸とエチレングリコー
ル、プロピレングリコールまたはブチレングリコールと
の環状エステル等が挙げられる。
Further, specific examples of the phosphonic acid compound represented by the general formula [■] include cyclic esters of phenylphosphonic acid and ethylene glycol, propylene gelicol or butylene glycol, methylphosphonic acid and ethylene glycol, propylene glycol or butylene glycol, etc. Examples include cyclic esters of.

しかしながら、本願発明のホスホン酸化合物は、一般式
CI)および〔■〕で表わされる化合物であればどんな
ものでもよく、上記の具体例に限定されるものではない
。これらホスホン酸化合物は単独でも、また2種以上組
合わせて使用してもよく、ポリエステルの着色防止剤と
して通常使用されている他のリン化合物についても、本
発明の目的に清う限り、併用添加しても何らさしつかえ
ない。
However, the phosphonic acid compound of the present invention may be any compound represented by the general formulas CI) and [■], and is not limited to the above specific examples. These phosphonic acid compounds may be used alone or in combination of two or more, and other phosphorus compounds commonly used as color preventive agents for polyesters may also be used in combination as long as the purpose of the present invention is met. Even if you do, there is nothing wrong with that.

このようなホスホン酸ジエステルのポリエステルへの添
加魚はポリエステルを構成する酸成分に対して0.01
〜1.0モルチ、好ましくは0.03〜0.5モルチの
範囲を適宜選択することによりポリエステル中に不溶性
の異物がなく、また溶融紡糸工程でのパック内圧上昇が
小さく、かつ長時間の安定紡糸を・可能とする。また得
られたポリエステル繊維は複屈折、強度とも満足、でき
るものとなる。
The addition of such phosphonic acid diester to polyester is 0.01% relative to the acid component constituting the polyester.
By appropriately selecting the range of ~1.0 molty, preferably 0.03~0.5 molty, there will be no insoluble foreign matter in the polyester, and the pack internal pressure increase during the melt spinning process will be small, and it will be stable for a long time. Makes spinning possible. Moreover, the obtained polyester fiber has satisfactory birefringence and strength.

又、本発明の効果をより一層発現させるために、アルカ
リおよび/又はアルカリ土類金属化合物を併用添加して
もよいし、二酸化ケイ素などの微粒子を結晶核剤として
併用添加してもよい。ただし、微粒子の添加により、着
色化するようなものは、衣料用原糸として好ましくない
Further, in order to further exhibit the effects of the present invention, an alkali and/or alkaline earth metal compound may be added in combination, or fine particles such as silicon dioxide may be added in combination as a crystal nucleating agent. However, yarns that become colored due to the addition of fine particles are not preferred as yarns for clothing.

次をこ本発明のポリエステル繊維が得られる具体的な実
施形態の一例を第1図をもって説明する。
Next, one example of a specific embodiment from which the polyester fiber of the present invention can be obtained will be described with reference to FIG.

溶融されたポリエステルはパックハウジング2内のパッ
ク1でろ過され、吐出されて糸条となる。吐出された糸
条は冷却筒3で冷却固化されて給油装置4にて給油され
、5000m/分以上の紡糸速度で回転する第1ゴデイ
ロール(以下第1GDとする)5と第2ゴデイロール(
以下第20Dとする)5′を経て巻取機乙に巻き取られ
る。この際、交絡装置7により糸条に交絡が付与される
。ここで紡糸速度とは口金から吐出された糸条が最初に
接する駆動ロール(第1GD)の表面速度を意味し巻取
速度ではない。ただし、第+GD、第20Dを用いない
場合は巻取速度が紡糸速度となる。
The molten polyester is filtered through the pack 1 in the pack housing 2 and discharged to form yarn. The discharged yarn is cooled and solidified in a cooling cylinder 3, and then supplied with oil in an oil supply device 4, and then passed through a first Godey roll (hereinafter referred to as "first GD") 5 and a second Godey roll (hereinafter referred to as "first GD") which rotate at a spinning speed of 5000 m/min or more.
(hereinafter referred to as No. 20D) 5', and is wound up by winding machine B. At this time, the yarn is entangled by the interlacing device 7. Here, the spinning speed refers to the surface speed of the drive roll (first GD) with which the yarn discharged from the spinneret first contacts, and is not the winding speed. However, when +GD and 20D are not used, the winding speed becomes the spinning speed.

また、本発明においては第1GDと第20Dで連続的に
延伸を行なう、いわゆる直接紡糸延伸等も適用される。
In addition, in the present invention, so-called direct spinning drawing, etc., in which drawing is performed continuously in the first GD and the 20th D, is also applied.

〔実施例〕〔Example〕

以下に実施例で本発明の詳細な説明する。 The present invention will be explained in detail below using Examples.

なお、実施例中における冷却結晶化ピーク温度(TO’
) 、冷却結晶化ピーク半価幅(W)、極限粘度および
各繊維物性は次の方法tこより求めた。
In addition, the cooling crystallization peak temperature (TO'
), cooling crystallization peak half width (W), intrinsic viscosity, and each fiber physical property were determined by the following method.

A、冷却結晶化ピーク温度(Tc’) Cポリエステル
繊1610■を採取し、示差走査熱量計(パーキンエル
マー社製: DSC−4型)を用いて次の測定方法によ
ってサーモグラムを得た。示差走査熱量計であらかじめ
300℃、5分間前処理後急冷させ16c/分の昇温速
度で500℃まで昇温した後、直ちに16℃/分の降温
速度で降温した。降温中に発現スる再結晶化ピークにつ
いてパーキンエルマー社のデータ処理システムを用いて
冷却結晶化温度(Tc’) Cを求めた。
A. Cooling Crystallization Peak Temperature (Tc') A 1610 cm polyester fiber was sampled, and a thermogram was obtained using a differential scanning calorimeter (Model DSC-4, manufactured by PerkinElmer) according to the following measurement method. The sample was pretreated at 300° C. for 5 minutes using a differential scanning calorimeter, then rapidly cooled, and the temperature was raised to 500° C. at a temperature increase rate of 16 c/min, followed by immediately lowering the temperature at a cooling rate of 16° C./min. The cooling crystallization temperature (Tc') C of the recrystallization peak that appears during cooling was determined using a PerkinElmer data processing system.

B、冷却結晶化ピーク半価幅(W) C第2図はパーキ
ンエルマー社のデータ処理接線1,20交点Aを通る垂
線と接線3の交点Bとを結ぶ線分ABの中点Cを通る接
線3に平行な直線と冷却結晶化ピークの交点DIlii
の温度D′E′の差を冷却結晶化ピーク半価幅(W)℃
として求めた。
B, Cooling crystallization peak half-width (W) C Figure 2 passes through the midpoint C of the line segment AB that connects the perpendicular line passing through the intersection A of PerkinElmer's data processing tangents 1 and 20 and the intersection B of the tangent 3. Intersection point DIlii of the straight line parallel to tangent 3 and the cooling crystallization peak
The difference in temperature D'E' of cooling crystallization peak half width (W) °C
I asked for it as.

C1複屈折Δn 偏光顕微鏡を用いたNa電球によるD線単色光t−用い
コンペンセータ法で測定した。
C1 Birefringence Δn Measured by compensator method using D-line monochromatic light t- from an Na bulb using a polarizing microscope.

D、固有粘度 30℃のオルソクロルフェノール溶媒中で測定した。D, intrinsic viscosity The measurement was performed in an orthochlorophenol solvent at 30°C.

80強度、伸度 東洋ボールドウィン社製テンシロン引張試験機を用いて
荷重伸長曲線から求めた。
80 Strength and elongation were determined from a load-elongation curve using a Tensilon tensile tester manufactured by Toyo Baldwin.

F、沸騰水収縮率(73w) 周長1但のかせ取り機に10回巻き0. IP/dの加
重をかけつつ原長toを測定した後、沸騰水中で15分
間処理する。風乾後0.15’/dの加重をかけつつ試
料長1+を測定し下式によって算出する。
F. Boiling water shrinkage rate (73w) Wound 10 times on a skein remover with a circumference of 1.0. After measuring the original length to while applying a weight of IP/d, the sample is treated in boiling water for 15 minutes. After air drying, the sample length 1+ is measured while applying a weight of 0.15'/d and calculated using the following formula.

実施例1 テレフタル酸100部、エチレンクリコール50部を反
応缶に仕込み通常のエステル化反応ヲ行すいビス−(β
−ヒドロキシエチル)テレフタレート低重合体を得、次
いで三酸化アンチモン0.04部、フェニルホスホン酸
ジメチルエステル0.16部を添加して重縮合反応を行
ないポリエチレンテレフタレートを得た。得られたポリ
エチレンテレフタレートを第1図に示す装置を用いて、
紡糸温度300℃で、ノズル孔径0、30 mφ、ノズ
ル孔数18個の紡糸口金を用い吐出し、糸条の走行方向
に対して直交に供給、される25Cの空気の流れによっ
て冷却固化させ、油剤を付与し、更に交絡処理を施こし
、6200m/分の紡糸速度で巻取って50 d / 
i ’8fのポリエチレンテレフタレート繊維を得た。
Example 1 100 parts of terephthalic acid and 50 parts of ethylene glycol were placed in a reaction vessel and a normal esterification reaction was carried out.
-Hydroxyethyl) terephthalate low polymer was obtained, and then 0.04 part of antimony trioxide and 0.16 part of phenylphosphonic acid dimethyl ester were added to carry out a polycondensation reaction to obtain polyethylene terephthalate. The obtained polyethylene terephthalate was processed using the apparatus shown in FIG.
Spun at a spinning temperature of 300°C using a spinneret with a nozzle diameter of 0.30 mφ and 18 nozzle holes, cooled and solidified by a 25C air flow supplied orthogonally to the running direction of the yarn, An oil agent is applied, further entangling treatment is performed, and the yarn is wound at a spinning speed of 6200 m/min to 50 d/min.
A polyethylene terephthalate fiber of i'8f was obtained.

4、7 y/d、残留伸度53%、複屈折率Δno、1
10゜沸騰水収縮率2.6%、交絡数7コ/mの繊維物
性を有していた。次に巻取糸を1200m/分で整経し
たところ、整経毛羽発生回数は0.20回/107mと
極めて少なかった。この整経糸をタテ糸としてWJL(
回転数800rprn )で試織したところ製繊毛羽発
生回数は0.52/疋と良好であり、織物品位も何ら問
題なかった。
4, 7 y/d, residual elongation 53%, birefringence Δno, 1
The fibers had a shrinkage rate of 2.6% in 10° boiling water and a number of entanglements of 7/m. Next, when the wound yarn was warped at 1200 m/min, the number of warping fluffs was extremely small at 0.20 times/107 m. WJL (
When trial weaving was carried out at a rotational speed of 800 rprn, the number of occurrences of ciliary feathers was 0.52/h, which was good, and there was no problem with the quality of the fabric.

比較実施例1 テレフタル酸100部、エチレングリコール50部を反
応缶に仕込み、通常のエステル化反応を行ないビス−(
β−ヒドロキシエチル)テレフタレート低重合体を得、
次いで二酸化アンチモン0.04部、リン酸トリメチル
エステル0.03部を添加して重縮合反応を行ないポリ
エチレンテレフタレートを得た。次いで実施例1と全く
同様にして50d/18fのポリエチレンテレフタレー
ト繊維を得た。得られた繊維は極限粘度0.6+、冷却
結晶化ピーク温度(Tc’)190℃、半価幅111℃
であり、強度4.07/d1残留伸度49%、複屈折率
Δno、097、沸騰水収縮率2.5%、交絡数7コ/
mの繊維物性を有しており低強度であった。次に巻取糸
を1200m/分で整経したところ、整経毛羽発生回数
は2.3 / 10’mであり、又タテ糸としてWJL
(回転数80 Orpm )で試織したところ、製繊毛
羽発生回数も13回/疋と、いづれも多く高次工程での
工程通過性に問題が、あった。また得られた織物にはタ
テ筋が多発した。
Comparative Example 1 100 parts of terephthalic acid and 50 parts of ethylene glycol were placed in a reaction vessel, and a normal esterification reaction was carried out to produce bis-(
β-hydroxyethyl) terephthalate low polymer is obtained,
Next, 0.04 part of antimony dioxide and 0.03 part of trimethyl phosphate were added to carry out a polycondensation reaction to obtain polyethylene terephthalate. Then, in exactly the same manner as in Example 1, a 50d/18f polyethylene terephthalate fiber was obtained. The obtained fiber has an intrinsic viscosity of 0.6+, a cooling crystallization peak temperature (Tc') of 190°C, and a half width of 111°C.
The strength is 4.07/d1, the residual elongation is 49%, the birefringence Δno is 097, the boiling water shrinkage is 2.5%, and the number of entanglements is 7/
It had fiber physical properties of m and low strength. Next, when the wound yarn was warped at 1200 m/min, the number of warping fluffs was 2.3 / 10'm, and as a warp yarn, WJL
When trial weaving was carried out at a rotational speed of 80 orpm, the number of occurrences of fluff during fabrication was 13 times/h, both of which were high, and there was a problem with process passability in higher-order processes. In addition, the obtained fabric had many vertical lines.

実施例2 ポリマを得るに際し、フェニルホスホン酸ジメチルエス
テルの添加量を表1の如く変更して得られたポリエチレ
ンテレフタレートt−原料として次の紡糸方法により種
々のポリエチレンテ、レフタレート繊維を得た。
Example 2 When obtaining a polymer, various polyethylene terephthalate fibers were obtained using the following spinning method as a polyethylene terephthalate t-raw material obtained by changing the amount of phenylphosphonic acid dimethyl ester added as shown in Table 1.

ポリエチレンテレフタレート繊維の製造法・製造法A ノズル孔径0.37aφ、ノズル孔数18個の口金を用
い紡糸温度290℃、巻取速度1300m/分で巻き取
った。次いで延伸倍率3.05、ビン温度100℃で延
伸を行ない引き続いて150℃の熱板による熱処理を施
して50d/18fの延伸糸を得た。
Manufacturing method/manufacturing method A of polyethylene terephthalate fiber Using a nozzle having a nozzle diameter of 0.37 aφ and 18 nozzle holes, the fiber was wound at a spinning temperature of 290° C. and a winding speed of 1300 m/min. Next, drawing was carried out at a draw ratio of 3.05 and a bottle temperature of 100°C, followed by heat treatment using a hot plate at 150°C to obtain a drawn yarn of 50d/18f.

・製造法B 第1図に示す装置を用いて、ノズル孔径0、3712φ
、ノズル孔数18個の口金を用い、紡糸温度300℃で
巻取速度を4500〜7000m/分の範囲で変更して
50d/18fの種々のポリエチレンテレフタレート繊
維ヲ得た。
・Manufacturing method B Using the device shown in Figure 1, nozzle hole diameter 0, 3712φ
Using a nozzle with 18 nozzle holes, various polyethylene terephthalate fibers of 50 d/18 f were obtained by changing the winding speed in the range of 4,500 to 7,000 m/min at a spinning temperature of 300°C.

表1に得られた繊維の冷結晶化ピーク温度(TC′)、
冷結晶化ピーク半価幅(W)、繊維物性を表2に高次加
工工程での工程通過性を示す。
Cold crystallization peak temperature (TC') of the fiber obtained in Table 1,
Table 2 shows the cold crystallization peak half-width (W) and fiber physical properties that indicate passability in higher processing steps.

表1のうち、本発明を満足する水準3.6.9のポリエ
ステル繊維のみ表2に示したように良好な高次通過性を
示し織物品位も良好であった。
Among Table 1, only the polyester fibers of level 3.6.9 satisfying the present invention exhibited good high-order passability as shown in Table 2, and the fabric quality was also good.

〔発明の効果〕〔Effect of the invention〕

本発明のポリエステル繊維により次のような効果が発揮
される。
The polyester fiber of the present invention exhibits the following effects.

すなわち、超高速紡糸によって得た繊維の特徴である高
伸度を維持しているにもかかわらず、高強度となるため
、高いタフネスを有するポリエステル繊維となり、高次
工程での各種処理速度の高速化に十分対応できる。
In other words, although it maintains the high elongation characteristic of fibers obtained by ultra-high speed spinning, it has high strength, making it a polyester fiber with high toughness, which allows for high processing speeds in various higher-order processes. It is possible to fully respond to the changes.

例えば、10 D Om/分分出上整経や800rpm
以上のM、TL製織を行なっても毛羽の発生が極めて少
なく、停台することも殆んどなく、高次工程の大幅な合
理化を実現する。また得られる織物も良好な品位を保つ
ことができる。
For example, 10 D Om/min warping or 800 rpm
Even when the above M and TL weaving is performed, there is extremely little fuzz generation, there is almost no stopping of the weaving machine, and high-order processes can be significantly streamlined. Moreover, the obtained fabric can also maintain good quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶融紡糸工程を示す概略図であふ7埴
2図は未発明のポ11エステルの冷却結晶化ピーク半価
幅(W)の測定法を説明する図である。 1:パック 2:バンクハウジング 3:冷却筒 4:給油装置 5:第1GD、  s’:第2GD 6:巻取機 7:交絡装置 特許出願大東し株式会社 第1図 温度(℃) 第2図
Figure 1 is a schematic diagram showing the melt spinning process of the present invention, and Figure 7 and Figure 2 are diagrams illustrating a method for measuring the half width (W) of the cooling crystallization peak of poly-11 ester, which has not yet been invented. 1: Pack 2: Bank housing 3: Cooling cylinder 4: Oil supply device 5: 1st GD, s': 2nd GD 6: Winding machine 7: Entangling device Patent application Daito Shi Co., Ltd. Figure 1 Temperature (°C) Figure 2

Claims (1)

【特許請求の範囲】 差動走査型熱量計で測定した冷却結晶化ピーク温度(T
c′)が195℃以上、冷却結晶化ピーク半価幅(W)
が10℃以下、複屈折率(Δn)が0.09以上0.1
30以下、残留伸度40%以上60%以下で、かつ極限
粘度(〔η〕)0.50以上0.635以下である衣料
用ポリエステル繊維。
[Claims] Cooling crystallization peak temperature (T
c') is 195℃ or higher, cooling crystallization peak half width (W)
is 10℃ or less, birefringence (Δn) is 0.09 or more and 0.1
30 or less, a residual elongation of 40% or more and 60% or less, and an intrinsic viscosity ([η]) of 0.50 or more and 0.635 or less.
JP7709186A 1986-04-03 1986-04-03 Polyester fiber for clothing use Pending JPS62238815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7709186A JPS62238815A (en) 1986-04-03 1986-04-03 Polyester fiber for clothing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7709186A JPS62238815A (en) 1986-04-03 1986-04-03 Polyester fiber for clothing use

Publications (1)

Publication Number Publication Date
JPS62238815A true JPS62238815A (en) 1987-10-19

Family

ID=13624107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7709186A Pending JPS62238815A (en) 1986-04-03 1986-04-03 Polyester fiber for clothing use

Country Status (1)

Country Link
JP (1) JPS62238815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108111A (en) * 1990-08-21 1992-04-09 Shinkashiyou:Kk Production of polyester fiber from recycled polyester
JPH04146209A (en) * 1990-09-28 1992-05-20 Shinkashiyou:Kk Production of polyester fiber from reclaimed resin
JP2004294439A (en) * 2003-03-27 2004-10-21 General Electric Co <Ge> Noncontact measuring system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742920A (en) * 1980-08-27 1982-03-10 Teijin Ltd Spinning method of polyester fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742920A (en) * 1980-08-27 1982-03-10 Teijin Ltd Spinning method of polyester fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108111A (en) * 1990-08-21 1992-04-09 Shinkashiyou:Kk Production of polyester fiber from recycled polyester
JPH04146209A (en) * 1990-09-28 1992-05-20 Shinkashiyou:Kk Production of polyester fiber from reclaimed resin
JP2004294439A (en) * 2003-03-27 2004-10-21 General Electric Co <Ge> Noncontact measuring system and method
JP4619677B2 (en) * 2003-03-27 2011-01-26 ゼネラル・エレクトリック・カンパニイ Non-contact measurement system and method

Similar Documents

Publication Publication Date Title
KR100401899B1 (en) Polytrimethylene terephthalate fiber
JP3204399B2 (en) Polyester fiber and fabric using the same
JP3255906B2 (en) Polyester fiber excellent in processability and method for producing the same
JP3630662B2 (en) Copolymer polytrimethylene terephthalate
JP6015447B2 (en) Core-sheath composite fiber and method for producing the same
KR100359347B1 (en) Polyester fiber and fabric prepared therefrom
JPS62187726A (en) Production of poplyester for high-speed spinning
JPS62238815A (en) Polyester fiber for clothing use
JP3073963B2 (en) Cheese-like package and method of manufacturing the same
JPH0466928B2 (en)
JP3167677B2 (en) Polyester irregular cross section fiber
JPS5837408B2 (en) Manufacturing method of polyester ultrafine fiber
JP2844680B2 (en) Different fineness / different shrinkage mixed fiber and method for producing the same
JPS6353285B2 (en)
JP2007332495A (en) Thick and thin multifilament yarn of cellulose fatty acid-mixed ester and method for producing the same
MXPA05007284A (en) Polyester fibers having deformed section.
JP3998672B2 (en) Copolymer polytrimethylene terephthalate fiber
JP3523433B2 (en) Polyester hetero-shrinkage mixed yarn and method for producing the same
JPH04361610A (en) Production of polyester fiber
JP2024002177A (en) Irregular shape cross-section polyester fiber
JPS6122047B2 (en)
JP3303798B2 (en) Polyester fiber
JPS5936722A (en) Conjugate spinning
JP3453229B2 (en) Manufacturing method of polyester fiber
JPH0247325A (en) Production of combined filament yarn of polyester having different shrinkage