JPS62237086A - Variable capacity compressor - Google Patents
Variable capacity compressorInfo
- Publication number
- JPS62237086A JPS62237086A JP61079881A JP7988186A JPS62237086A JP S62237086 A JPS62237086 A JP S62237086A JP 61079881 A JP61079881 A JP 61079881A JP 7988186 A JP7988186 A JP 7988186A JP S62237086 A JPS62237086 A JP S62237086A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- valve
- suction
- pressure
- compression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 claims abstract description 55
- 238000007906 compression Methods 0.000 claims abstract description 55
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 239000003507 refrigerant Substances 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 20
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 abstract description 2
- 239000002826 coolant Substances 0.000 abstract 6
- 230000007423 decrease Effects 0.000 description 17
- 238000004891 communication Methods 0.000 description 14
- 230000009471 action Effects 0.000 description 12
- 239000012530 fluid Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明tよ車両空調用として好適な圧縮機に係り、詳し
くは冷房負荷に応じて圧縮容量を変化させることのでき
る可変容量圧縮機に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compressor suitable for vehicle air conditioning, and more particularly to a variable capacity compressor that can change compression capacity in accordance with cooling load.
[従来の技術]
一般に車両空調用圧縮機においては、過剰冷房や蒸発器
の凍結による冷房不良を解決するため、クラッチ操作に
よる圧縮機の断続運転が行なわれている。ところが圧縮
機の断続運転は、車室内へ供給される冷風の温度変動が
極端に大きくなって冷房フィーリングを損うばかりでな
く、圧縮様の動力源が車両駆動用エンジンに依存してい
るという宿命から、クラッチの早期損耗、運転フィーリ
ングの悪化も避けられない問題であった。[Prior Art] Generally, in a vehicle air conditioning compressor, intermittent operation of the compressor is performed by operating a clutch in order to solve cooling problems caused by excessive cooling or freezing of the evaporator. However, intermittent operation of the compressor not only causes extreme fluctuations in the temperature of the cold air supplied to the passenger compartment, impairing the cooling feeling, but also makes the compressor's power source dependent on the vehicle's driving engine. As fate would have it, premature clutch wear and deterioration of driving feeling were unavoidable problems.
この点に着目した特開昭54−31612号の発明には
、前後6気筒のボアに形成される圧縮室内の冷媒ガスの
一部を低圧側へバイパスさせる逃し通路を設けて、圧縮
容量を変化させるようにした圧縮機が開示されている。The invention of JP-A-54-31612 focused on this point, in which a relief passage was provided to bypass a part of the refrigerant gas in the compression chamber formed in the bores of the six front and rear cylinders to the low pressure side, thereby changing the compression capacity. A compressor is disclosed.
すなわち第11図に示すように、圧縮室aにおける圧縮
行程中の冷媒ガスの一部を吸入行程中の他の圧縮室a、
油溜室す及び斜板室C等の低圧側へバイパスさせる逃し
孔d1横孔e、通孔fよりなる逃し通路が設けられ、こ
の逃し通路は該横孔e内を横動するスプール9によって
開閉するようになされ、該スプール9はその両端面に作
用するベローズhの密封流体圧と吸入圧力との差圧によ
って作動するように構成されている。したがって車室内
の温度が低下して冷房負荷が減じ吸入圧力が低下すると
、ベローズhの密封流体圧が吸入圧力に打勝ってスプー
ル9を作動させ逃し通路を連通開放するので、ピストン
iが逃し孔dを閉塞するまでの圧縮行程は無能化され、
有効気筒数を減することなく圧縮容量が減少づるように
なされている。That is, as shown in FIG. 11, part of the refrigerant gas in the compression chamber a during the compression stroke is transferred to the other compression chamber a during the suction stroke.
A relief passage consisting of a relief hole d1, a horizontal hole e, and a through hole f is provided to bypass the oil sump chamber and the swash plate chamber C to the low pressure side, and this relief passage is opened and closed by a spool 9 that moves laterally within the horizontal hole e. The spool 9 is configured to be operated by the differential pressure between the sealing fluid pressure of the bellows h and the suction pressure acting on both end surfaces of the spool 9. Therefore, when the temperature in the passenger compartment decreases, the cooling load decreases, and the suction pressure decreases, the sealing fluid pressure of the bellows h overcomes the suction pressure and operates the spool 9 to open the relief passage, so that the piston i moves into the relief hole. The compression stroke up to closing d is disabled,
Compression capacity is reduced without reducing the number of effective cylinders.
また、特開昭57−73877号の発明にみられるよう
に、電磁弁の切換えによる高低同圧力の選択的な負荷に
よって、一方のシリンダボアに係る吐出弁を非作動状態
に浮上させ、圧縮機能の半減化を可能とした可変容l圧
縮機も知られている。Furthermore, as seen in the invention of JP-A No. 57-73877, the discharge valve associated with one cylinder bore is floated to a non-operating state by selective loading of the same high and low pressures by switching a solenoid valve, and the compression function is activated. A variable displacement compressor that can reduce the amount by half is also known.
[発明が解決しようとする問題点]
ところが前者の発明におけるベローズhは、圧縮機の中
心部分に各ボアと近接して配置されているため、該ベロ
ーズh内の密封流体は吐出温度に左右される圧縮機の温
度変動の影響をうけやすく、これによって密封流体圧が
変化するため、冷房負荷との相関が弱くなって的確なコ
ントロールが乱されるという欠点がある。加えて上述し
た既知の両発明は、いずれも全容量運転に対して単に低
容恐運転という2段階制御にとどまるために可変域が狭
く、冷房負荷に適応した細密なilJ IIIが行えな
いという点で決して満足すべきものではなかった。[Problems to be Solved by the Invention] However, since the bellows h in the former invention is arranged in the center of the compressor in close proximity to each bore, the sealing fluid within the bellows h is affected by the discharge temperature. They are susceptible to temperature fluctuations in the compressor, which changes the sealing fluid pressure, which has the disadvantage of weakening the correlation with the cooling load and disrupting accurate control. In addition, both of the above-mentioned known inventions have a narrow variable range because they are limited to two-stage control of full capacity operation and low capacity operation, and cannot perform detailed ilJ III adapted to the cooling load. It was by no means satisfactory.
本発明は圧縮vA湿温度変動にかかわりなく、冷房負荷
に的確に応答し、しかも広範な可変域をもつ可変容量圧
縮機を現出することを解決しようとする技術的gR題と
するものである。The present invention aims to solve the technical problem of developing a variable displacement compressor that accurately responds to cooling load regardless of compression vA humidity and temperature fluctuations and has a wide variable range. .
[問題点を解決するための手段]
本発明は上記技術的課題を解決するため、前後に整合し
た複数のシリンダボアにそれぞれ対向して配設された吸
入室及び吐出室と、ピストン駆動用斜板を収納した上記
吸入室及び吐出室とは独立して区画形成された斜板室と
、帰還冷媒を上記吸入室へ案内する吸入通路と、前部の
シリンダボア内の圧縮室と斜板室又は吸入室とを連通可
能としたバイパス通路と、斜板室と吸入室との圧力差に
より上記バイパス通路を開閉するスプール弁手段と、上
記吸入通路中に組み込まれ上記帰還冷媒の圧力に応じて
その流量をハ制御する絞り弁手段と、該絞り弁手段の上
流域の上記吸入通路と上記斜板室とを連通づる給圧通路
と、後部シリンダボアに係る圧縮機能を選択的に無能化
する弁制御手段とを包含する構成を採用している。[Means for Solving the Problems] In order to solve the above-mentioned technical problems, the present invention provides a suction chamber and a discharge chamber arranged to face each other in a plurality of cylinder bores that are aligned in the front and back, and a swash plate for driving a piston. a swash plate chamber that is partitioned independently from the suction chamber and discharge chamber that house the refrigerant, a suction passage that guides the return refrigerant to the suction chamber, a compression chamber in the front cylinder bore, and a swash plate chamber or suction chamber. a spool valve means that opens and closes the bypass passage based on the pressure difference between the swash plate chamber and the suction chamber; and a spool valve means that is incorporated in the suction passage and controls the flow rate of the return refrigerant according to the pressure of the return refrigerant. a pressure supply passage communicating the suction passage and the swash plate chamber in an upstream region of the throttle valve means, and a valve control means for selectively disabling the compression function related to the rear cylinder bore. The configuration is adopted.
上記弁制御手段の一形態は、冷房負荷の検出指令に基づ
く高低同圧力の選択的な負荷によって、吐出弁を非作動
状態に浮上可能な吐出弁聞放儂溝であり、他の形態は同
様に非作動状態に浮上可能な吸入弁開放機構である。One form of the valve control means is a discharge valve release groove that can levitate the discharge valve to a non-operating state by selectively applying high and low pressures based on a cooling load detection command, and other forms are similar. This is a suction valve opening mechanism that can be floated to a non-operating state.
[作用]
本発明圧縮機は上記構成の採用により、まず第1に帰還
冷媒の圧力に応答して絞り弁手段を作動さ往、吸入冷媒
の流ffi e III限すること、第2に上記絞り弁
手段の上下流域における冷媒圧力の差圧を利用してスプ
ール弁手段を作動させ、バイパス通路を開いて前部シリ
ンダボアに係る圧縮機能を一部無能化すること、そして
第3に冷房負荷の検出指令に基づいて弁制御手段を作動
させ、後部シリンダボアに係る圧縮能力のすべてを選択
的に無能化すること、の三つの圧縮容量低減要素の複合
による冷房負荷と的確に相関した広範な可変域制御を行
うことができる。[Function] By employing the above configuration, the compressor of the present invention firstly operates the throttle valve means in response to the pressure of the returned refrigerant to limit the flow of the suction refrigerant, and secondly, the throttle valve The spool valve means is actuated using the differential pressure of the refrigerant in the upstream and downstream regions of the valve means, and the bypass passage is opened to partially disable the compression function related to the front cylinder bore, and thirdly, the cooling load is detected. A wide variable range control that accurately correlates with the cooling load by combining three compression capacity reduction elements: activating the valve control means based on commands and selectively disabling all of the compression capacity related to the rear cylinder bore. It can be performed.
[実施例]
以下、本発明になる可変容債圧縮機の第1実施例を第1
図〜第4図に基づいて説明する。[Example] Hereinafter, a first example of a variable capacity compressor according to the present invention will be described.
This will be explained based on FIGS.
図において、1F及び1Rは前部及び後部のシリンダブ
ロックで、その中心部に貫設された軸孔2F、2Rには
軸受を介して駆動軸3が支承され、同駆肋軸3は図示し
ないクラッチの接続を介してエンジンの動力により回転
駆動せしめられる。上記軸孔2F、2Rの外周部には複
数個のシリンダボア4F14Rが同軸孔2F、2Rを囲
繞するように設けられ、各シリンダボア4F、4 Rは
ピストン駆動室として後述の吸入室及び吐出室とは独立
的に区画形成された斜板室5を間に存して!1に整合せ
しめられ、多対のシリンダボア4F14R内には両頭式
のピストン6が嵌装されている。In the figure, 1F and 1R are front and rear cylinder blocks, and a drive shaft 3 is supported through bearings in shaft holes 2F and 2R penetrated through the center of the blocks, and the drive shaft 3 is not shown. It is driven to rotate by the power of the engine through the connection of a clutch. A plurality of cylinder bores 4F14R are provided on the outer periphery of the shaft holes 2F, 2R so as to surround the coaxial holes 2F, 2R, and each cylinder bore 4F, 4R serves as a piston drive chamber, which is different from the suction chamber and discharge chamber described later. There is an independently partitioned swash plate chamber 5 in between! 1, and a double-headed piston 6 is fitted in the multiple pairs of cylinder bores 4F14R.
そして各シリンダボア4F、4R内には各ピストン6の
ヘッドと後述するバルブプレートとの間に圧縮室8F、
8Rが形成される。また、斜板室5内には上記駆動軸3
に固着された斜板9が揺動回転自在に収納され、同斜板
9の揺動回転はシュー10及びボール11を介して係留
する各ピストン6に往復運動として伝達される。12F
、12Rはそれぞれ前部及び後部のバルブプレート7F
、7Rを間に挾んで、シリンダブロック1F、1Rの間
口端を覆蓋する前部及び後部のハウジングで、両ハウジ
ング12F、12Rは適数個の通しボルト13を介して
両シリンダブロック1F、1Rと共締めされる。両ハウ
ジング12F、12R内には上記各シリンダボア4F、
4Rと対応して外周側に吸入室14F、14R,内周側
に吐出室15F、15Rがほぼ環状の隔壁を間に存して
同心円状に設けられている。上記吸入室14F、1/I
Rは両シリンダブロック1F、1R及び両バルブプレー
ト7F、7Rに整合して貫設された吸入通路20F、2
ORを介して吸入フランジ21の開口22と連通され、
吐出室15F、15Rは同様に吐出通路23F、23R
を介して吐出フランジ24の開口25と連通されている
。In each cylinder bore 4F, 4R, there is a compression chamber 8F between the head of each piston 6 and a valve plate, which will be described later.
8R is formed. In addition, the drive shaft 3 is provided in the swash plate chamber 5.
A swash plate 9 fixed to the swash plate 9 is housed so as to be swingable and rotatable, and the swash plate 9's swing rotation is transmitted as a reciprocating motion to each moored piston 6 via shoes 10 and balls 11. 12F
, 12R are the front and rear valve plates 7F, respectively.
, 7R in between, and cover the front ends of the cylinder blocks 1F and 1R. They are fastened together. Inside both housings 12F and 12R are the above-mentioned cylinder bores 4F,
4R, suction chambers 14F, 14R on the outer circumferential side, and discharge chambers 15F, 15R on the inner circumferential side are provided concentrically with a substantially annular partition between them. Above suction chamber 14F, 1/I
R indicates suction passages 20F, 2 which are aligned and penetrate through both cylinder blocks 1F, 1R and both valve plates 7F, 7R.
communicates with the opening 22 of the suction flange 21 via the OR,
Similarly, the discharge chambers 15F and 15R are discharge passages 23F and 23R.
The opening 25 of the discharge flange 24 is communicated with the opening 25 of the discharge flange 24 through the opening 25 of the discharge flange 24.
上記軸孔2Fのバルブプレート寄りには拡径部が設けら
れ、同バルブプレート7Fに貫設された開口部と前部ハ
ウジング12Fの中心部に設けられた空所とに亘って圧
力作用室26が形成されている。上記拡径部に対して圧
縮室8Fと連通ずるバイパス孔27及び斜板室5と連通
する逃し孔28が穿設されてバイパス通路が構成され、
同バイパス通路は上記拡径部内に摺動自在に嵌装された
スプール弁29によって[lfl閉される。そして同ス
プール弁29には導圧孔30を介して圧力作用室26に
通ずる吸入室14Fの圧力とばね31の弾力との合力が
、上記バイパス通路を閉止する向きに作用し、一方逃し
孔28を経由した斜板室5の圧力は上記バイパス通路を
開放する向きに作用する。An enlarged diameter portion is provided near the valve plate of the shaft hole 2F, and a pressure action chamber 26 extends between the opening penetrated through the valve plate 7F and the cavity provided in the center of the front housing 12F. is formed. A bypass hole 27 that communicates with the compression chamber 8F and a relief hole 28 that communicates with the swash plate chamber 5 are bored in the enlarged diameter portion to constitute a bypass passage,
The bypass passage is closed by a spool valve 29 slidably fitted within the enlarged diameter portion. The resultant force of the pressure in the suction chamber 14F communicating with the pressure action chamber 26 through the pressure guiding hole 30 and the elasticity of the spring 31 acts on the spool valve 29 in a direction to close the bypass passage, while the relief hole 28 The pressure in the swash plate chamber 5 that passes through acts in a direction to open the bypass passage.
上記吸入フランジ21のボス部21aには有底円筒状の
収納ケース32が嵌着され、ボス部21aの中心に形成
した透孔21bには円柱状の絞り弁33が摺動可能に挿
通されている。上記絞り弁33の基端部33aと上記ボ
ス部21aとの間にはベローズ34が接続され、同絞り
弁33とベローズ34との間に形成された圧力室35は
、絞り弁33に形成された導圧路33bによって上記吸
入フランジ21内の吸入通路20−と連通されている。A bottomed cylindrical storage case 32 is fitted into the boss portion 21a of the suction flange 21, and a cylindrical throttle valve 33 is slidably inserted into the through hole 21b formed at the center of the boss portion 21a. There is. A bellows 34 is connected between the base end 33a of the throttle valve 33 and the boss 21a, and a pressure chamber 35 formed between the throttle valve 33 and the bellows 34 is formed in the throttle valve 33. It communicates with the suction passage 20- in the suction flange 21 through a pressure guiding path 33b.
上記絞り弁33と収納ケース32の底面との間にはばね
36が介装され、上記絞り弁33を常には上記吸入通路
20′の途中に設けた弁孔37を閉鎖する方向へ付勢す
るようにしている。上記ばね36の配置された上記収納
ケース32の内部は通孔32aによって外気と連通ずる
大気v38となされている。A spring 36 is interposed between the throttle valve 33 and the bottom surface of the storage case 32, and normally biases the throttle valve 33 in the direction of closing the valve hole 37 provided in the middle of the suction passage 20'. That's what I do. The inside of the storage case 32 in which the spring 36 is arranged is an atmosphere v38 that communicates with the outside air through a through hole 32a.
一方、上記弁孔37の上流域における吸入通路20′に
は、上記斜板室5と連通する吸汗通路39の一端が間口
され、上記絞り弁33が弁孔37を通過する冷媒の流■
を制限することにより、所定の圧力に保たれる上記吸入
通路20=内の冷媒が斜板室5へ導入されるようになさ
れている。On the other hand, one end of a sweat absorption passage 39 communicating with the swash plate chamber 5 is opened in the suction passage 20' in the upstream region of the valve hole 37, and the throttle valve 33 allows the refrigerant to flow through the valve hole 37.
By restricting the refrigerant in the suction passage 20, which is maintained at a predetermined pressure, is introduced into the swash plate chamber 5.
上記バルブプレート7F、7Rには吸入口16F、16
R及び吐出口18F、18Rが貫設され、これらを介し
て圧縮室8F、8Rが吸入室14F114R及び吐出室
15F、15Rと連通されており、これら吸入口16F
116R及び吐出口18F、18Rに対しては吸入弁1
7F、17R及び吐出弁19F、19Rが配設されてい
る。しかして、吐出弁19F、19Rは押押え40,4
1によってその開度が規制されていて、前部バルブプレ
ート7Fに対しては押押え40とともに締着されている
が、後部バルブプレート7Rに対しては押押え41とと
もに正規の作動状態と、吐出口18Rを浮上開放する非
作動状態とに変位可能となされている。すなわち本実施
例では、後部シリンダボア4Rに係る圧縮機能を選択的
に無能化する弁1iIJ f11手段として吐出弁1m
放機構を備えている。The above valve plates 7F and 7R have suction ports 16F and 16.
R and discharge ports 18F and 18R are provided through the compression chambers 8F and 8R, and the compression chambers 8F and 8R communicate with the suction chambers 14F and 114R and the discharge chambers 15F and 15R.
Suction valve 1 for 116R and discharge ports 18F and 18R
7F, 17R and discharge valves 19F, 19R are provided. Therefore, the discharge valves 19F and 19R are connected to the presser feet 40 and 4.
1 regulates its opening degree, and is fastened to the front valve plate 7F together with the presser foot 40, but the rear valve plate 7R, together with the presser foot 41, is in a normal operating state and discharge. The outlet 18R can be moved to a non-operating state in which it floats open. That is, in this embodiment, the discharge valve 1m is used as the valve 1iIJ f11 means for selectively disabling the compression function related to the rear cylinder bore 4R.
Equipped with a release mechanism.
同機構をさらに説明すると、押押え41は吐出弁19R
とほぼ同一形状、つまり環状基部41aと各吐出口18
Rに対向すべく延出したリード部41bとにより形成さ
れており、重合された吐出弁19Rと押押え41及び該
押押え41の背面に同心的に当接された円柱状のスプー
ル42とがボルト43によって共締めされ、該スプール
42は後部ハウジング12Rの中心部に区画形成された
有底凹所44内に軸方向の摺動可能に嵌合されている。To further explain the mechanism, the presser foot 41 is connected to the discharge valve 19R.
almost the same shape, that is, the annular base 41a and each discharge port 18
The discharge valve 19R and the presser foot 41 are formed by a lead portion 41b extending to face the presser foot 41, and a cylindrical spool 42 concentrically abuts against the back surface of the presser foot 41. They are fastened together by bolts 43, and the spool 42 is fitted in a bottomed recess 44 defined in the center of the rear housing 12R so as to be slidable in the axial direction.
なお、上記共締めされた3部材は後部ハウジング12R
内の隔壁に植設されたビン45によって回り止めされて
いる。The three members fastened together are the rear housing 12R.
Rotation is prevented by a bottle 45 installed in the inner partition wall.
また、上記軸孔2R内における駆動軸3の軸端を越えた
空所47には、円筒状のばね受け46が嵌入されるとと
もに後部バルブプレート7Rにて保持され、モしてばね
受け46内には上記吐出弁19Rを常に浮上した非作動
状態となるよう付勢するばね48が介装されている。上
記ばね受け46の周面と底面にはその筒孔と上記空所4
7とを連通さぜる適数個の小孔46aが貫設され、さら
に後部シリンダブロック1Rのボア挾間壁には上記空所
47と斜板室5とを連通させる連絡通路49が形成され
ており、これら筒孔、小孔45a及び連絡通路49によ
って、吐出弁19Rが浮上位置に保持された非作動状態
では、吐出室15Rは斜板苗5と連通されるが、吐出弁
19Rが正規の閉鎖位置に変位した作動状態では、その
連通が断たれるようになされている。上記後部ハウジン
グ12Rの中心部にはスプール42の背面に圧力を導く
導圧孔50が穿設され、この導圧孔50は第1電磁弁5
1を含む高圧管52によって吐出室15Fと連絡される
とともに、第2ffim弁53を含む低圧管54によっ
て吸入室14Rと連絡されている。そして該第1電磁弁
51及び第2電磁弁53の開閉制御は、車室温度若しく
は吸入系の圧力等冷房負荷の検出指令及び図示しない圧
縮機駆動用クラッチの大切動作に従って行われる。In addition, a cylindrical spring receiver 46 is fitted into a space 47 beyond the shaft end of the drive shaft 3 in the shaft hole 2R, and is held by the rear valve plate 7R. A spring 48 is interposed between the discharge valve 19R and the discharge valve 19R, which urges the discharge valve 19R to always be in a floating, non-operating state. The circumferential surface and bottom surface of the spring receiver 46 include its cylindrical hole and the hollow space 4.
A suitable number of small holes 46a are provided through the rear cylinder block 1R to communicate with the swash plate chamber 5, and a communication passage 49 is formed in the wall between the bores of the rear cylinder block 1R. In the non-operating state where the discharge valve 19R is held in the floating position by these cylinder holes, small holes 45a and communication passage 49, the discharge chamber 15R is communicated with the swash plate seedling 5, but when the discharge valve 19R is normally closed. In the operating state, the communication is cut off. A pressure guiding hole 50 for guiding pressure to the back surface of the spool 42 is bored in the center of the rear housing 12R, and this pressure guiding hole 50 is connected to the first electromagnetic valve 5.
It is connected to the discharge chamber 15F by a high-pressure pipe 52 including a second ffim valve 53, and connected to the suction chamber 14R by a low-pressure pipe 54 including a second ffim valve 53. Opening/closing control of the first solenoid valve 51 and the second solenoid valve 53 is performed in accordance with a cooling load detection command such as the cabin temperature or suction system pressure, and an important operation of a compressor drive clutch (not shown).
なお、55は上記吐出通路23Rと吐出フランジ24と
をつなぐ連通路56に該連通路56を開閉すべく配置さ
れた逆止弁であって、上記吐出弁19Rの浮上開放時、
吐出通路23Fを軽で吐出フランジ24に至った高圧冷
媒が、上記連通路56、吐出通路23Rを通って低圧の
状態にある吐出室15Rへと逆流するのを防止するもの
である。Note that 55 is a check valve disposed in a communication passage 56 connecting the discharge passage 23R and the discharge flange 24 to open and close the communication passage 56, and when the discharge valve 19R is floated and opened,
This prevents the high-pressure refrigerant that has passed through the discharge passage 23F and reached the discharge flange 24 from flowing back through the communication passage 56 and the discharge passage 23R to the discharge chamber 15R, which is in a low-pressure state.
上記のように構成した可変各組圧縮機についてその作用
を説明する。The operation of each variable compressor set constructed as described above will be explained.
まず圧縮機の停止時には機内の圧力はバランスしており
、絞り弁33は全開、スプール弁29は全開、第1電磁
弁51は閉、第2電磁弁53は開、吐出弁19Rは浮上
開放の非作動状態にある。この状態からクラッチがON
されると、後に詳述するように、後部シリンダボア4R
に係る圧縮機能は完全に無能化されており、図示のごと
き10気筒圧縮機では、前部シリンダボア4Fのみが有
効に機能して5気筒50%容量の低容量運転で起動され
、立上りトルクの軽減すなわち起動ショックが巧みに緩
和される。そして上記クラッチのON信号に基づいたタ
イマ指令により僅少時間経過後第1電磁弁51は開、第
2電磁弁53は閉に切換ねる。First, when the compressor is stopped, the pressure inside the machine is balanced, the throttle valve 33 is fully open, the spool valve 29 is fully open, the first solenoid valve 51 is closed, the second solenoid valve 53 is open, and the discharge valve 19R is floating open. Inactive. From this state, the clutch is turned ON.
Then, as detailed later, the rear cylinder bore 4R
The compression function related to this is completely disabled, and in the 10-cylinder compressor shown in the figure, only the front cylinder bore 4F functions effectively and is activated at a low capacity operation of 5 cylinders at 50% capacity, reducing the start-up torque. In other words, the startup shock is skillfully alleviated. Then, after a short period of time, the first solenoid valve 51 is opened and the second solenoid valve 53 is closed by a timer command based on the ON signal of the clutch.
圧縮機の起動初期のように車室温度が高くて冷房負荷が
高い場合には、熱交換を行う蒸発器の温度が上昇するた
め、冷媒の飽和圧力が上昇し、図示しない吸入管路とと
もに吸入通路20′内の圧力の上昇にともなって、圧力
室35の圧力が高くなり、この結果大気室38内圧力と
ばね36の弾力との合力に抗して、絞り弁33が吸入通
路20′の弁孔37を開放する方向に移動されている。When the cabin temperature is high and the cooling load is high, such as when the compressor starts up, the temperature of the evaporator that performs heat exchange increases, so the saturation pressure of the refrigerant increases, and the refrigerant is sucked into the suction pipe (not shown). As the pressure in the passage 20' increases, the pressure in the pressure chamber 35 increases, and as a result, the throttle valve 33 opens the suction passage 20' against the resultant force of the pressure in the atmospheric chamber 38 and the elasticity of the spring 36. The valve hole 37 is moved in a direction to open it.
したがって、前記弁孔37の、ヒ下流域における冷媒の
圧力は変らず吸入室14F、14Rと斜板室5とは同圧
となされている。モして軸孔2F内に嵌装されたスプー
ル弁29の外端側には導圧孔30を介して吸入室14F
と連通した圧力作用室26の圧力が作用し、一方向内端
側には逃し孔28を介して上記吸入室14Fと同圧の斜
板室5の圧力が便用ツるため、スプール弁29の両W4
初方向に働く流体圧は均衡し、同スプール弁2つはばね
31の弾力によってバイパス孔27を閉じる方向に押動
せしめられている。このように前部シリンダボア4Fに
関する正規の圧縮作用により、吐出圧力が高圧管52を
経てスプール42の背面に作用すると、吐出弁19Rは
ばね48の弾力に抗して正規の閉鎖位置に変位つまりバ
ルブプレート7Rに押し付けられ、各吐出口18Rの閉
鎖及び吐出室15Rと上記筒孔との連通を遮断するため
、後部シリンダボア4Rに関しても正規の圧縮作用が開
始され、逆止弁55は吐出通路23Rを経由する吐出冷
媒の圧力により押し上げられて連通路56を開放し、か
くして圧縮機は100%全容量運転へ移行する。なお、
これまで説明した起動直後の50%容量運転及びその後
の100%全容量運転は1表1に掲げたケース1及び2
に該当する。Therefore, the pressure of the refrigerant in the downstream region of the valve hole 37 does not change, and the suction chambers 14F, 14R and the swash plate chamber 5 have the same pressure. The outer end side of the spool valve 29 fitted in the shaft hole 2F is connected to the suction chamber 14F through a pressure guiding hole 30.
The pressure in the pressure chamber 26 communicating with the spool valve 29 acts on the pressure chamber 26, and the pressure in the swash plate chamber 5, which has the same pressure as the suction chamber 14F, is released through the relief hole 28 on the inner end side in one direction. Both W4
The fluid pressures acting in the initial direction are balanced, and the two spool valves are pushed in the direction of closing the bypass hole 27 by the elasticity of the spring 31. When the discharge pressure acts on the back surface of the spool 42 through the high pressure pipe 52 due to the normal compression action on the front cylinder bore 4F, the discharge valve 19R resists the elasticity of the spring 48 and moves to the normal closed position, that is, the valve Pressed against the plate 7R, in order to close each discharge port 18R and cut off communication between the discharge chamber 15R and the cylinder hole, a normal compression action is also started for the rear cylinder bore 4R, and the check valve 55 closes the discharge passage 23R. The pressure of the refrigerant discharged through the refrigerant is pushed up to open the communication passage 56, and thus the compressor shifts to 100% full capacity operation. In addition,
The 50% capacity operation immediately after startup and the subsequent 100% full capacity operation explained so far are cases 1 and 2 listed in Table 1.
Applies to.
その後市空内の温度が低下して冷房負荷が低下してくる
と蒸発器の温度が低下し始め飽和圧力も低下する。この
飽和圧力の低下と同時に吸入通路20′(吸入管路)の
圧力が低下し、圧力室35の圧力も低くなる。そして該
圧力室35の圧力が所定値を越えて低下すると、大気室
38内圧力とばね36の弾力との合力に対する上記圧力
室35の圧力の力関係が逆転して、絞り弁33は上記弁
孔37を閉じる方向に移動し、上記力関係の均衡した状
態で絞り弁33による流量制限の開度が維持される。す
なわち圧縮容量は適切に低減され、同時に上記弁孔37
上流域にある吸入通路20″(吸入管路)の圧力が所定
値を越えて低下するのが抑止される。After that, when the temperature in the city air decreases and the cooling load decreases, the evaporator temperature begins to decrease and the saturation pressure also decreases. At the same time as this saturation pressure decreases, the pressure in the suction passage 20' (suction pipe line) decreases, and the pressure in the pressure chamber 35 also decreases. When the pressure in the pressure chamber 35 decreases beyond a predetermined value, the force relationship of the pressure in the pressure chamber 35 with respect to the resultant force of the internal pressure in the atmospheric chamber 38 and the elasticity of the spring 36 is reversed, and the throttle valve 33 It moves in the direction of closing the hole 37, and the opening degree of flow rate restriction by the throttle valve 33 is maintained in a state where the above-mentioned force relationship is balanced. That is, the compression capacity is appropriately reduced, and at the same time the valve hole 37
The pressure in the suction passage 20'' (suction pipe line) in the upstream region is prevented from decreasing beyond a predetermined value.
このような圧力室35の圧力低下にともなう絞り弁33
による流量制限が進むと、吸入通路20Fを経て吸入室
14Fに導入される冷媒は一段と少量となり、やがて吸
入ff14F及び圧力作用室26の圧力は所定値を越え
て低下する。一方、該絞り弁33による流量υJilt
によって所定の圧力が保持されている上記弁孔37より
も上流域にある吸入通路20”の圧力は、そのまま給圧
通路39によって斜板室5へと導かれているため、スプ
ール弁29の外端側に作用する前記圧力作用室26の圧
力とばね31の弾力との合力は逃し孔28を介して同ス
プール弁29の内端側に作用する上記斜板室5の圧力に
屈してスプール弁29の移動を許し、バイパス孔27は
開放される。したがって圧縮行程中の圧縮室8F内の冷
媒はピストン6のヘッドがバイパス孔27を閏じるまで
の間、同バイパス孔27から軸孔2F及び他のバイパス
孔27を経て吸入行程中の圧縮室8Fや、上記逃し孔2
8を経て斜板室5へと流れるので、その間の圧縮行程は
無能化され、有効気li!数を減することなく、より圧
縮容量が低下された低容量運転へと移行する。As the pressure in the pressure chamber 35 decreases, the throttle valve 33
As the flow rate restriction progresses, the amount of refrigerant introduced into the suction chamber 14F via the suction passage 20F becomes even smaller, and eventually the pressures in the suction ff14F and the pressure action chamber 26 decrease beyond a predetermined value. On the other hand, the flow rate υJilt due to the throttle valve 33
The pressure in the suction passage 20'' located upstream of the valve hole 37, where a predetermined pressure is maintained by The resultant force of the pressure in the pressure acting chamber 26 acting on the side and the elasticity of the spring 31 yields to the pressure in the swash plate chamber 5 acting on the inner end side of the spool valve 29 through the relief hole 28, and the spool valve 29 The refrigerant in the compression chamber 8F during the compression stroke flows from the bypass hole 27 to the shaft hole 2F and other places until the head of the piston 6 touches the bypass hole 27. The compression chamber 8F during the suction stroke and the above-mentioned relief hole 2
8 to the swash plate chamber 5, the compression stroke during that time is disabled, and the effective air is reduced. Shift to low capacity operation with lower compression capacity without reducing the number.
なお、圧縮!8Fの最大容積に対するビスI−ン6のヘ
ッドがバイパス孔27を閉じた際の同容積比を1/2に
設定すれば、表1のケース3に掲げるようにこの場合の
圧縮機は75%容量運転となる。In addition, compression! If the ratio of the same volume when the head of the screw I-ne 6 closes the bypass hole 27 to the maximum volume of the 8F is set to 1/2, the compressor in this case has a capacity of 75% as shown in case 3 of Table 1. It becomes capacity operation.
このような75%容缶運転の継続によっても、なお冷房
負荷が低下した場合は、車室温度等の検出指令信号によ
って第1電磁弁51が閏、第2電磁弁53が開に切換え
られるため、スプール42の背面には低圧の吸入圧力が
作用し、吐出弁19Rはばね48.の弾力によってバル
ブプレート7Rから浮上される結果、吐出口18Rは開
放され、吐出室15Rは上記筒孔及び連絡通路49を通
じて斜板室5と連絡される。したがって上述した起動時
と同様に後部シリンダボア4Rに関する圧縮機能は完全
に無能化される。なお、このとき逆止弁55は前部シリ
ンダ4Fに関する吐出冷媒の圧力にJ:りて連通路56
を閉鎖し、同吐出冷媒が吐出通路23Rから吐出’!!
1.5 Rへと逆流するのを防止づる。Even if such 75% capacity operation continues, if the cooling load still decreases, the first solenoid valve 51 is switched to leap and the second solenoid valve 53 is switched to open based on the detection command signal of the vehicle interior temperature, etc. , low suction pressure acts on the back surface of the spool 42, and the discharge valve 19R is operated by the spring 48. As a result, the discharge port 18R is opened and the discharge chamber 15R is communicated with the swash plate chamber 5 through the cylindrical hole and the communication passage 49. Therefore, similarly to the startup described above, the compression function regarding the rear cylinder bore 4R is completely disabled. Note that at this time, the check valve 55 opens the communication passage 56 due to the pressure of the discharged refrigerant regarding the front cylinder 4F.
is closed, and the discharged refrigerant is discharged from the discharge passage 23R'! !
1.5 Prevents backflow to R.
このように後部シリンダボア4Rに関する圧縮機能が無
能化されて圧縮容量が一段と低下すると、吸入管路の圧
力上昇にともなって圧力室35の圧力も上昇し、絞り弁
33は開度を増す方向に変位してバランスすることにな
るので、吸入通路20Fから吸入室14「を経て圧力作
用室26に至る冷媒の流口制限は緩和されて圧力が上昇
し、該圧力とばね31の弾力との合力は、斜板室5の圧
力に打勝ってスプール弁29Fを摺動させてバイパス孔
27を閉鎖する。すなわち前部シリンダボア4Fに関す
る圧縮機能は回復されて、表1のケース4に掲げる5o
%容伍運転に移行する。When the compression function related to the rear cylinder bore 4R is disabled and the compression capacity further decreases, the pressure in the pressure chamber 35 increases as the pressure in the suction pipe increases, and the throttle valve 33 is displaced in the direction of increasing the opening degree. As a result, the flow restriction of the refrigerant from the suction passage 20F to the pressure action chamber 26 via the suction chamber 14' is relaxed and the pressure increases, and the resultant force of this pressure and the elasticity of the spring 31 is , overcomes the pressure in the swash plate chamber 5, slides the spool valve 29F, and closes the bypass hole 27. That is, the compression function for the front cylinder bore 4F is restored, and the compression function of the front cylinder bore 4F is restored.
Shift to % capacity operation.
そして上記50%容患運転によってもさらに冷房負荷が
低下した場合は、既述のように絞り弁33の開度が減じ
て再び流最制限を厳しくするので、その上下流域におけ
る冷媒の圧力差が大きくなるにつれてスプール弁29は
押動され、やがてバイパス孔27は再度開放される。か
くして圧縮機は表1のケース5に掲げる25%容聞各組
へと移行することになるが、それ以上の冷房負荷の低下
に対しても、絞り弁33が一層間度を減じて吸入管路の
圧力を確保し表1のケース6に掲げるように過冷房の防
止に対処する。If the cooling load further decreases due to the above-mentioned 50% capacity operation, the opening degree of the throttle valve 33 is reduced and the maximum flow restriction is tightened again as described above, so that the pressure difference between the refrigerant in the upstream and downstream areas is reduced. As the size increases, the spool valve 29 is pushed, and the bypass hole 27 is eventually opened again. In this way, the compressor will shift to each set of 25% capacity listed in Case 5 of Table 1, but even if the cooling load decreases further, the throttle valve 33 will reduce the temperature even further and the suction pipe will be closed. Ensure the air pressure and take measures to prevent overcooling as listed in Case 6 of Table 1.
なお、表1に参考的に記載した絞り弁上下流域圧力に対
づるスプール弁29の開度とばね31の特性との関係を
付記すれば、絞り弁上流域(斜板室)圧力と絞り弁下流
域(吸入室)圧力との差圧(ka/am2G)が例えば
0.65以下のときはスプール弁全閉、1.1以上のと
きはスプール弁全開となるようばね特性が調整されてい
る。また、表1のケース2及び3のように吐出弁19R
が正規の作動状態にあっても、クラッチがOFFされて
圧縮機が停止されると、第1電磁弁51は閉、第2電磁
弁53は開に切換わって次の起動に備えるものである。In addition, if we add the relationship between the opening degree of the spool valve 29 and the characteristics of the spring 31 with respect to the pressure in the upstream and downstream areas of the throttle valve, which is listed for reference in Table 1, the relationship between the pressure in the upstream area of the throttle valve (swash plate chamber) and the pressure in the downstream area of the throttle valve is The spring characteristics are adjusted so that when the differential pressure (ka/am2G) with respect to the basin (suction chamber) pressure is, for example, 0.65 or less, the spool valve is fully closed, and when it is 1.1 or more, the spool valve is fully open. In addition, as in cases 2 and 3 of Table 1, the discharge valve 19R
Even if the compressor is in a normal operating state, when the clutch is turned off and the compressor is stopped, the first solenoid valve 51 is closed and the second solenoid valve 53 is opened to prepare for the next startup. .
(以下余白)
表1
次に[述しlc後部シリンダボア4Rに係る圧縮i能を
選択的に無能化する弁制御手段として、吸入弁開yi機
構を採用した第2の実施例を第5図〜第8図に基づいて
説明する。(The following is a blank space) Table 1 Next, a second embodiment in which an intake valve opening mechanism is adopted as a valve control means for selectively disabling the compression capacity related to the LC rear cylinder bore 4R is shown in Figures 5 to 5. This will be explained based on FIG.
図において、両ハウジング12F、12R内にJ3ける
吸入室14F、14R及び吐出室151:、151での
配置は、上記第1実施例とは逆に内周側が吸入室14F
、14R1外周側が吐出室15F、15rくとなされ、
圧力作用室26は即吸入空14Fとして構成されている
。上記吐出’J15F、15R内には個々の吐出018
1:、18Rと対向して独立した吐出弁19F−,19
R−及び押押え40−141′がバルブプレート7F、
7Rの外端面に締着されており、同バルブプレート7F
、7Rの内端面には、各吸入口16F、16Rと対向し
て舌片状の弁部分170F、170Rを有して一体成形
された吸入弁17F′、17R′が挟着されている。そ
して後部ハウジング12R内の有底凹所44に嵌合され
た上記スプール42の先端部には、押押動板57がボル
ト43によって締着されており、該押押動板57は各吸
入口16R内に進入して上記弁部分170Rを機械的に
押圧拡開しうる放射状の押動片57aを有している。In the figure, the arrangement of the suction chambers 14F, 14R and the discharge chambers 151:, 151 in both housings 12F, 12R is that, contrary to the first embodiment, the inner peripheral side is the suction chamber 14F.
, 14R1 outer circumferential side is located near discharge chamber 15F, 15r,
The pressure action chamber 26 is configured as a quick suction air 14F. There are individual discharges 018 in the above discharge 'J15F and 15R.
1: Independent discharge valve 19F-, 19 facing 18R
R- and presser foot 40-141' are valve plate 7F,
It is fastened to the outer end surface of valve plate 7R, and the same valve plate 7F.
, 7R are sandwiched with integrally molded suction valves 17F', 17R' having tongue-shaped valve portions 170F, 170R and facing the respective suction ports 16F, 16R. A pushing plate 57 is fastened with bolts 43 to the tip of the spool 42 fitted into the bottomed recess 44 in the rear housing 12R, and the pushing plate 57 is attached to each suction port. It has a radial pushing piece 57a that can enter into the valve portion 16R and mechanically press and open the valve portion 170R.
該押動片57aはとくに第7図及び第8図に明示されて
いるように、吸入弁開放機構が作動して上記吸入弁17
R′の弁部分1.70 Rを拡開している際、上死点に
達するピストン6との干渉をそれ自身の弾性変形によっ
て吸収できるよう構成されている。なお、本実施例の機
能上ばね受46′が板状に形成されているほか、上記導
圧孔3o、逆止弁55及び連絡通路49が消去されたこ
と以外、その他の構成については第1実施例と異なると
ころはないので詳しい説明は省略する。As shown in FIGS. 7 and 8, the pushing piece 57a opens the suction valve 17 when the suction valve opening mechanism operates.
The valve portion 1.70 of R' is configured so that interference with the piston 6 reaching the top dead center can be absorbed by its own elastic deformation when the valve portion R is being expanded. Note that, in terms of the functionality of this embodiment, the spring receiver 46' is formed in a plate shape, and the pressure guiding hole 3o, check valve 55, and communication passage 49 are omitted, and other configurations are the same as in the first embodiment. Since there is no difference from the embodiment, detailed explanation will be omitted.
したがって本実施例では、吸入弁開放機構を作動させる
電磁弁のl1dJ御形態が第1実施例とは全く逆であっ
て、第1電磁弁51が開いてスプール42の背面に高圧
の吐出圧力が作用すると、ばね48の弾力に抗して介挿
動板57が前進し、その押動片57aが吸入弁17R′
の各弁部分170Rを強制的に押圧して吸入口16Rを
開放するので、吸入弁17R′は非作動状態に保持され
、圧縮室8Rは単に吸入室14Rとの間に呼吸作用を繰
返して圧縮機能は完全に無能化される。Therefore, in this embodiment, the l1dJ control mode of the solenoid valve that operates the suction valve opening mechanism is completely opposite to that of the first embodiment, and the first solenoid valve 51 opens and high discharge pressure is applied to the back surface of the spool 42. When this action is applied, the interposed moving plate 57 moves forward against the elasticity of the spring 48, and its pushing piece 57a pushes against the suction valve 17R'.
Since the suction port 16R is opened by forcibly pressing each valve portion 170R, the suction valve 17R' is kept in an inoperative state, and the compression chamber 8R is simply compressed by repeating the breathing action between it and the suction chamber 14R. The function is completely disabled.
そして第1電磁弁51が閉じ、第2N磁弁53が聞かれ
ると、スプール42の背面には低圧の吸入圧力が作用す
るため、ばね48の弾力によって介挿動板57はスプー
ル42とともに後退し、強制力を解かれた吸入弁17R
′は正規の作動状態に復帰する。bのである。なお、本
実施例では吐出v15Rを低圧側と連通させる必要がな
く、したがって前部シリンダボア4Fに係る吐出冷媒の
逆流もないので、上記した導圧孔30、逆止弁55及び
連絡通路4つを省略できるという特長がある。When the first solenoid valve 51 closes and the second N solenoid valve 53 is opened, low suction pressure acts on the back of the spool 42, so the insertion plate 57 retreats together with the spool 42 due to the elasticity of the spring 48. , suction valve 17R released from forced force
' returns to normal operating condition. It is b. In addition, in this embodiment, there is no need to communicate the discharge v15R with the low pressure side, and therefore there is no backflow of the discharged refrigerant related to the front cylinder bore 4F. It has the advantage that it can be omitted.
なお、以上は絞り弁手段を吸入7ランジ21部分に設け
た構成について説明したが、第9図に示すように、これ
を前部ハウジング12Fの内部に創設するような構成と
することもできる。すなわちベローズ134は前部ハウ
ジング12Fの内壁に装着され、その先端には吸入通路
20Fの一部を成すバルブプレーh 7 Fの間口部1
37と対向してこれをrII鎮可能な板状絞り弁133
が取付けられ、ベローズ134の内部は通孔132aに
よって外気と連通ずる大気室138となされるとともに
、常には上記開口部137を閉gIツる向きに絞り弁1
33を付勢するばね136が介装されている。なお、こ
の例では、絞り弁133の上流域にある吸入通路20F
が直接斜板室5と連通されて、前記眼圧通路39が消去
されている点で上述の実施例と相違するが、絞り弁手段
の作用については同実施例と実質的に異なるところがな
いので詳しい説明は省略する。Although the above description has been made of a configuration in which the throttle valve means is provided in the suction 7 flange 21 portion, it is also possible to adopt a configuration in which the throttle valve means is provided inside the front housing 12F, as shown in FIG. That is, the bellows 134 is attached to the inner wall of the front housing 12F, and the front end of the bellows 134 is connected to the frontage 1 of the valve plate h 7 F, which forms a part of the suction passage 20F.
A plate-like throttle valve 133 facing the 37 and capable of suppressing the rII
is attached, and the interior of the bellows 134 forms an atmospheric chamber 138 that communicates with the outside air through a through hole 132a, and the opening 137 is always closed and the throttle valve 1 is
A spring 136 is interposed to bias 33. In this example, the suction passage 20F located upstream of the throttle valve 133
It is different from the above-mentioned embodiment in that it directly communicates with the swash plate chamber 5 and the intraocular pressure passage 39 is eliminated, but there is no substantial difference in the function of the throttle valve means from the same embodiment, so a detailed explanation will be given. Explanation will be omitted.
続いて前記第1及び第2実施例における圧縮室8Fと斜
板室5とを連通可能としたバイパス通路に代えて、圧縮
室8Fと吸入室14Fとを連通可能なバイパス通路とな
した第3実施例を第10図に基づいて説明する。Next, a third embodiment is provided in which a bypass passage that allows communication between the compression chamber 8F and the suction chamber 14F is used instead of the bypass passage that allows communication between the compression chamber 8F and the swash plate chamber 5 in the first and second embodiments. An example will be explained based on FIG.
図において、前部ハウジング12F内における吸入室1
4F及び吐出室15の配置は、前記第2実施例と同様内
周側が吸入室14F1外周側が吐出室15Fとなされ、
圧力作用苗26は即吸入室14Fとして構成されている
。そしてスプール弁29−の周壁には前記バイパス孔2
7と圧力作用室26とを連通可能な連孔58が穿設され
、これにより第1実施例の逃し孔28に相当する構成は
、本実施例ではスプール弁29−を作動させる給圧孔2
8−とじてのみ作用している。なお、図から解るように
、ばね31′はスプール弁29′の内底面とハウジング
12Fの内壁面との間に介装されている。In the figure, the suction chamber 1 in the front housing 12F
The arrangement of the 4F and the discharge chamber 15 is the same as in the second embodiment, with the suction chamber 14F on the inner circumference side and the discharge chamber 15F on the outer circumference side.
The pressure-acting seedling 26 is configured as an immediate suction chamber 14F. The bypass hole 2 is provided in the peripheral wall of the spool valve 29-.
7 and the pressure action chamber 26 are bored, so that the structure corresponding to the relief hole 28 in the first embodiment is the pressure supply hole 2 that operates the spool valve 29- in this embodiment.
8- Only the closure is working. As can be seen from the figure, the spring 31' is interposed between the inner bottom surface of the spool valve 29' and the inner wall surface of the housing 12F.
従って、本実施例では吸入室14F及び圧力作用室26
の圧力が所定値を越えて低下し斜板室5の圧力との差圧
によってスプール弁29′が移動された際、圧縮室8F
はバイパス孔27と符合した連孔58を介して圧力作用
室26(吸入室14F)との間に呼吸作用を生じ、記述
と同様な低容量運転に移行するものである。Therefore, in this embodiment, the suction chamber 14F and the pressure action chamber 26
When the pressure in the compression chamber 8F drops beyond a predetermined value and the spool valve 29' is moved due to the differential pressure with the pressure in the swash plate chamber 5,
A breathing action is produced between the pressure chamber 26 (suction chamber 14F) and the pressure action chamber 26 (suction chamber 14F) through the continuous hole 58 that coincides with the bypass hole 27, and the operation shifts to a low capacity operation similar to that described above.
[発明の効果]
以上詳述したように、本発明になる可変容量圧縮機は、
次に列記する優れた効果を奏する。[Effects of the Invention] As detailed above, the variable displacement compressor according to the present invention has the following features:
It produces the following excellent effects.
(1)吸入室への吸入冷媒の導入m f II rnす
る絞り弁手段と、バイパス通路を開閉して前部シリンダ
ボアに係る圧縮行程の一部を無能化するスプール弁手段
と、後部シリンダボアに係る圧縮機能を選択的に無能化
する弁制御手段との共働により、圧縮容は可変域を格段
と広げることができる。(1) Throttle valve means for introducing suction refrigerant into the suction chamber, spool valve means for opening and closing the bypass passage to disable part of the compression stroke for the front cylinder bore, and By cooperating with a valve control means that selectively disables the compression function, the variable range of the compression capacity can be greatly expanded.
(2)吸入圧力の変化それ自体によって絞り弁手段及び
スプール弁手段を作動させるので、圧縮機の温度変動に
捕られれることなく、冷の負荷と的確に相関した可変容
量制御を行うことができる。(2) Since the throttle valve means and spool valve means are actuated by changes in suction pressure itself, variable capacity control can be performed that accurately correlates with the cold load without being affected by temperature fluctuations of the compressor. .
(3)絞り弁手段がスプール弁手段の開閉all ta
llをも重任するので、構造のl!J′a化が達成でき
る。(3) The throttle valve means opens and closes the spool valve means.
Since ll will also be appointed, the l of the structure! J′a can be achieved.
(4)吸入圧力の変化に基づく制御は、冷房負荷ととも
に圧縮機の回転数とも相関するので、車両の急加速にも
良好に反応してエンジン負荷の軽減に貢献する。(4) Control based on changes in suction pressure is correlated with the rotation speed of the compressor as well as the cooling load, so it responds well to sudden acceleration of the vehicle and contributes to reducing the engine load.
(5)圧縮機の起動時に吐出弁又は吸入弁開tI1m構
は開放されて、後部シリンダボアに係る圧縮機能は無能
化されているため、起動ショックを十分緩和することが
できる。(5) When the compressor is started, the discharge valve or suction valve opening tI1m mechanism is opened and the compression function related to the rear cylinder bore is disabled, so that the start-up shock can be sufficiently alleviated.
(6)特に第3実施例によれば、低容量運転時に圧縮室
は、バイパス通路を介してより低圧の吸入室との間に呼
吸作用を生ずることになるので、圧縮効率が向上する。(6) Particularly, according to the third embodiment, during low capacity operation, the compression chamber creates a breathing action between the compression chamber and the lower pressure suction chamber via the bypass passage, so that compression efficiency is improved.
第1図は本発明の第1実施例を示す可変容量圧縮機で第
2図のニーI線断面に相当する断面正面図。第2図は第
1図のff−ff線断面側面図、第3図は第2図のI[
[−111線部分断面図、第4図は第1図のIV −T
V線部分断面図、第5図は本発明の第2実施例を示す可
変容量圧縮機で第6図のv−v線断面に相当する断面正
面図、第6図は第5図のVl−Vl線断面側面図、第7
図、第8図は吸入弁開放機構の作動の詳細を示す部分断
面図、第9図は絞り弁手段の変形例を示す部分断面図、
第10図G、を同じく本発明の第3実施例を示す可変容
量圧縮機の断面正面図、第11因は従来の可変容量圧縮
機を示す断面正面図である。
4F14R・・・シリンダボア
5・・・斜板室 6・・・ビス1−ン8F、
8R・・・圧縮室
12F、12R・・・ハウジング
14F、14R・・・吸入室
15F、15R・・・吐出室
17F、17R・・・吸入弁
19F、19R・・・吐出弁
20F、2OR,20−・・・吸入通路21・・・吸入
7ランジ
23F、23R・・・吐出通路
、26・・・圧力作用室
27・・・バイパス孔
28・・・逃し孔
29・・・スプール弁
30・・・導圧孔
31・・・ばね
33.133・・・絞り弁
34.134・・・ベローズ
35・・・圧力室 36.136・・・ばね37
・・・弁孔 38.138・・・大気空39・
・・給圧通路 42・・・スプール46・・・ばね
受け 48・・・ばね49・・・連絡通路 5
1・・・第1電磁弁53・・・第2電磁弁 55・・
・逆止弁57・・・押押動板FIG. 1 is a sectional front view of a variable capacity compressor showing a first embodiment of the present invention, corresponding to the knee I line section in FIG. FIG. 2 is a cross-sectional side view taken along the line ff-ff in FIG. 1, and FIG. 3 is a side view of I[
[-111 line partial sectional view, FIG. 4 is IV-T in FIG.
5 is a cross-sectional front view of a variable capacity compressor showing a second embodiment of the present invention, corresponding to the v-v line section in FIG. 6; FIG. 6 is a partial sectional view taken along line Vl- Vl line cross-sectional side view, No. 7
8 is a partial sectional view showing details of the operation of the suction valve opening mechanism, and FIG. 9 is a partial sectional view showing a modification of the throttle valve means.
FIG. 10G is a cross-sectional front view of a variable displacement compressor according to a third embodiment of the present invention, and FIG. 11 is a cross-sectional front view of a conventional variable displacement compressor. 4F14R... Cylinder bore 5... Swash plate chamber 6... Screw 1-8F,
8R...Compression chambers 12F, 12R...Housing 14F, 14R...Suction chambers 15F, 15R...Discharge chambers 17F, 17R...Suction valves 19F, 19R...Discharge valves 20F, 2OR, 20 - Suction passage 21 Suction 7 lunge 23F, 23R Discharge passage 26 Pressure action chamber 27 Bypass hole 28 Relief hole 29 Spool valve 30 - Pressure guiding hole 31... Spring 33.133... Throttle valve 34.134... Bellows 35... Pressure chamber 36.136... Spring 37
... Valve hole 38.138 ... Atmospheric air 39.
...Pressure passage 42...Spool 46...Spring receiver 48...Spring 49...Communication passage 5
1...First solenoid valve 53...Second solenoid valve 55...
・Check valve 57...push plate
Claims (3)
する両頭式ピストンと、上記前後のシリンダボアにそれ
ぞれ対向して配設された吸入室及び吐出室と、上記ピス
トン駆動用斜板を収納した上記吸入室及び吐出室とは独
立して区画形成された斜板室と、帰還冷媒を上記吸入室
へ案内する吸入通路と、前部のシリンダボア内の圧縮室
と斜板室又は吸入室とを連通可能としたバイパス通路と
、斜板室と吸入室との圧力差により上記バイパス通路を
開閉するスプール弁手段と、上記吸入通路中に組み込ま
れ上記帰還冷媒の圧力に応じてその流量を制御する絞り
弁手段と、該絞り弁手段の上流域の上記吸入通路と上記
斜板室とを連通する吸圧通路と、後部シリンダボアに係
る圧縮機能を選択的に無能化する弁制御手段とを包含す
る可変容量圧縮機。(1) A double-headed piston that slides in a plurality of pairs of cylinder bores that are aligned in the front and rear, a suction chamber and a discharge chamber that are arranged to face the front and rear cylinder bores, respectively, and a swash plate for driving the piston are accommodated. A swash plate chamber that is partitioned independently from the suction chamber and discharge chamber, a suction passage that guides the return refrigerant to the suction chamber, and a compression chamber in the front cylinder bore can communicate with the swash plate chamber or the suction chamber. spool valve means that opens and closes the bypass passage based on the pressure difference between the swash plate chamber and the suction chamber; and a throttle valve means that is incorporated in the suction passage and controls the flow rate of the return refrigerant according to the pressure of the return refrigerant. a variable displacement compressor comprising: a suction passage communicating the suction passage in an upstream region of the throttle valve means with the swash plate chamber; and a valve control means for selectively disabling the compression function related to the rear cylinder bore. .
く高低両圧力の選択的な負荷によって、吐出弁を非作動
状態に浮上可能な吐出弁開放機構である特許請求の範囲
第1項記載の圧縮機。(2) The valve control means is a discharge valve opening mechanism that can levitate the discharge valve to a non-operating state by selectively applying both high and low pressure based on a cooling load detection command. compressor.
く高低両圧力の選択的な負荷によって、吸入弁を非作動
状態に浮上可能な吸入弁開放機構である特許請求の範囲
第1項記載の圧縮機。(3) The valve control means is a suction valve opening mechanism that can levitate the suction valve to a non-operating state by selectively applying both high and low pressure based on a cooling load detection command. compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61079881A JPS62237086A (en) | 1986-04-07 | 1986-04-07 | Variable capacity compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61079881A JPS62237086A (en) | 1986-04-07 | 1986-04-07 | Variable capacity compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62237086A true JPS62237086A (en) | 1987-10-17 |
Family
ID=13702584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61079881A Pending JPS62237086A (en) | 1986-04-07 | 1986-04-07 | Variable capacity compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62237086A (en) |
-
1986
- 1986-04-07 JP JP61079881A patent/JPS62237086A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08189464A (en) | Variable displacement type compressor | |
JP2004092494A (en) | Gas compressor | |
JPS59113279A (en) | Variable capacity refrigerant compressor | |
JPS62237086A (en) | Variable capacity compressor | |
JPS6172889A (en) | Operating shock absorber in compressor | |
JP3924713B2 (en) | Control valve for variable displacement compressor | |
JPS62237087A (en) | Variable capacity compressor | |
JPH03134268A (en) | Variable displacement swash plate type compressor | |
JPH0429878B2 (en) | ||
JPS62243973A (en) | Variable displacement compressor | |
JPH09273483A (en) | Variable displacement type compressor | |
JPH0756259B2 (en) | Variable capacity mechanism of compressor | |
JP3544220B2 (en) | Variable stage swash plate compressor | |
US5944491A (en) | Piston-type compressor with improved shock absorption during start up | |
JPS62243972A (en) | Variable displacement compressor | |
JPS59115480A (en) | Compression volume variable mechanism for swash plate type compressor | |
JPS58195089A (en) | Variable displacement compressor | |
JPS6138175A (en) | Multi-cylinder variable capacity type refrigerant compressor | |
JPS59200084A (en) | Variable capacity mechanism for reciprocal compressor | |
JPH0437277Y2 (en) | ||
JPH0418152B2 (en) | ||
JPS62225781A (en) | Variable displacement mechanism for compressor | |
JPS6282282A (en) | Variable capacity compressor | |
JPS63143399A (en) | Variable displacement type vane compressor | |
JPH03194188A (en) | Scroll type compressor with variable capacity |