JPS62238614A - Manufacture of anistropic magnetic film - Google Patents

Manufacture of anistropic magnetic film

Info

Publication number
JPS62238614A
JPS62238614A JP8137286A JP8137286A JPS62238614A JP S62238614 A JPS62238614 A JP S62238614A JP 8137286 A JP8137286 A JP 8137286A JP 8137286 A JP8137286 A JP 8137286A JP S62238614 A JPS62238614 A JP S62238614A
Authority
JP
Japan
Prior art keywords
film
substrate
anisotropy
magnetic film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8137286A
Other languages
Japanese (ja)
Inventor
Motonobu Kawarada
河原田 元信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8137286A priority Critical patent/JPS62238614A/en
Publication of JPS62238614A publication Critical patent/JPS62238614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a film having an anisotropy to be formed with a relatively easy method, by heating or cooling a crystal plate having different coefficients of temperature expansion along different axes so as to make its anisotropy more noticeable before forming a magnetic film thereon. CONSTITUTION:The present process is to provide a film having anisotropy in induced magnetism by means of tension and compression. Since the process requires presence of excellent adhesive properties between a substrate and the magnetic film, a film forming method such as ion plating or the like is suitable for this purpose. Materials suitable for a substrate having anisotropy in coefficient of thermal expansion are crystallized quartz and a ferroelectric crystal such as lithium niobate (LiNbO3) or lithium tantalate (LiTaO3). For example, the X-cut face of a crystallized quartz is utlized as a substrate having an area of 10X10mm and a thickness of 0.5mm. The X-cut face is a plane parallel to the (c) axis. The substrate has a temperature coefficient of 137X10<-7>/ deg.K in the X direction and a temperature coefficient of 75X10<-7>/ deg.K in the Z direction. For forming the film, the substrate is heated to 450 deg.C and the ion plating process is performed to deposit iron nitride while a pressure of a mixture gas of nitride (N2) and argon (Ar) is adjusted at 6.0X10<-5> torr.

Description

【発明の詳細な説明】 〔概要〕 異方性をもつ磁性膜の製法として軸方向により熱膨張係
数の異なる結晶板を加熱或いは冷却して顕著に異方性を
生じさせた状態で、この上に磁性膜の形成を行い、常温
に冷却することにより異方性を備えた磁性膜を形成する
方法。
[Detailed Description of the Invention] [Summary] As a method for manufacturing a magnetic film with anisotropy, a crystal plate having a coefficient of thermal expansion that differs in the axial direction is heated or cooled to produce remarkable anisotropy. A method of forming a magnetic film with anisotropy by forming a magnetic film on the substrate and cooling it to room temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は異方性をもつ磁性膜の製造方法に関する。 The present invention relates to a method of manufacturing a magnetic film having anisotropy.

異方性をもつ磁性膜を利用したものとしては磁気ディス
クに使用する磁気ヘッドがある。
A magnetic head used in a magnetic disk is an example of a device that utilizes an anisotropic magnetic film.

すなわち、磁気ヘッドの高周波特性を向上する方法とし
て磁気異方性を持たせた磁性膜が使用されている。
That is, a magnetic film having magnetic anisotropy is used as a method of improving the high frequency characteristics of a magnetic head.

さて、透磁率μに影響を及ぼす因子として磁壁の移動と
スピンの回転とがあり、低周波では磁壁の移動による寄
与が支配的であり、一方高周波ではスピンの回転による
寄与が支配的である。
Now, the factors that affect the magnetic permeability μ are domain wall movement and spin rotation. At low frequencies, the contribution from domain wall movement is dominant, while at high frequencies, the contribution from spin rotation is dominant.

ここで、異方性エネルギーが最大となる磁化困難方向は
スピンによる寄与が支配的になる方向なので、高周波特
性を向上する方法として面内異方性をもたせた磁性膜が
使用されている。
Here, since the direction of difficult magnetization where the anisotropy energy is maximum is the direction where the contribution from spin is dominant, a magnetic film with in-plane anisotropy is used as a method of improving high frequency characteristics.

〔従来の技術〕[Conventional technology]

磁性膜に面内異方性を持たせる方法として磁場を加えな
がら成膜する方法、成膜は無磁場の状態で行い、成膜後
に磁場を加えて焼鈍(アニール)を行う方法、斜め蒸着
法により成膜する方法、などがある。
Methods for imparting in-plane anisotropy to magnetic films include a method in which the film is formed while applying a magnetic field, a method in which the film is formed in the absence of a magnetic field, and then annealing is performed by applying a magnetic field after the film is formed, and an oblique evaporation method. For example, there is a method of forming a film.

然し、前者の方法は磁場を加えるために装置が大型化し
、複雑になると云う問題があり、また後者は再現性に乏
しいことが問題である。
However, the former method has a problem in that the apparatus becomes large and complicated due to the application of a magnetic field, and the latter method has a problem in that reproducibility is poor.

そこで、これに代わる簡単な処理方法が要望されていた
Therefore, there has been a demand for a simple processing method to replace this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように高周波特性の優れた磁性膜をうるため
に面内異方性を持たせたいが、簡単で再現性の良い方法
を見出すことが課題である。
As described above, it is desirable to have in-plane anisotropy in order to obtain a magnetic film with excellent high frequency properties, but the challenge is to find a simple method with good reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は結晶軸の方向により熱膨張係数の異なる結
晶板を基板とし、この基板を加熱或いは冷却して顕著に
異方性を生じた状態を作り、基板上に磁性膜を形成する
ことにより、磁性膜に異方性を生じさせる異方性磁性膜
の製造方法を使用することにより解決することができる
The above problem can be solved by using a crystal plate with different coefficients of thermal expansion depending on the direction of the crystal axis, heating or cooling the substrate to create a state of significant anisotropy, and forming a magnetic film on the substrate. This problem can be solved by using an anisotropic magnetic film manufacturing method that produces anisotropy in the magnetic film.

〔作用〕[Effect]

本発明は異方性をもつ磁性膜の製造法として熱膨張係数
に異方性をもつ基板を使用し、この熱膨張係数の影響が
最もよく現れた高温あるいは低温で成膜することにより
、常温に戻した状態で内部に歪を与え、これにより異方
性をもたせるものである。
The present invention uses a substrate with an anisotropic coefficient of thermal expansion as a method of manufacturing an anisotropic magnetic film, and forms the film at a high or low temperature where the influence of the coefficient of thermal expansion is most apparent. In this state, strain is applied to the inside of the material to give it anisotropy.

すなわち磁気異方性には鉄、ニッケル、フェライトなど
のように結晶構造の異方性による結晶磁気異方性と張力
や磁歪などによる誘導磁気異方性とがあるが、本方法は
張力或いは圧縮力により誘導磁気異方性をもたせるもの
である。
In other words, magnetic anisotropy includes magnetocrystalline anisotropy due to anisotropy of the crystal structure, such as iron, nickel, ferrite, etc., and induced magnetic anisotropy due to tension, magnetostriction, etc., but this method It provides induced magnetic anisotropy by force.

本方法を行うには基板と磁性膜との密着性が優れている
。ことが必要条件であり、そのためにはイオンブレーテ
ィング法など基板との密着性の優れた成膜法が適してい
る。
This method requires excellent adhesion between the substrate and the magnetic film. This is a necessary condition, and for this purpose, a film forming method with excellent adhesion to the substrate, such as ion blating method, is suitable.

また熱膨張係数に異方性をもつ基板としては水晶や強誘
電体結晶例えばニオブ酸リチウム(LiNb03)、タ
ンタル酸リチウム(LiTaO+)などが適している。
Further, suitable substrates having anisotropy in thermal expansion coefficient include quartz crystals and ferroelectric crystals such as lithium niobate (LiNb03) and lithium tantalate (LiTaO+).

本発明はこれらの結晶について面内の互いに直角な方向
で熱膨張係数が最も差が大きくなる軸方向に切り出した
ものを基板として使用し、この上に膜形成を行うもので
ある。
The present invention uses as a substrate a crystal cut out in the axial direction in which the difference in coefficient of thermal expansion is greatest in directions perpendicular to each other in the plane, and forms a film on this.

すなわち、今もし熱膨張係数が直線的に変化する結晶基
板があるとし、これを高温或いは低温に保持すると、互
いに直角な方向では膨張係数が異なるために微視的に見
て常温とは異なる歪んだ形状となる。
In other words, if there is a crystal substrate whose coefficient of thermal expansion changes linearly, and if it is held at high or low temperatures, the expansion coefficients differ in directions perpendicular to each other, so microscopically it will be distorted differently than at room temperature. It becomes a shape.

この状態の基板に密着性よ(磁性膜を形成した後、常温
に戻すと膜内の互いに直角な方向で膨張係数が異なるた
めに膜内に歪を生じ、これにより誘導磁気異方性が現れ
る。
The adhesion of the substrate in this state (after forming a magnetic film, when it is returned to room temperature, the expansion coefficients differ in directions perpendicular to each other within the film, causing strain in the film, which causes induced magnetic anisotropy to appear. .

〔実施例〕〔Example〕

基板として大きさが10m角で厚さが0.5 tmの水
晶のXカット面を使用した。
As a substrate, an X-cut surface of a crystal having a size of 10 m square and a thickness of 0.5 tm was used.

ここでXカット面はC軸に平行な面であって、X方向の
温度係数は137 xlO−’/ ’ K 、またZ方
向の温度係数は75xlO−’/ ’ Kである。
Here, the X cut plane is a plane parallel to the C axis, and the temperature coefficient in the X direction is 137 xlO-'/'K, and the temperature coefficient in the Z direction is 75xlO-'/'K.

次にZカット面はC軸に垂直な面で異方性はないが、比
較のためZカット面についても膜形成を行った。
Next, although the Z-cut plane is perpendicular to the C-axis and has no anisotropy, a film was also formed on the Z-cut plane for comparison.

膜形成法として両種の基板を450℃に加熱すると共に
窒素(Nz)とアルゴン(Ar)との混合ガス圧を6、
OX 10−’torrに調節して窒化鉄のイオンブレ
ーティングを行った。
As a film formation method, both types of substrates were heated to 450°C and a mixed gas pressure of nitrogen (Nz) and argon (Ar) was increased to 6.
Ion blating of iron nitride was performed at OX 10-'torr.

成膜速度は150人/分であり、また形成した膜厚は1
μmである。
The film formation rate was 150 people/min, and the film thickness was 1
It is μm.

第1図はXカット面上に形成した窒化鉄のヒステリシス
ループで、横軸には磁場の強さをOeで、また縦軸には
磁化の強さを示しており、破線1と実線2は基板を磁場
の中に水平にセットし、磁化曲線を測定した結果で、破
線1と実線2とは基板を直角に変えた場合で、ループに
顕著な差があることは面内基板で互いに直角な方向での
熱膨張係数の差によることが判る。
Figure 1 shows a hysteresis loop of iron nitride formed on an X-cut surface. The horizontal axis shows the strength of the magnetic field in Oe, and the vertical axis shows the magnetization strength. The broken line 1 and the solid line 2 are This is the result of measuring the magnetization curve with the substrate set horizontally in a magnetic field. Broken line 1 and solid line 2 are when the substrate is turned at right angles. There is a significant difference in the loops when the substrates are in the plane and are perpendicular to each other. It can be seen that this is due to the difference in the coefficient of thermal expansion in the directions.

一方、第2図は2力ツト面上に形成した窒化鉄のヒステ
リシスループで基板に異方性が存在しないため、成膜し
た基板の方向を直角に変えて測定してもループの形状は
変わらない。
On the other hand, Figure 2 shows a hysteresis loop of iron nitride formed on a two-force surface, and since there is no anisotropy in the substrate, the shape of the loop does not change even if the direction of the film-formed substrate is changed to a right angle and measured. do not have.

〔発明の効果〕〔Effect of the invention〕

本発明は誘導磁気異方性をもつ磁性膜を従来のような磁
場中での成膜や焼鈍或いは斜め蒸着のような方法によら
ず形成するもので、本発明の実施により比較的簡単な方
法で異方性をもつ膜を形成することができる。
The present invention forms a magnetic film having induced magnetic anisotropy without using conventional methods such as film formation in a magnetic field, annealing, or oblique evaporation. It is possible to form a film with anisotropy.

なお、本発明は磁性膜についての適用を示したが、基板
の熱膨張係数の異方性を利用すれば、電気的、光学的に
異方性をもつ薄膜を作ることができる。
Although the present invention has been applied to a magnetic film, by utilizing the anisotropy of the thermal expansion coefficient of the substrate, it is possible to create a thin film that is electrically and optically anisotropic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はXカット面上に形成した窒化鉄のヒステリシス
ループ、 第2図はXカット面上に形成した窒化鉄のヒステリシス
ループ、 である。
Figure 1 shows a hysteresis loop of iron nitride formed on an X-cut surface, and Figure 2 shows a hysteresis loop of iron nitride formed on an X-cut surface.

Claims (1)

【特許請求の範囲】[Claims]  結晶軸の方向により熱膨張係数の異なる結晶板を基板
とし、該基板を加熱或いは冷却して顕著に異方性を生じ
た状態を作り、該基板上に磁性膜を形成することにより
、該薄膜に異方性を生じさせることを特徴とする異方性
磁性膜の製造方法。
By using a crystal plate having a different coefficient of thermal expansion depending on the direction of the crystal axis as a substrate, heating or cooling the substrate to create a state in which a remarkable anisotropy occurs, and forming a magnetic film on the substrate, the thin film can be formed. A method for producing an anisotropic magnetic film characterized by producing anisotropy.
JP8137286A 1986-04-09 1986-04-09 Manufacture of anistropic magnetic film Pending JPS62238614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8137286A JPS62238614A (en) 1986-04-09 1986-04-09 Manufacture of anistropic magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137286A JPS62238614A (en) 1986-04-09 1986-04-09 Manufacture of anistropic magnetic film

Publications (1)

Publication Number Publication Date
JPS62238614A true JPS62238614A (en) 1987-10-19

Family

ID=13744473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137286A Pending JPS62238614A (en) 1986-04-09 1986-04-09 Manufacture of anistropic magnetic film

Country Status (1)

Country Link
JP (1) JPS62238614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683003A (en) * 2012-05-03 2012-09-19 中国科学院宁波材料技术与工程研究所 Method for preparing single-shaft magnetic anisotropy thin film
JP2014112677A (en) * 2012-11-29 2014-06-19 Seagate Technology Llc Magnetic layer comprising thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683003A (en) * 2012-05-03 2012-09-19 中国科学院宁波材料技术与工程研究所 Method for preparing single-shaft magnetic anisotropy thin film
JP2014112677A (en) * 2012-11-29 2014-06-19 Seagate Technology Llc Magnetic layer comprising thin film

Similar Documents

Publication Publication Date Title
Qiao et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates
JPS62238614A (en) Manufacture of anistropic magnetic film
JP2000249997A (en) Faraday rotational angle varying device
Ching et al. Magnetic properties and structure of Mn4N films on glass substrates
Griffiths Ferro-magnetic resonance in thin ni-films
US3470020A (en) Process for making a magnetic film
Takahashi et al. Soft magnetic properties of Fe-N and Fe-Si-N thin films sputtered in (Ar+ N/sub 2/) plasma
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
JPS59170248A (en) Heat treatment of amorphous alloy
Ahmad et al. The magnetoelastic coefficients h 3 and h 4 of (100) nickel films
Breed et al. New bubble materials with high peak velocity
JPS59200748A (en) Manufacture of amorphous soft-magnetic thin film
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
JPS59223230A (en) Manufacture of oriented thin lead titanate film
Gerbaux et al. Surface and bulk absorption lines in the FIR spectra of ferroelectric triglycine sulphate at 4 K
Takahashi et al. Uniaxial Magnetic Anisotropy in Evaporated Films Caused by the Interaction with Substrate
Levy et al. Giant attenuation of surface acoustic waves by ferromagnetic films
JPS59137318A (en) Manufacture of oriented thin film element of ferroelectric substance
Hasty et al. Ultrasonically Induced Switching in (80% Ni− 20% Fe) Ferromagnetic Films
Ferry et al. Ultrasonic propagation near the Curie point of MnP
JPH0252415A (en) Formation of magnetic thin film having uniaxial anisotropy
JPH08253395A (en) Garnet crystal and its production
Carey et al. PtMnSb FILMS PREPARED BY RAPID THERMAL ANNEALING
Forester et al. APPLICATIONS OF AMORPHOUS Fe-, CO-METALLOID AND RARE EARTH ALLOY THIN FILMS
JPH0560641B2 (en)