JPS58195089A - Variable displacement compressor - Google Patents

Variable displacement compressor

Info

Publication number
JPS58195089A
JPS58195089A JP57077969A JP7796982A JPS58195089A JP S58195089 A JPS58195089 A JP S58195089A JP 57077969 A JP57077969 A JP 57077969A JP 7796982 A JP7796982 A JP 7796982A JP S58195089 A JPS58195089 A JP S58195089A
Authority
JP
Japan
Prior art keywords
chamber
valve
pressure
discharge chamber
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077969A
Other languages
Japanese (ja)
Other versions
JPH048635B2 (en
Inventor
Koji Nonoyama
浩司 野々山
Masashi Takagi
正支 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57077969A priority Critical patent/JPS58195089A/en
Publication of JPS58195089A publication Critical patent/JPS58195089A/en
Publication of JPH048635B2 publication Critical patent/JPH048635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To change a delivery amount through selective operation of a single solenoid valve, by dividing a delivery chamber into two chambers, providing a check valve between the both chambers, opening and closing a valve part between one of the delivery chambers and a suction chamber, providing a plunger opening and closing the valve part through fluid pressure of the other one of the delivery chambers to the valve part and interposing the solenoid valve between the chambers. CONSTITUTION:If a piston 3 performs reciprocating motion in a cylinder 41, coolant gas flowing into the cylinder 41 from the first suction chamber 52 flows into a high pressure chamber 7 via the first delivery chamber 53 and is fed to a condenser. Here if an electric current is conducted to flow in a coil 91 of a sol- enoid valve 9, a communication hole 61b of the first valve plate 61 always communicates the cylinder 41 and the second delivery chamber 63, while the chamber 63, being communicated to a bearing hole 42 communicated to a low pressure chamber by a communication hole 61c, causes no compression of gas by the cylinder 41 to become an idle condition. Under this condition, only the coolant gas delivered to the chamber 53 is delivered to obtain 50% displacement operation.

Description

【発明の詳細な説明】 本発明は可変容量圧縮機に関し、特に本発明の圧縮機は
自動車空調装置の冷媒圧縮機に適している。一般に自動
車空調装置に用いる冷媒圧縮機は自動中走行用エンジン
の駆動力を受けて回転するため、自動中の高速運転時や
加速時等1ンジンが^回転となる運転状態では、圧縮機
は必要以上に高い回転数で回転していた。そのため空調
装置の冷房能力が過大となる。逆にエンジンのアイドリ
ング時には圧縮機がエンジン出力の30%程度を使用4
る等、エンジンに過大な負荷が加えられて、冷房能力の
制御が繁雑となるとともにエンジンの    −燃費が
悪化する。そこで圧縮機の吐出啼が変更できる圧縮機の
開発が進められている。本発明は吐出畢の容量変更を一
つの電磁弁で任意に切りかえ可能なコンパクトな圧縮機
を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable capacity compressor, and in particular, the compressor of the present invention is suitable for a refrigerant compressor of an automobile air conditioner. Generally, the refrigerant compressor used in automobile air conditioning systems rotates under the driving force of the engine for automatic driving, so the compressor is necessary in operating conditions where one engine rotates, such as during high-speed driving or acceleration during automatic driving. It was rotating at a higher RPM. Therefore, the cooling capacity of the air conditioner becomes excessive. Conversely, when the engine is idling, the compressor uses about 30% of the engine output4.
This puts an excessive load on the engine, making it difficult to control the cooling capacity and worsening the engine's fuel efficiency. Therefore, the development of compressors that can change the discharge sound of the compressor is underway. SUMMARY OF THE INVENTION An object of the present invention is to provide a compact compressor that can arbitrarily change the discharge volume using a single solenoid valve.

本発明はこの目的を達成するため、本発明の可変容量圧
縮機を次の構成としたものである。すなわち本発明の可
変容量圧縮機はシリンダからの吐出を受ける吐出室を第
1吐出室と第2吐出室に分け、第1吐出室と第2吐出室
とを第2吐出室から第1吐出室への流体のみ流入可能な
逆止弁を設けて連絡し、かつ、第2吐出室と低圧空間(
吸入室)の間を開閉する弁部を設けるとともに、顔部と
結合し内部に圧力室を有し、第1吐出室からの流体圧力
により該弁部を開閉するプランジャを設け、第1吐出室
と圧力室とを細い連通孔をもつ第1流体通路で結び、か
つ圧力室、と低圧空間を第2流体通路で結び、この第2
流体、通路を開閉する電磁弁を設けたものである。
In order to achieve this object, the present invention provides a variable capacity compressor of the present invention with the following configuration. That is, the variable capacity compressor of the present invention divides the discharge chamber that receives discharge from the cylinder into a first discharge chamber and a second discharge chamber, and separates the first discharge chamber and the second discharge chamber from the second discharge chamber to the first discharge chamber. A check valve is provided to allow only fluid to flow into the second discharge chamber, and the second discharge chamber and the low pressure space (
A valve part is provided to open and close between the first discharge chamber and a plunger which is connected to the face part and has a pressure chamber therein, and which opens and closes the valve part by fluid pressure from the first discharge chamber. and the pressure chamber are connected by a first fluid passage having a thin communication hole, and the pressure chamber and the low pressure space are connected by a second fluid passage.
It is equipped with a solenoid valve that opens and closes fluid and passages.

本発明の可変容量圧縮機では、電磁弁を閉じることによ
り第2流体通路を閉じ、第1吐出室の高圧流体を圧力室
に流入保持し、その圧力でプランジャを作動して低圧空
間と第2吐出室の間の弁部を閉じ、第2吐出室に流入す
る高圧流体を逆止弁を通して第1吐出室に送り、100
%容量運転を行う。
In the variable displacement compressor of the present invention, the second fluid passage is closed by closing the solenoid valve, the high pressure fluid in the first discharge chamber is kept flowing into the pressure chamber, and the plunger is actuated by the pressure, so that the low pressure space and the second fluid passage are closed. The valve part between the discharge chambers is closed, and the high pressure fluid flowing into the second discharge chamber is sent to the first discharge chamber through the check valve.
Perform % capacity operation.

一方、吐出容量がすくなくてよい場合には、電磁弁を開
いて圧力と低圧空間を結ぶ第2流体通路を開き、圧力室
の高圧流体を第2流体通路を通して低圧空間に流出させ
、圧力室の圧力の低下によりプランジャを作動して弁部
を開き、第2吐出室と低圧空間を連通して、実質的に第
2吐出室に吐出するシリンダの作用を空転させ第1吐出
室に吐出する高圧ガスの吐出量のみの低容量で運転を行
う。
On the other hand, if the discharge capacity does not need to be small, the solenoid valve is opened to open the second fluid passage connecting the pressure and low pressure spaces, and the high pressure fluid in the pressure chamber flows out into the low pressure space through the second fluid passage. The plunger is actuated by the drop in pressure to open the valve part, communicate the second discharge chamber with the low pressure space, and substantially idle the action of the cylinder to discharge the high pressure to the first discharge chamber. Operate at a low capacity of gas discharge only.

なお、この低容量運転で第1吐出室と圧力室とを結ぶ第
1流体通路が連通しでおり、この第1流体通路を通して
高圧流体が圧力室に流入するが、第1流体通路には細い
連通孔をもっため、この細い連通孔の流入厳抗のため流
入する高圧流体の量は第2流体通路より圧力室から低圧
空間へ流失する流体に比較して少ない。このため、初め
圧力室の流体圧力が高くともしだいに圧力室の圧力は低
くなり、プランジャが作動する、低容量運転時に第1吐
出室の高圧流体の一部は第1流体通路→高圧室→第2流
体通路→低圧空間と通って失なわれるが、もともと容量
を少くしたい運転状態であり、このときの高圧流体の流
出は問題がない。100%運転時には第2流体通路は電
磁弁で閉じられているため、第1吐出室の高圧流体が圧
力室を満たせば、それ以後第1吐出室から高圧流体の流
失はなく、第1吐出室、第2吐出室に吐出される高圧流
体は100%利用される。
Note that during this low capacity operation, the first fluid passage connecting the first discharge chamber and the pressure chamber is in communication, and high-pressure fluid flows into the pressure chamber through this first fluid passage. Since the communication hole is provided, the amount of high-pressure fluid that flows into the second fluid passage is smaller than the amount of fluid that flows out from the pressure chamber to the low-pressure space through the second fluid passage because the inflow of the narrow communication hole is strictly restricted. For this reason, even if the fluid pressure in the pressure chamber is initially high, the pressure in the pressure chamber gradually decreases and the plunger operates.During low capacity operation, a portion of the high pressure fluid in the first discharge chamber is transferred from the first fluid passage to the high pressure chamber. Although the second fluid passage passes through the low-pressure space and is lost, this is an operating state in which the capacity should be reduced, so there is no problem with the high-pressure fluid flowing out at this time. During 100% operation, the second fluid passage is closed by the solenoid valve, so once the high-pressure fluid in the first discharge chamber fills the pressure chamber, there is no flow of high-pressure fluid from the first discharge chamber, and the first discharge chamber , 100% of the high pressure fluid discharged into the second discharge chamber is utilized.

このように本発明の可変容量圧縮機では、第1流体通路
に細い連通孔を設け、第2流体通路に電磁弁を設けるこ
とにより1個の電磁弁で吐出容量の切替えが可能でかつ
100%容量時の高圧流体の流失が生じない。この為コ
ンパクトで高性能の可変容量圧縮機となる。
In this way, in the variable capacity compressor of the present invention, by providing a thin communication hole in the first fluid passage and providing a solenoid valve in the second fluid passage, it is possible to switch the discharge capacity with one solenoid valve, and the discharge capacity can be changed 100%. No leakage of high pressure fluid occurs at capacity. This makes it a compact and high-performance variable capacity compressor.

以下、本発明の一実施例を第1図、第2図に基ずいて説
明するる。図においで、1は回転軸であり、電磁クラッ
チを介して駆動源をなす自動車用エンジンに連絡し、エ
ンジンの駆動力により回転する。2は鉄系金属を楕円形
に成形してなる斜板で、回転軸1にキー止めにより固定
され、回転軸1と一体に揺動回転するようになっている
。そして、この斜板2の揺動回転はシューボールを介し
てピストン3を往復運動させる。4はこのピストン3の
往復運動を支持するシリンダ部41を軸回りに軸と平行
に5個、左右で10個有するハウジングで第1図中左右
に分割してダイキャスト成形されたものをOリングを介
して密着結合して形成したものである。ハウジング4の
左右には第1サイドハウジング5と第2サイドハウジン
グ6とが気密的に接合されている。第1サイドハウジン
グ5とハウジング4の間には第1バルブプレート51が
介在しており、この第1バルブプレート51の連通孔5
1a、51bによりシリンダ部41と、第1サイドハウ
ジング5側に形成された第1吸入室52、第1吐出室5
3が連絡される。第1吸入室52は図示しない蒸発器で
気化された冷媒ガスが供給される低圧室に連通ずる。第
1吐出室53はハウジング4の中央側部に設けられた高
圧室7と連通している。また、第1サイドハウジング5
とハウジング4には第1吐出室53と後述する圧力室と
を結ぶ連通路54.44が設けられている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, reference numeral 1 denotes a rotating shaft, which is connected to an automobile engine serving as a driving source via an electromagnetic clutch, and is rotated by the driving force of the engine. Reference numeral 2 denotes a swash plate made of ferrous metal molded into an oval shape, and is fixed to the rotating shaft 1 with a key so that it swings and rotates together with the rotating shaft 1. This rocking rotation of the swash plate 2 causes the piston 3 to reciprocate through the shoe ball. Reference numeral 4 denotes a housing having cylinder parts 41 that support the reciprocating motion of the piston 3, five in parallel with the axis around the axis, and ten on the left and right, and is divided into left and right parts in Fig. 1 and die cast. It is formed by closely bonding through the. A first side housing 5 and a second side housing 6 are hermetically joined to the left and right sides of the housing 4. A first valve plate 51 is interposed between the first side housing 5 and the housing 4, and the communication hole 5 of this first valve plate 51
1a and 51b, the cylinder part 41, the first suction chamber 52 and the first discharge chamber 5 formed on the first side housing 5 side
3 will be contacted. The first suction chamber 52 communicates with a low pressure chamber to which refrigerant gas vaporized by an evaporator (not shown) is supplied. The first discharge chamber 53 communicates with a high pressure chamber 7 provided at the center side of the housing 4 . In addition, the first side housing 5
A communication passage 54.44 is provided in the housing 4 and connects the first discharge chamber 53 and a pressure chamber to be described later.

第2サイドハウジング6とハウジング4の間には、第2
バルブプレート61が介在している。第2バルブプレー
ト61は外側より吸入用の5個の吸入用達通孔61a、
その内側に5個の吐出連通孔61b、中心部にハウジン
グ4の軸受孔42につながる大きな連通孔61cを有づ
る円盤状である。
Between the second side housing 6 and the housing 4, a second
A valve plate 61 is interposed. The second valve plate 61 has five suction holes 61a for suction from the outside,
It has a disc shape with five discharge communication holes 61b on the inside and a large communication hole 61c connected to the bearing hole 42 of the housing 4 in the center.

第2サイドハウジング6と第2バルブプレート61の間
には第2吸入室62、第2吐出室63が形成される。そ
して吸入用達通孔61aは第2吐出室62に、吐出用達
通孔61bは第2吐出室63の中心部に開口する。なお
、第2吐出室63は逆止弁71を介して高圧室7と連通
ずる。第2サイドハウジング6の第2吐出室63の中央
部にはシリンダ状ガイド6aが形成されガイド6aでそ
の中央部の開口が区画される。このガイド6aの凹部に
は弁部8のプランジャ81が挿入されている。
A second suction chamber 62 and a second discharge chamber 63 are formed between the second side housing 6 and the second valve plate 61. The suction passage hole 61a opens into the second discharge chamber 62, and the discharge passage hole 61b opens into the center of the second discharge chamber 63. Note that the second discharge chamber 63 communicates with the high pressure chamber 7 via a check valve 71. A cylindrical guide 6a is formed in the center of the second discharge chamber 63 of the second side housing 6, and the guide 6a defines an opening in the center. A plunger 81 of the valve portion 8 is inserted into the recessed portion of the guide 6a.

このプランジャ81の挿入された一端は浅い凹部となり
ガイド6aの凹部底面等で圧力室87を形成覆る。プラ
ンジャ81の他端の中央には突部81bが形成されてい
る。この中央部81bにはネジ穴81Cが形成されてい
る。またプランジャ81の中央部凸部81bには、弁部
8の主体ぐあるリング状のリテーナ82、吐出弁83が
挿入され、さらにバネ座を兼ねる固定リング84が挿入
され、座金85を介してネジ穴81cにネジ止めされた
ボルト86で固定されている。この弁部8はプランジャ
81がガイド6aの凹部にガイドされ軸方向に移動可能
である。図は弁部8が右側に位置する状態を示しでおり
、この状態では第2吐出室63は第2バルブプレートの
中心部連通孔61cを通って、ハウジング4の軸受孔4
2と連通し、かつシリンダ部41とも第2バルブプレー
トの連通孔61bを通って連通ずる。図とは逆に弁部8
か左側に押しつけられると弁部8の吐出弁83が第2バ
ルブプレート61と当接そ、連通孔61b、61cは閉
ざされる。なお、ハウジング4の軸受孔42は低圧室と
連通しており、ここにはバネ座42aが設けられている
。そして、このバネ座42aと弁部8の固定リング84
(第2図)の間にはバネ43が弁部8を図中右方向に付
勢する状態で組み込まれている。
One end into which the plunger 81 is inserted becomes a shallow recess, and a pressure chamber 87 is formed and covered by the bottom surface of the recess of the guide 6a. A protrusion 81b is formed at the center of the other end of the plunger 81. A screw hole 81C is formed in this central portion 81b. Further, a ring-shaped retainer 82 and a discharge valve 83 that surround the main body of the valve portion 8 are inserted into the central convex portion 81b of the plunger 81, and a fixing ring 84 that also serves as a spring seat is inserted, and screwed through a washer 85. It is fixed with a bolt 86 screwed into the hole 81c. The valve portion 8 is movable in the axial direction with a plunger 81 being guided by a recessed portion of the guide 6a. The figure shows a state in which the valve part 8 is located on the right side, and in this state, the second discharge chamber 63 passes through the center communication hole 61c of the second valve plate and into the bearing hole 4 of the housing 4.
2 and also communicates with the cylinder portion 41 through the communication hole 61b of the second valve plate. Contrary to the diagram, valve part 8
When pressed to the left, the discharge valve 83 of the valve portion 8 comes into contact with the second valve plate 61, and the communication holes 61b and 61c are closed. Note that the bearing hole 42 of the housing 4 communicates with the low pressure chamber, and a spring seat 42a is provided here. This spring seat 42a and the fixing ring 84 of the valve part 8
(FIG. 2), a spring 43 is installed in a state that biases the valve portion 8 rightward in the figure.

第2サイドハウジング6の外側中央には電磁弁9が設け
られ、電磁弁の中心軸にそって一端開口の凹部9aが設
けられている。この凹部9aの底面に、一端開口の段付
のシリンダ状凹部をもつガイド91が固定されている。
A solenoid valve 9 is provided at the center of the outside of the second side housing 6, and a recess 9a with one end open is provided along the central axis of the solenoid valve. A guide 91 having a stepped cylindrical recess with one end open is fixed to the bottom surface of the recess 9a.

このガイド91のシリンダ状凹部に鉄製の動弁92が嵌
装されている。
An iron valve train 92 is fitted into the cylindrical recess of this guide 91.

この動弁92の右端には凹部92aが形成され、ここに
ガイド91の底面とこの動弁92の凹部92a底の間に
バネ93が挿入されており、動弁92を図中左方向に付
勢する。動弁92の左端にはフッ素樹脂製の止め具92
bが固定されている。
A recess 92a is formed at the right end of the valve train 92, and a spring 93 is inserted between the bottom of the guide 91 and the bottom of the recess 92a of the valve train 92. to strengthen A stopper 92 made of fluororesin is attached to the left end of the valve train 92.
b is fixed.

電磁弁9の中心軸にそった凹部9aの開口を閉じる第2
サイドハウジング6の図上右側には、動弁92の止め具
92bと当接する突部6aが形成され、この凸部の中心
軸にそって圧力室87を通じる中心孔64が設けられて
いる。
A second valve that closes the opening of the recess 9a along the central axis of the solenoid valve 9.
On the right side of the side housing 6 in the drawing, there is formed a protrusion 6a that comes into contact with the stopper 92b of the valve train 92, and a center hole 64 that communicates with the pressure chamber 87 is provided along the central axis of this protrusion.

また第2サイドハウジング6には第1吐出室53と連通
時54.44で連絡された高圧ガス副室65が形成され
、この副室65から中心孔64に通じる第1流体通路6
6が設けられている。この第1流体通路66の中心孔6
4に開口する部分の通路は直径0.6mm程度の細孔6
6aどなっている、。さらに第2サイドハウジング6に
はその第2吸入室62と電磁弁9の中心軸にそった凹部
9aに開口する。第2流体通路67が設けられている。
Further, a high-pressure gas sub-chamber 65 is formed in the second side housing 6 and communicates with the first discharge chamber 53 at 54.44, and a first fluid passage 6 communicates from the sub-chamber 65 to the center hole 64.
6 is provided. The center hole 6 of this first fluid passage 66
The passageway opening into 4 is a pore 6 with a diameter of about 0.6 mm.
6a What's going on? Furthermore, the second side housing 6 opens into a second suction chamber 62 and a recess 9a along the central axis of the solenoid valve 9. A second fluid passage 67 is provided.

電磁コイル94は動弁92と同心軸的に動弁92の周囲
に設けられでおり、電磁コイル94は通電により動弁9
2をそのバネ93の付勢力に抗して図中右方に動かず。
The electromagnetic coil 94 is provided around the valve actuator 92 concentrically with the valve actuator 92, and when energized, the electromagnetic coil 94 moves around the valve actuator 92.
2 does not move to the right in the figure against the biasing force of the spring 93.

本実施例の可変容量圧縮機は以上の構成よりなる。The variable capacity compressor of this embodiment has the above configuration.

なお、第1吐出室53と高圧室7と高圧副室65および
ぞれらを結ぶ通路で高圧空間が形成され、第1吸入室5
2、第2吸入室62と低圧室およびこれらを結ぶ通路で
本実施例に係る低圧空間が形成される。
Note that a high-pressure space is formed by the first discharge chamber 53, the high-pressure chamber 7, the high-pressure auxiliary chamber 65, and the passage connecting them, and the first suction chamber 5
2. The low pressure space according to this embodiment is formed by the second suction chamber 62, the low pressure chamber, and the passage connecting these.

次にこの1縮機の作用を説明する。Next, the operation of this single compressor will be explained.

エンジンと回転軸1とが電磁クラッチにより結合される
と、エンジンの駆動力により回転軸1および斜板2が回
転し始める。そして斜板2の回転に伴ないシリンダ41
内をピストン3が往復する。
When the engine and the rotating shaft 1 are connected by the electromagnetic clutch, the rotating shaft 1 and the swash plate 2 begin to rotate due to the driving force of the engine. As the swash plate 2 rotates, the cylinder 41
The piston 3 reciprocates inside.

このピストン3の往復により第1吸入室52の冷媒ガス
は第1バルブプレート51の連通孔51aより吸入弁を
へてシリンダ41内に吸い込まれる。
By this reciprocation of the piston 3, the refrigerant gas in the first suction chamber 52 is sucked into the cylinder 41 through the communication hole 51a of the first valve plate 51, through the suction valve.

次に、このピストン3が圧縮工程に移ると、吸入弁によ
って51aがとじられ、シリンダ部41の冷媒ガスは、
圧縮されて高温、高圧となり、第1バルブプレート51
の連通孔51bおよび吐出弁を経て第1吐出室53へ吐
出する。この高温、高圧ガスはその圧力により高圧室7
に入り、そこより吐出サービスバルブ、連通管等の吐出
通路を介して図示しない凝縮機へ送られる。
Next, when the piston 3 moves to the compression process, the suction valve 51a is closed, and the refrigerant gas in the cylinder part 41 is
It is compressed to high temperature and high pressure, and the first valve plate 51
It is discharged into the first discharge chamber 53 through the communication hole 51b and the discharge valve. This high-temperature, high-pressure gas flows into the high-pressure chamber 7 due to its pressure.
From there, it is sent to a condenser (not shown) via a discharge passage such as a discharge service valve and a communication pipe.

一方、第2サイドハウジシグ6側において電磁弁9の電
磁コイル94に電流を流した状態にすると、動弁92は
磁力により図中右側に動かされ図に示す状態になる。こ
れにより圧力室87が第2サイドハウジング6の中心孔
64、電磁弁9の中央孔9aおよび第2流体通路67に
より第2吸入室(低圧空間)に連通する。第2吸入室の
冷媒ガス圧力は低いため、圧力室87の冷媒ガス圧力も
低い。このため弁部8のプランジャ81はバネ43の付
勢力により図に示す右側に押し付けられた状態となる。
On the other hand, when a current is applied to the electromagnetic coil 94 of the electromagnetic valve 9 on the second side housing signal 6 side, the valve operating valve 92 is moved to the right in the figure by the magnetic force and becomes the state shown in the figure. As a result, the pressure chamber 87 communicates with the second suction chamber (low pressure space) through the center hole 64 of the second side housing 6, the center hole 9a of the electromagnetic valve 9, and the second fluid passage 67. Since the refrigerant gas pressure in the second suction chamber is low, the refrigerant gas pressure in the pressure chamber 87 is also low. Therefore, the plunger 81 of the valve portion 8 is pressed to the right side in the figure by the biasing force of the spring 43.

なお、弁部8が右側に押し付けられでいるため、弁部の
吐出弁83は第2バルブプレート61から離れている。
Note that since the valve portion 8 is pressed to the right side, the discharge valve 83 of the valve portion is separated from the second valve plate 61.

そのため第2バルブプレート61の連通孔61bが常に
シリンダ41と第211出室63とを連通する。又第2
吐出室63は、第2バルブプレート61の中央の連通孔
61Cにより、低圧室と連通する軸受孔42と連通する
。従って、第2サイドハウジング6側のピストン3、シ
リンダ41による冷媒ガスの■縮は起らず、空転状態と
なる。なお高圧室7と第2吐出室63は逆止弁71によ
り閉じられた状態にあって圧力室87に流入する。しか
しこの第1流体通路66の細孔66aは直径が約0.6
mm程度で非常に細いため、この直径が約2mm程度の
第2流体通路67を通って圧力室87より低圧空間に流
出する冷媒ガス量は第1流体通路より流入する冷媒ガス
量と比較してはるかに多い。このため圧力室87の冷媒
ガス圧力は低圧空間の冷媒ガス圧とほぼ等しくバネ43
の付勢力に抗することができない。
Therefore, the communication hole 61b of the second valve plate 61 always communicates between the cylinder 41 and the 211th outlet chamber 63. Also second
The discharge chamber 63 communicates with the bearing hole 42, which communicates with the low pressure chamber, through a communication hole 61C in the center of the second valve plate 61. Therefore, the refrigerant gas is not compressed by the piston 3 and cylinder 41 on the second side housing 6 side, and an idle state occurs. Note that the high pressure chamber 7 and the second discharge chamber 63 are closed by the check valve 71 and flow into the pressure chamber 87 . However, the diameter of the pore 66a of this first fluid passage 66 is about 0.6
Since the refrigerant gas is very thin (approximately 2 mm in diameter), the amount of refrigerant gas flowing out from the pressure chamber 87 into the low pressure space through the second fluid passage 67, which has a diameter of approximately 2 mm, is compared to the amount of refrigerant gas flowing in from the first fluid passage. Much more. Therefore, the refrigerant gas pressure in the pressure chamber 87 is approximately equal to the refrigerant gas pressure in the low pressure space, and the spring 43
cannot resist the urging force of

この状態では第1吐出室53に吐出される冷媒ガスのみ
が図示しない凝縮器に送られ、約50%の吐出容量で運
転されている。
In this state, only the refrigerant gas discharged into the first discharge chamber 53 is sent to a condenser (not shown), and the system is operated at approximately 50% discharge capacity.

なお、第1流体通路66から低圧室に流出するガス量は
第1吐出室53に吐出されるガス量の3%程度となるが
、この状態では低容層運転中であり、50%容醋運転が
48.5%容量運転になっても特別な不都合は生じない
。この状態で、例えば、車室内の温度が上昇し、冷房能
力を高くしたい場合には、電磁弁9のスイッチを切り電
磁コイル94の電流を止める。これにより動弁92はバ
ネ93の付勢力により第2図中左側に押し付けられ、フ
ッ素樹脂製の止め具92bが中央孔64の凸部6aに押
し付けられ、凸部6aの中央に開口する中央孔64を閉
ざす。このため圧力室87と第2吸入室62の連通が断
たれ、高圧室7からガスが第1吸入室62に流入しなく
なる。一方圧力学87には第1流体通路66の細孔66
aの細い孔を通って少しずつ第1吐出室53の高圧ガス
が流入づる。このため圧力室87の冷媒ガス圧は除徐に
高くなり、ついにはバネ43の付勢力に抗して1ランジ
ヤ81を図中に側に移動する。これにより弁部8の吐出
弁83が第2バルブプレート61と当接する。そして弁
部8は第2バルブプレート61に押しつレノられている
。これにより弁部8の吐出弁83が第2バルブプレート
61の連通孔61b、61cを閉ざす。このため第2サ
イドハウジング6側のピストン3とシリンダ41も冷媒
ガスの圧縮を開始し、第2吐出室63の冷媒ガス圧は高
くなる。そして圧力室7の圧力よりも高くなると逆止弁
71が開き、第2吐出室63から高圧室7に高温、高圧
の冷媒ガスが流入する。この状態で圧縮機は100%フ
ル運転となる。
Note that the amount of gas flowing out from the first fluid passage 66 to the low pressure chamber is about 3% of the amount of gas discharged into the first discharge chamber 53, but in this state, the low volume layer is operating, and the volume is reduced to 50%. Even if the operation becomes 48.5% capacity operation, no special inconvenience will occur. In this state, for example, if the temperature inside the vehicle increases and the cooling capacity is desired to be increased, the solenoid valve 9 is switched off and the current flowing through the electromagnetic coil 94 is stopped. As a result, the valve actuator 92 is pressed to the left side in FIG. 2 by the biasing force of the spring 93, and the fluororesin stopper 92b is pressed against the convex portion 6a of the central hole 64, and the central hole opening in the center of the convex portion 6a is pressed. Close 64. Therefore, communication between the pressure chamber 87 and the second suction chamber 62 is cut off, and gas no longer flows into the first suction chamber 62 from the high pressure chamber 7 . On the other hand, in the pressure science 87, the pore 66 of the first fluid passage 66
The high pressure gas in the first discharge chamber 53 gradually flows through the narrow hole a. As a result, the refrigerant gas pressure in the pressure chamber 87 gradually increases, and finally the first langier 81 moves to the side in the figure against the biasing force of the spring 43. As a result, the discharge valve 83 of the valve portion 8 comes into contact with the second valve plate 61. The valve portion 8 is pressed against the second valve plate 61. As a result, the discharge valve 83 of the valve portion 8 closes the communication holes 61b and 61c of the second valve plate 61. Therefore, the piston 3 and cylinder 41 on the second side housing 6 side also start compressing the refrigerant gas, and the refrigerant gas pressure in the second discharge chamber 63 increases. When the pressure becomes higher than the pressure in the pressure chamber 7, the check valve 71 opens, and high temperature, high pressure refrigerant gas flows into the high pressure chamber 7 from the second discharge chamber 63. In this state, the compressor operates at 100% full capacity.

なお、第1吐出室53より第1流体通路66を通って圧
力室87に高圧の冷媒ガスが流入するが、中央孔64が
動弁92の止め具92bで閉じられているため、圧力室
87の圧力が第1吐出室53の圧力と同一になればその
後圧力室87には冷媒ガスは流入しない。
Note that high-pressure refrigerant gas flows into the pressure chamber 87 from the first discharge chamber 53 through the first fluid passage 66, but since the central hole 64 is closed by the stopper 92b of the valve train 92, the pressure chamber 87 When the pressure in the first discharge chamber 53 becomes the same as that in the first discharge chamber 53, no refrigerant gas flows into the pressure chamber 87 after that.

したがって、第1吐出室53、第2吐出室63に流入す
る高圧の冷媒ガスは100%図示しない凝縮器に送られ
、無駄が生じない。
Therefore, 100% of the high-pressure refrigerant gas flowing into the first discharge chamber 53 and the second discharge chamber 63 is sent to a condenser (not shown), so that no waste occurs.

このように本実施例の可変容量圧縮機は1個の電磁弁9
のオン、オフにより100%運転、50%運転の切変え
ができる。この圧縮機は電磁弁1個で吐出容量の変更が
可能であるため、圧縮機の一部に電磁弁を組み込め、非
常にコンパクトになる。そして容量の切り変えにより過
剰運転、高負荷運転が防止でき、耐久性向上、燃費の低
減が可能である。特に100%容量運転時に高圧冷媒ガ
スが電磁弁9より低圧室に流失しないため効率がよい。
In this way, the variable capacity compressor of this embodiment has one solenoid valve 9.
You can switch between 100% operation and 50% operation by turning on and off. Since this compressor can change the discharge capacity with a single solenoid valve, the solenoid valve can be incorporated into a part of the compressor, making it extremely compact. By changing the capacity, excessive operation and high-load operation can be prevented, improving durability and reducing fuel consumption. Particularly, during 100% capacity operation, high-pressure refrigerant gas does not flow into the low-pressure chamber through the solenoid valve 9, resulting in high efficiency.

り弁部8が第2バルブプレート61より離れるようにし
たが、バネ43の付勢方向を逆に変更し、また弁部8の
プランジャ81の動きを逆にすることにより、弁部8を
バルブプレートに押し付けるようにし、電磁弁の通電に
より弁部8を開くようにすることもできる。この場合に
も電磁弁のオンオノにより圧縮機の容量を切り変えるこ
とができ圧縮機の過剰運転、高負荷運転が防止できる。
However, by reversing the biasing direction of the spring 43 and reversing the movement of the plunger 81 of the valve part 8, the valve part 8 is moved away from the second valve plate 61. It is also possible to press the valve portion 8 against the plate and open the valve portion 8 by energizing the solenoid valve. In this case as well, the capacity of the compressor can be changed by turning the solenoid valve on and off, thereby preventing excessive operation and high load operation of the compressor.

また実施例で斜板タイプの圧縮機を用いたが、1枚のバ
ルブプレートの一面に複数個の吐出弁をもつワッブルタ
イプの圧縮機等、2組以上のシリンダとピストンをもつ
圧縮機に本発明を適用できる。
In addition, although a swash plate type compressor was used in the example, it is also suitable for compressors with two or more sets of cylinders and pistons, such as a wobble type compressor with multiple discharge valves on one side of a single valve plate. The invention can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の圧縮機の一実施例を示ず断面図、第2
図は第1図に示す弁部の拡大図である。
Fig. 1 is a cross-sectional view of an embodiment of the compressor of the present invention;
The figure is an enlarged view of the valve section shown in FIG. 1.

Claims (2)

【特許請求の範囲】[Claims] (1)複数個のピストンと、各ピストンの往復運動を支
持する複数個のシリンダとを有するとともに、低圧空間
、一部のシリンダからの吐出を受ける第1吐出室、他の
シリンダからの吐出を受ける第2吐出室を有覆るハウジ
ングと、該第1吐出室と第2吐出室との間に介在し該第
2吐出室から該第1吐出室への流体のみ流入可能な逆止
弁と、該第2吐出室と該低圧空間とを開閉する弁部と該
弁部と結合され内部に圧力室を有しかつ該第1吐出室か
らの流体圧力により該弁部を開閉するプランジャと、該
第1吐出室と該圧力室とを結ぶ細い連通孔をbつ第1流
体通路と、該圧力室と該低圧空間とを結ぶ第2流体通路
と、該第2流体通路を開閉する電磁弁とよりなることを
特徴とする可変容量圧縮機。
(1) It has a plurality of pistons and a plurality of cylinders that support the reciprocating motion of each piston, and has a low-pressure space, a first discharge chamber that receives discharge from some cylinders, and a first discharge chamber that receives discharge from other cylinders. a housing that covers and receives a second discharge chamber; a check valve that is interposed between the first discharge chamber and the second discharge chamber and allows only fluid to flow from the second discharge chamber to the first discharge chamber; a valve portion that opens and closes the second discharge chamber and the low pressure space; a plunger that is coupled to the valve portion and has a pressure chamber therein and that opens and closes the valve portion by fluid pressure from the first discharge chamber; a first fluid passage having a thin communication hole connecting the first discharge chamber and the pressure chamber; a second fluid passage connecting the pressure chamber and the low pressure space; and a solenoid valve that opens and closes the second fluid passage. A variable capacity compressor characterized by:
(2)第1流体通路の細い連通孔の直径は0.3mm〜
1.2mmであり、第2流体通路の直径は該細い連通孔
の直径の1.2倍以下である特許請求の範囲第1項記載
の圧縮機
(2) The diameter of the narrow communication hole of the first fluid passage is 0.3 mm ~
1.2 mm, and the diameter of the second fluid passage is 1.2 times or less the diameter of the narrow communication hole.
JP57077969A 1982-05-10 1982-05-10 Variable displacement compressor Granted JPS58195089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077969A JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077969A JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Publications (2)

Publication Number Publication Date
JPS58195089A true JPS58195089A (en) 1983-11-14
JPH048635B2 JPH048635B2 (en) 1992-02-17

Family

ID=13648749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077969A Granted JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Country Status (1)

Country Link
JP (1) JPS58195089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Also Published As

Publication number Publication date
JPH048635B2 (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US5871337A (en) Swash-plate compressor with leakage passages through the discharge valves of the cylinders
KR100372125B1 (en) non-return valve
JP3326909B2 (en) Swash plate type variable displacement compressor
JPH07119631A (en) Swash plate type variable displacement compressor
KR20010006784A (en) non-return valve
US5704769A (en) Noise suppressing mechanism in piston-type compressor
JPS58195089A (en) Variable displacement compressor
US4573878A (en) Variable-delivery compressor
JPH0494470A (en) Variable displacement swash plate type compressor
JPWO2004061304A1 (en) Control unit for variable capacity compressor
JPH03134268A (en) Variable displacement swash plate type compressor
JPH11304027A (en) Sealing structure of pressure control valve
JPS6354907B2 (en)
JP3182950B2 (en) Clutchless structure in one-side piston type variable displacement compressor.
JPS62196475A (en) Four-way valve for refrigerating cycle
JP2002031058A (en) Reciprocating refrigerant compressor
JPS58176485A (en) Variable capacity compressor
JPS6040874Y2 (en) Swash plate compressor
JPS6282282A (en) Variable capacity compressor
JPS5946377A (en) Compressor with variable capacity
JP3254854B2 (en) Clutchless one-sided piston type variable displacement compressor
JP3544913B2 (en) Swash plate compressor
JPH10153178A (en) Variable capacity compressor
EP1092871A2 (en) Hollow swash plate compressor piston with bores
JP2000130321A (en) Variable displacement swash plate type compressor