JPH048635B2 - - Google Patents

Info

Publication number
JPH048635B2
JPH048635B2 JP57077969A JP7796982A JPH048635B2 JP H048635 B2 JPH048635 B2 JP H048635B2 JP 57077969 A JP57077969 A JP 57077969A JP 7796982 A JP7796982 A JP 7796982A JP H048635 B2 JPH048635 B2 JP H048635B2
Authority
JP
Japan
Prior art keywords
chamber
valve
pressure
discharge chamber
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57077969A
Other languages
Japanese (ja)
Other versions
JPS58195089A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57077969A priority Critical patent/JPS58195089A/en
Publication of JPS58195089A publication Critical patent/JPS58195089A/en
Publication of JPH048635B2 publication Critical patent/JPH048635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Description

【発明の詳細な説明】 本発明は可変容量圧縮機に関し、特に本発明の
圧縮機は自動車空調装置の冷媒圧縮機に適してい
る。一般に自動車空調装置に用いる冷媒圧縮機は
自動車走行用エンジンの駆動力を受けて回転する
ため、自動車の高速運転時や加速時等エンジンが
高回転となる運転状態では、圧縮機は必要以上に
高い回転数で回転していた。そのため空調装置の
冷房能力が過大となる。逆にエンジンのアイドリ
ング時には圧縮機がエンジン出力の30%程度を使
用する等、エンジンに過大な負荷が加えられて、
冷房能力の制御が繁雑となるとともにエンジンの
燃費が悪化する。そこで圧縮機の吐出量が変更で
きる圧縮機の開発が進められている。本発明は吐
出量の容量変更を一つの電磁弁で任意に切りかえ
可能なコンパクトな圧縮機を提供することを目的
とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable capacity compressor, and in particular, the compressor of the present invention is suitable for a refrigerant compressor of an automobile air conditioner. Generally, the refrigerant compressor used in automobile air conditioners rotates under the driving force of the automobile engine, so when the engine is running at high speeds such as when driving at high speed or accelerating, the compressor's temperature is higher than necessary. It was rotating at RPM. Therefore, the cooling capacity of the air conditioner becomes excessive. On the other hand, when the engine is idling, the compressor uses about 30% of the engine output, which puts an excessive load on the engine.
Controlling the cooling capacity becomes complicated and the fuel efficiency of the engine deteriorates. Therefore, the development of compressors that can change the discharge amount of the compressor is underway. SUMMARY OF THE INVENTION An object of the present invention is to provide a compact compressor that can arbitrarily change the discharge amount using a single solenoid valve.

本発明はこの目的を達成するため、本発明の可
変容量圧縮機を次の構成としたものである。すな
わち本発明の可変容量圧縮機はシリンダからの吐
出を受ける吐出室を第1吐出室と第2吐出室に分
け、第1吐出室と第2吐出室とを第2吐出室から
第1吐出室への流体のみ流入可能な逆止弁を設け
て連絡し、かつ、第2吐出室と低圧空間(吸入
室)の間を開閉する弁部を設けるとともに、該部
と結合し内部に圧力室を有し、第1吐出室からの
流体圧力により該弁部を開閉するプランジヤを設
け、第1吐出室と圧力室とを細い連通孔をもつ第
1流体通路で結び、かつ圧力室と低圧空間を第2
流体通路で結び、この第2流体通路を開閉する電
磁弁を設けたものである。
In order to achieve this object, the present invention provides a variable capacity compressor of the present invention with the following configuration. That is, the variable capacity compressor of the present invention divides the discharge chamber that receives discharge from the cylinder into a first discharge chamber and a second discharge chamber, and separates the first discharge chamber and the second discharge chamber from the second discharge chamber to the first discharge chamber. A check valve that allows only fluid to flow into the second discharge chamber and a valve section that opens and closes between the second discharge chamber and the low pressure space (suction chamber) is provided, and a pressure chamber is connected to the second discharge chamber and the low pressure space (suction chamber). and a plunger that opens and closes the valve part by fluid pressure from the first discharge chamber, the first discharge chamber and the pressure chamber are connected by a first fluid passage having a thin communication hole, and the pressure chamber and the low pressure space are connected. Second
They are connected by a fluid passage and are provided with a solenoid valve that opens and closes this second fluid passage.

本発明の可変容量圧縮機では、電磁弁を閉じる
ことにより第2流体通路を閉じ、第1吐出室の高
圧流体を圧力室に流入保持し、その圧力でプラン
ジヤを作動して低圧空間と第2吐出室の間の弁部
を閉じ、第2吐出室に流入する高圧流体を逆止弁
を通して第1吐出室に送り、100%容量運転を行
う。
In the variable displacement compressor of the present invention, the second fluid passage is closed by closing the solenoid valve, the high pressure fluid in the first discharge chamber is kept flowing into the pressure chamber, and the plunger is actuated by the pressure, so that the low pressure space and the second fluid passage are closed. The valve section between the discharge chambers is closed, and the high-pressure fluid flowing into the second discharge chamber is sent to the first discharge chamber through the check valve to perform 100% capacity operation.

一方、吐出容量がすくなくてよい場合には、電
磁弁を開いて圧力と低圧空間を結ぶ第2流体通路
を開き、圧力室の高圧流体を第2流体通路を通し
て低圧空間に流出させ、圧力室の圧力の低下によ
りプランジヤを作動して弁部を開き、第2吐出室
と低圧空間を連通して、実質的に第2吐出室に吐
出するシリンダの作用を空転させ第1吐出室に吐
出する高圧ガスの吐出量のみの低容量で運転を行
う。
On the other hand, if the discharge capacity does not need to be small, the solenoid valve is opened to open the second fluid passage connecting the pressure and low pressure spaces, and the high pressure fluid in the pressure chamber flows out into the low pressure space through the second fluid passage. The drop in pressure operates the plunger to open the valve part, communicates the second discharge chamber with the low-pressure space, and substantially idles the action of the cylinder that discharges to the second discharge chamber, causing high pressure to be discharged to the first discharge chamber. Operate at a low capacity of gas discharge only.

なお、この低容量運転で第1吐出室と圧力室と
を結ぶ第1流体通路が連通しており、この第1流
体通路を通して高圧流体が圧力室に流注するが、
第1流体通路には細い連通孔をもつため、この細
い連通孔の流入抵抗のため流入する高圧流体の量
は第2流体通路より圧力室から低圧空間へ流失す
る流体に比較して少ない。このため、初め圧力室
の流体圧力が高くともしだいに圧力室の圧力は低
くなり、プランジヤが作動する、低容量運転時に
第1吐出室の高圧流体の一部は第1流体通路→高
圧室→第2流体通路→低圧空間と通つて失なわれ
るが、もともと容量を少くしたい運転状態であ
り、このときの高圧流体の流出は問題がない。
100%運転時には第2流体通路は電磁弁で閉じら
れているため、第1吐出室の高圧流体が圧力室を
満たせば、それ以後第1吐出室から高圧流体の流
失はなく、第1吐出室、第2吐出室に吐出される
高圧流体は100%利用される。
Note that during this low capacity operation, the first fluid passage connecting the first discharge chamber and the pressure chamber is in communication, and high-pressure fluid flows into the pressure chamber through this first fluid passage.
Since the first fluid passage has a narrow communication hole, the amount of high-pressure fluid that flows into the second fluid passage is smaller than the amount of fluid that flows out from the pressure chamber to the low-pressure space due to the inflow resistance of the narrow communication hole. Therefore, even if the fluid pressure in the pressure chamber is initially high, the pressure in the pressure chamber gradually decreases, and during low capacity operation when the plunger operates, a portion of the high pressure fluid in the first discharge chamber is transferred from the first fluid passage to the high pressure chamber to Although the second fluid passage passes through the low-pressure space and is lost, this is an operating condition in which the capacity should be reduced, so there is no problem with the high-pressure fluid flowing out at this time.
During 100% operation, the second fluid passage is closed by the solenoid valve, so once the high-pressure fluid in the first discharge chamber fills the pressure chamber, there is no flow of high-pressure fluid from the first discharge chamber, and the first discharge chamber , 100% of the high pressure fluid discharged into the second discharge chamber is utilized.

このように本発明の可変容量圧縮機では、第1
流体通路に細い連通孔を設け、第2流体通路に電
磁弁を設けることにより1個の電磁弁で吐出容量
の切替えが可能でかつ100%容量時の高圧流体の
流失が生じない。この為コンパクトで高性能の可
変容量圧縮機となる。
In this way, in the variable displacement compressor of the present invention, the first
By providing a narrow communication hole in the fluid passage and providing a solenoid valve in the second fluid passage, it is possible to switch the discharge capacity with one solenoid valve, and no leakage of high-pressure fluid occurs at 100% capacity. This makes it a compact and high-performance variable capacity compressor.

以下、本発明の一実施例を第1図、第2図に基
づいて説明するる。図において、1は回転軸であ
り、電磁クラツチを介して駆動源をなす自動車用
エンジンに連絡し、エンジンの駆動力により回転
する。2は鉄系金属を隨円形に成形してなる斜板
で、回転軸1にキー止めにより固定され、回転軸
1と一体に揺動回転するようになつている。そし
て、この斜板2の揺動回転はシユーボールを介し
てピストン3を往復運動させる。4はこのピスト
ン3の往復運動を支持するシリンダ部41を軸回
りに軸と平行に5個、左右で10個有するハウジン
グで第1図中左右に分割してダイキヤスト成形さ
れたものをOリングを介して密着結合して形成し
たものである。ハウジング4の左右には第1サイ
ドハウジング5と第2サイドハウジング6とが気
密的に接合されている。第1サイドハウジング5
とハウジング4の間には第1バルブプレート51
が介在しており、この第1バルブプレート51の
連通孔51a,51bによりシリンダ部41と、
第1サイドハウジング5側に形成された第1吸入
室52、第1吐出53が連絡される。第1吸入室
52は図示しない蒸発器で気化された冷媒ガスが
供給される低圧室に連通する。第1吐出室53は
ハウジング4の中央側部に設けられた高圧室7と
連通している。また、第1サイドハウジング5と
ハウジング4には第1吐出53と後述する圧力室
とを結ぶ連通路54,44が設けられている。第
2サイドハウジング6とハウジング4の間には、
第2バルブプレート61が介在している。第2バ
ルブプレート61は外側より吸入用の5個の吸入
用連通孔61a、その内側に5個の吐出連通孔6
1b、中心部にハウジング4の軸受孔42につな
がる大きな連通孔61cを有する円盤状である。
第2サイドハウジング6と第2バルブプレート6
1の間には第2吸入室62、第2吐出室63が形
成される。そして吸入用連通孔61aは第2吐出
室62に、吐出用連通孔61bは第2吐出室63
の中心部に開口する。なお、第2吐出室63は逆
止弁71を介して高圧室7の連通する。第2サイ
ドハウジング6の第2吐出室63の中央部にはシ
リンダ状ガイド6aが形成されガイド6aでその
中央部の開口が区画される。このガイド6aの凹
部には弁部8のプランジヤ81が挿入されてい
る。このプランジヤ81の挿入された一端は浅い
凹部となりガイド6aの凹部底面等で圧力室87
を形成する。プランジヤ81の他端の中央には突
部81bが形成されている。この中央部81bに
はネジ穴81cが形成されている。またプランジ
ヤ81の中央部凸部81bには、弁部8の主体で
あるリング状のリテーナ82、吐出弁83が挿入
され、さらにバネ座を兼ねる固定リング84が挿
入され、座金85を介してネジ穴81cにネジ止
めされたボルト86で固定されている。この弁部
8はプランジヤ81がガイド6aの凹部にガイド
された軸方向に移動可能である。図は弁部8が右
側に位置する状態を示しており、この状態では第
2吐出室63は第2バルブレートの中心部連通孔
61cを通つて、ハウジング4の軸受孔42と連
通し、かつシリンダ部41とも第2バルブプレー
トの連通孔61bを通つて連通する。図とは逆に
弁部8が左側に押しつけられると弁部8の吐出弁
83が第2バルブプレート61と当接し、連通孔
61b,61cは閉ざされる。なお、ハウジング
4の軸受孔42は低圧室と連通しており、ここに
はバネ座42aが設けられている。そして、この
バネ座42aと弁部8の固定リング84(第2
図)の間にはバネ43が弁部8を図中右方向に付
勢する状態で組み込まれている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, reference numeral 1 denotes a rotating shaft, which is connected via an electromagnetic clutch to an automobile engine serving as a driving source, and is rotated by the driving force of the engine. Reference numeral 2 denotes a swash plate made of ferrous metal molded into a circular shape, and is fixed to the rotating shaft 1 with a key so that it swings and rotates together with the rotating shaft 1. This rocking rotation of the swash plate 2 causes the piston 3 to reciprocate through the show ball. 4 is a housing having 5 cylinder parts 41 parallel to the axis around the axis and 10 cylinder parts 41 on the left and right sides that support the reciprocating motion of the piston 3, which is divided into left and right parts in FIG. They are formed by tightly bonding each other through a material. A first side housing 5 and a second side housing 6 are hermetically joined to the left and right sides of the housing 4. First side housing 5
A first valve plate 51 is provided between the housing 4 and the housing 4.
are interposed, and the communication holes 51a and 51b of the first valve plate 51 connect the cylinder portion 41 and the
A first suction chamber 52 and a first discharge 53 formed on the side of the first side housing 5 are connected to each other. The first suction chamber 52 communicates with a low pressure chamber to which refrigerant gas vaporized by an evaporator (not shown) is supplied. The first discharge chamber 53 communicates with a high pressure chamber 7 provided at the center side of the housing 4 . Further, the first side housing 5 and the housing 4 are provided with communication passages 54 and 44 that connect the first discharge 53 and a pressure chamber to be described later. Between the second side housing 6 and the housing 4,
A second valve plate 61 is interposed. The second valve plate 61 has five suction communication holes 61a for suction from the outside, and five discharge communication holes 6 on the inside thereof.
1b, it has a disk shape with a large communication hole 61c connected to the bearing hole 42 of the housing 4 in the center.
Second side housing 6 and second valve plate 6
1, a second suction chamber 62 and a second discharge chamber 63 are formed. The suction communication hole 61a is connected to the second discharge chamber 62, and the discharge communication hole 61b is connected to the second discharge chamber 63.
Opens in the center of the Note that the second discharge chamber 63 communicates with the high pressure chamber 7 via a check valve 71. A cylindrical guide 6a is formed in the center of the second discharge chamber 63 of the second side housing 6, and the guide 6a defines an opening in the center. A plunger 81 of the valve portion 8 is inserted into the recessed portion of the guide 6a. One end into which this plunger 81 is inserted becomes a shallow recess, and the bottom surface of the recess of the guide 6a forms a pressure chamber 87.
form. A protrusion 81b is formed at the center of the other end of the plunger 81. A screw hole 81c is formed in this central portion 81b. Further, a ring-shaped retainer 82 and a discharge valve 83, which are the main bodies of the valve part 8, are inserted into the central convex part 81b of the plunger 81, and a fixing ring 84 which also serves as a spring seat is inserted, and a screw is inserted through a washer 85. It is fixed with a bolt 86 screwed into the hole 81c. The valve portion 8 is movable in the axial direction in which the plunger 81 is guided by the recessed portion of the guide 6a. The figure shows a state in which the valve portion 8 is located on the right side, and in this state, the second discharge chamber 63 communicates with the bearing hole 42 of the housing 4 through the center communication hole 61c of the second valve plate. It also communicates with the cylinder portion 41 through the communication hole 61b of the second valve plate. Contrary to the figure, when the valve part 8 is pushed to the left, the discharge valve 83 of the valve part 8 comes into contact with the second valve plate 61, and the communication holes 61b and 61c are closed. Note that the bearing hole 42 of the housing 4 communicates with the low pressure chamber, and a spring seat 42a is provided here. This spring seat 42a and the fixing ring 84 (second
A spring 43 is installed between the valve portions 8 and 8 in a manner that biases the valve portion 8 in the right direction in the figure.

第2サイドハウジング6の外側中央には電磁弁
9が設けられ、電磁弁の中心軸にそつて一端開口
の凹部9aが設けられている。この凹部9aの底
面に、一端開口の段付のシリンダ状凹部をもつガ
イド91が固定されている。このガイド91のシ
リンダ状凹部に鉄製の動弁92が嵌装されてい
る。この動弁92の右端には凹部92aが形成さ
れ、ここにガイド91の底面とこの動弁92の凹
部92aの底の間にバネ93が挿入されており、
動弁92を図中左方向に付勢する。動弁92の左
端にはフツ素樹脂製の止め具92bが固定されて
いる。
A solenoid valve 9 is provided at the center of the outside of the second side housing 6, and a recess 9a with one end open is provided along the central axis of the solenoid valve. A guide 91 having a stepped cylindrical recess with one end open is fixed to the bottom surface of the recess 9a. An iron valve train 92 is fitted into the cylindrical recess of this guide 91. A recess 92a is formed at the right end of the valve train 92, and a spring 93 is inserted between the bottom of the guide 91 and the bottom of the recess 92a of the valve train 92.
The valve train 92 is urged to the left in the figure. A stopper 92b made of fluororesin is fixed to the left end of the valve train 92.

電磁弁9の中心軸にそつた凹部aの開口を閉じ
る第2サイドハウジング6の図上右側には、動弁
92の止め具92bと当接する突部6aが形成さ
れ、この凸部の中心軸にそつて圧力室87を通じ
る中心孔64が設けられている。
On the right side in the figure of the second side housing 6 that closes the opening of the recess a along the central axis of the solenoid valve 9, a protrusion 6a that comes into contact with the stopper 92b of the valve train 92 is formed. A central hole 64 is provided along which the pressure chamber 87 communicates.

また第2サイドハウジング6には第1吐出室5
3と連通時54,44で連絡された高圧ガス副室
65が形成され、この副室65から中心孔64に
通じる第1流体通路66が設けられている。この
第1流体通路66の中心孔64に開口する部分の
通路は直径0.6mm程度の細孔66aとなつてい
る、。さらに第2サイドハウジング6にはその第
2吸入室62と電磁弁9の中心軸にそつた凹部9
aに開口する第2流体通路67が設けられてい
る。
Further, the second side housing 6 has a first discharge chamber 5.
A high-pressure gas sub-chamber 65 is formed which communicates with the central hole 64 at 54 and 44, and a first fluid passage 66 communicating from the sub-chamber 65 to the center hole 64 is provided. A portion of the first fluid passage 66 that opens into the center hole 64 is a pore 66a with a diameter of about 0.6 mm. Further, the second side housing 6 has a second suction chamber 62 and a recess 9 along the central axis of the solenoid valve 9.
A second fluid passage 67 is provided that opens to a.

電磁コイル94は動弁92と同心軸的に動弁9
2の周囲に設けられており、電磁コイル94は通
電により動弁92をそのバネ93の付勢力に抗し
て図中右方に動かす。本実施例の可変容量圧縮機
は以上の構成よりなる。
The electromagnetic coil 94 is connected to the valve train 9 concentrically with the valve train 92.
When energized, an electromagnetic coil 94 moves the valve train 92 to the right in the figure against the biasing force of its spring 93. The variable capacity compressor of this embodiment has the above configuration.

なお、第1吐出室53と高圧室7と高圧副室6
5およびそれらを結ぶ通路で高圧空間が形成さ
れ、第1吸入室52、第2吸入室62と低圧室お
よびこれらを結ぶ通路で本実施例に係る低圧空間
が形成される。
In addition, the first discharge chamber 53, the high pressure chamber 7, and the high pressure auxiliary chamber 6
5 and the passage connecting them together form a high pressure space, and the first suction chamber 52, the second suction chamber 62, the low pressure chamber and the passage connecting them form a low pressure space according to this embodiment.

次にこの圧縮機の作用を説明する。 Next, the operation of this compressor will be explained.

エンジンと回転軸1とが電磁クラツチにより結
合されると、エンジンの駆動力により回転軸1お
よび斜板2が回転し始める。そして斜板2の回転
に伴ないシリンダ41内をピストン3が往復す
る。このピストン3の往復により第1吸入室52
の冷媒ガスは第1バルブプレート51の連通孔5
1aより吸入弁をへてシリンダ41内に吸い込ま
れる。次に、このピストン3が圧縮工程に移る
と、吸入弁によつて51aがとじられ、シリンダ
部41の冷媒ガスは、圧縮されて高温、高圧とな
り、第1バルブプレート51の連通孔51bおよ
び吐出弁を経て第1吐出室53へ吐出する。この
高温、高圧ガスはその圧力により高圧室7に入
り、そこより吐出サービスバルブ、連通管等の吐
出通路を介して図示しない凝縮機へ送られる。
When the engine and the rotating shaft 1 are coupled by the electromagnetic clutch, the rotating shaft 1 and the swash plate 2 begin to rotate due to the driving force of the engine. As the swash plate 2 rotates, the piston 3 reciprocates within the cylinder 41. This reciprocation of the piston 3 causes the first suction chamber 52 to
The refrigerant gas flows through the communication hole 5 of the first valve plate 51.
It is sucked into the cylinder 41 from 1a through the suction valve. Next, when the piston 3 moves to the compression process, the suction valve closes the refrigerant gas 51a, and the refrigerant gas in the cylinder part 41 is compressed to a high temperature and high pressure, and the refrigerant gas is compressed to the communication hole 51b of the first valve plate 51 and the discharge gas. It is discharged into the first discharge chamber 53 through a valve. This high-temperature, high-pressure gas enters the high-pressure chamber 7 due to its pressure, and is sent from there to a condenser (not shown) via a discharge passage such as a discharge service valve and a communication pipe.

一方、第2サイドハウジング6側において電磁
弁9の電磁コイル94に電流を流した状態にする
と、動弁92は磁力により図中右側に動かされ図
に示す状態になる。これにより圧力室87が第2
サイドハウジング6の中心孔64、電磁弁9の中
央孔9aおよび第2流体通路67により第2吸入
室(低圧空間)に連通する。第2吸入室の冷媒ガ
ス圧力は低いため、圧力室87の冷媒ガス圧力も
低い。このため弁部8のプランジヤ81はバネ4
3の付勢力により図に示す右側に押し付けられた
状態となる。なお、弁部8が右側に押し付けられ
ているため、弁部の吐出弁83は第2バルブプレ
ート61から離れている。そのため第2バルブプ
レート61の連通孔61bが常にシリンダ41と
第2吐出室63とを連通する。又第2吐出室63
は、第2バルブプレート61の中央の連通孔61
cにより、低圧室と連通する軸受孔42と連通す
る。従つて、第2サイドハウジング6側のピスト
ン3、シリンダ41による冷媒ガスの圧縮は起ら
ず、空転状態となる。なお高圧室7と第2吐出室
63は逆止弁71により閉じられた状態にあつて
圧力室87に流入する。しかしこの第1流体通路
66の細孔66aは直径が約0.6mm程度で非常に
細いため、この直径が約2mm程度の第2流体通路
67を通つて圧力室87より低圧空間に流出する
冷媒ガス量は第1流体通路より流入する冷媒ガス
量と比較してはるかに多い。このため圧力室87
の冷媒ガス圧力は低圧空間の冷媒ガス圧とほぼ等
しくバネ43に付勢力に抗することができない。
On the other hand, when a current is applied to the electromagnetic coil 94 of the electromagnetic valve 9 on the second side housing 6 side, the valve train 92 is moved to the right in the figure by the magnetic force and becomes the state shown in the figure. As a result, the pressure chamber 87
The center hole 64 of the side housing 6, the center hole 9a of the electromagnetic valve 9, and the second fluid passage 67 communicate with the second suction chamber (low pressure space). Since the refrigerant gas pressure in the second suction chamber is low, the refrigerant gas pressure in the pressure chamber 87 is also low. Therefore, the plunger 81 of the valve part 8 is
Due to the urging force No. 3, it is pressed to the right side as shown in the figure. Note that since the valve portion 8 is pressed to the right side, the discharge valve 83 of the valve portion is separated from the second valve plate 61. Therefore, the communication hole 61b of the second valve plate 61 always communicates the cylinder 41 and the second discharge chamber 63. Also, the second discharge chamber 63
is the communication hole 61 in the center of the second valve plate 61
c communicates with the bearing hole 42 which communicates with the low pressure chamber. Therefore, compression of the refrigerant gas by the piston 3 and cylinder 41 on the second side housing 6 side does not occur, resulting in an idling state. Note that the high pressure chamber 7 and the second discharge chamber 63 are closed by the check valve 71 and flow into the pressure chamber 87 . However, since the pores 66a of the first fluid passage 66 are very narrow with a diameter of about 0.6 mm, the refrigerant gas flows out from the pressure chamber 87 to the lower pressure space through the second fluid passage 67, which has a diameter of about 2 mm. The amount is much larger than the amount of refrigerant gas flowing in from the first fluid passage. For this reason, the pressure chamber 87
The refrigerant gas pressure is almost equal to the refrigerant gas pressure in the low pressure space, and cannot resist the biasing force of the spring 43.

この状態では第1吐出室53に吐出される冷媒
ガスのみが図示しない凝縮器に送られ、約50%の
吐出容量で運転されている。
In this state, only the refrigerant gas discharged into the first discharge chamber 53 is sent to a condenser (not shown), and the system is operated at approximately 50% discharge capacity.

なお、第1流体通路66から低圧室に流出する
ガス量は第1吐出室53に吐出されるガス量の3
%程度となるが、この状態では低容量運転中であ
り、50%容量運転が48.5%容量運転になつても特
別な不都合は生じない。この状態で、例えば、車
室内の温度が上昇し、冷房能力を高くしたい場合
には、電磁弁9のスイツチを切り電磁コイル94
の電流を止める。これにより動弁92はバネ93
の付勢力により第2図中左側に押し付けられ、フ
ツ素樹脂製の止め具92bが中央孔64の凸部6
aに押し付けられ、凸部6aの中央に開口する中
央孔64を閉ざす。このため圧力室87と第2吸
入室62の連通が断たれ、高圧室7からガスが第
1吸入室62に流入しなくなる。一方圧力室87
には第1流体通路66の細孔66aの細い孔を通
つて少しずつ第1吐出室53の高圧ガスが流入す
る。このため圧力室87の冷媒ガス圧は除除に高
くなり、ついにはバネ43の付勢力に抗してプラ
ンジヤ81を図中左側に移動する。これにより弁
部8の吐出弁83が第2バルブプレート61と当
接する。そして弁部8は第2バルブプレート61
に押しつけられている。これにより弁部8の吐出
弁83が第2バルブプレート61の連通孔61
b,61cを閉ざす。このため第2サイドハウジ
ング6側のピストン3とシリンダ41も冷媒ガス
の圧縮を開始し、第2吐出室63の冷媒ガス圧は
高くなる。そして圧力室7の圧力よりも高くなる
と逆止弁71が開き、第2吐出室63から高圧室
7に高温、高圧の冷媒ガスが流入する。この状態
で圧縮機は100%フル運転となる。
Note that the amount of gas flowing out from the first fluid passage 66 to the low pressure chamber is 3 times the amount of gas discharged into the first discharge chamber 53.
%, but in this state it is in low capacity operation, and no special inconvenience will occur even if 50% capacity operation becomes 48.5% capacity operation. In this state, for example, if the temperature inside the vehicle increases and you want to increase the cooling capacity, turn off the solenoid valve 9 and turn off the solenoid coil 94.
stop the current. As a result, the valve train 92 is activated by the spring 93.
is pressed to the left side in FIG. 2 by the urging force of
a to close the central hole 64 opening at the center of the convex portion 6a. Therefore, communication between the pressure chamber 87 and the second suction chamber 62 is cut off, and gas no longer flows into the first suction chamber 62 from the high pressure chamber 7 . On the other hand, pressure chamber 87
The high pressure gas in the first discharge chamber 53 gradually flows into the first discharge chamber 53 through the narrow hole 66a of the first fluid passage 66. As a result, the refrigerant gas pressure in the pressure chamber 87 increases considerably, and the plunger 81 is finally moved to the left in the figure against the biasing force of the spring 43. As a result, the discharge valve 83 of the valve portion 8 comes into contact with the second valve plate 61. And the valve part 8 is a second valve plate 61
is being forced on. As a result, the discharge valve 83 of the valve portion 8 is connected to the communication hole 61 of the second valve plate 61.
Close b, 61c. Therefore, the piston 3 and cylinder 41 on the second side housing 6 side also start compressing the refrigerant gas, and the refrigerant gas pressure in the second discharge chamber 63 increases. When the pressure becomes higher than the pressure in the pressure chamber 7, the check valve 71 opens, and high temperature, high pressure refrigerant gas flows into the high pressure chamber 7 from the second discharge chamber 63. In this state, the compressor operates at 100% full capacity.

なお、第1吐出室53より第1流体通路66を
通つて圧力室87に高圧の冷媒ガスが流入する
が、中央孔64が動弁92の止め具92bで閉じ
られているため、圧力室87の圧力が第1吐出室
53の圧力と同一になればその後圧力室87には
冷媒ガスは流入しない。
Note that high-pressure refrigerant gas flows into the pressure chamber 87 from the first discharge chamber 53 through the first fluid passage 66, but since the central hole 64 is closed by the stopper 92b of the valve train 92, the pressure chamber 87 When the pressure in the first discharge chamber 53 becomes the same as that in the first discharge chamber 53, no refrigerant gas flows into the pressure chamber 87 after that.

したがつて、第1吐出室53、第2吐出室63
に流入する高圧の冷媒ガスは100%図示しない凝
縮器に送られ、無駄が生じない。
Therefore, the first discharge chamber 53 and the second discharge chamber 63
100% of the high-pressure refrigerant gas flowing into the system is sent to a condenser (not shown), eliminating waste.

このように本実施例の可変容量圧縮機は1個の
電磁弁9のオン、オフにより100%運転、50%運
転の切変えができる。この圧縮機は電磁弁1個で
吐出容量の変更が可能であるため、圧縮機の一部
に電磁弁を組み込め、非常にコンパクトになる。
そして容量の切り変えにより過剰運転、高負荷運
転が防止でき、耐久性向上、燃費の低減が可能で
ある。特に100%容量運転時に高圧冷媒ガスが電
磁弁9より低圧室に流失しないため効率がよい。
In this manner, the variable capacity compressor of this embodiment can be switched between 100% operation and 50% operation by turning one solenoid valve 9 on and off. Since this compressor can change the discharge capacity with a single solenoid valve, the solenoid valve can be incorporated into a part of the compressor, making it extremely compact.
By changing the capacity, excessive operation and high-load operation can be prevented, improving durability and reducing fuel consumption. Particularly, during 100% capacity operation, high-pressure refrigerant gas does not flow out from the solenoid valve 9 into the low-pressure chamber, resulting in high efficiency.

第1、第2図に示す実施例では、バネ43によ
り弁部8が第2バルブプレート61より離れるよ
うにしたが、バネ43の付勢方向を逆に変更し、
また弁部8のプランジヤ81の動きを逆にするこ
とにより、弁部8をバルブプレートに押し付ける
ようにし、電磁弁の通電により弁部8を開くよう
にすることもできる。この場合にも電磁弁のオン
オフにより圧縮機の容量を切り変えることができ
圧縮機の過剰運転、高負荷運転が防止できる。
In the embodiment shown in FIGS. 1 and 2, the valve portion 8 is moved away from the second valve plate 61 by the spring 43, but the urging direction of the spring 43 is changed to the opposite direction.
Furthermore, by reversing the movement of the plunger 81 of the valve part 8, the valve part 8 can be pressed against the valve plate, and the valve part 8 can be opened by energizing the solenoid valve. In this case as well, the capacity of the compressor can be changed by turning the solenoid valve on and off, thereby preventing excessive operation and high load operation of the compressor.

また実施例で斜板タイプの圧縮機を用いたが、
1枚のバルブプレートの一面に複数個の吐出弁を
もつワツブルタイプの圧縮機等、2組以上のシリ
ンダとピストンをもつ圧縮機に本発明を適用でき
る。
In addition, although a swash plate type compressor was used in the example,
The present invention can be applied to a compressor having two or more sets of cylinders and pistons, such as a wobble type compressor having a plurality of discharge valves on one side of a single valve plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の圧縮機の一実施例を示す断面
図、第2図は第1図に示す弁部の拡大図である。 1……回転軸、2……斜板、3……ピストン、
41……シリンダ部、53……第1吐出室、63
……第2吐出室、66……第1流体通路、67…
…第2流体通路、7……高圧室、8……弁部、8
7……圧力室、9……電磁弁。
FIG. 1 is a sectional view showing an embodiment of the compressor of the present invention, and FIG. 2 is an enlarged view of the valve portion shown in FIG. 1. 1... Rotating shaft, 2... Swash plate, 3... Piston,
41... Cylinder part, 53... First discharge chamber, 63
...Second discharge chamber, 66...First fluid passage, 67...
...Second fluid passage, 7...High pressure chamber, 8...Valve section, 8
7...Pressure chamber, 9...Solenoid valve.

Claims (1)

【特許請求の範囲】 1 複数個のピストンと、各ピストンの往復運動
を支持する複数個のシリンダとを有するととも
に、低圧空間、一部のシリンダからの吐出を受け
る第1吐出室、他のシリンダからの吐出を受ける
第2吐出室を有するハウジングと、該第1吐出室
と第2吐出室との間に介在し該第2吐出室から該
第1吐出室への流体のみ流入可能な逆止弁と、該
第2吐出室と該低圧空間とを開閉する弁部と該弁
部と結合され内部に圧力室を有しかつ該第1吐出
室からの流体圧力により該弁部を開閉するプラン
ジヤと、該第1吐出室と該圧力室とを結ぶ細い連
通孔をもつ第1流体通路と、該圧力室と該低圧空
間とを結ぶ第2流体通路と、該第2流体通路を開
閉する電磁弁とよりなることを特徴とする可変容
量圧縮機。 2 第1流体通路の細い連通孔の直径は0.3mm〜
1.2mmであり、第2流体通路の直径は該細い連通
孔の直径の1.2倍以上である特許請求の範囲第1
項記載の圧縮機。
[Claims] 1. It has a plurality of pistons and a plurality of cylinders that support the reciprocating motion of each piston, and also includes a low pressure space, a first discharge chamber that receives discharge from some cylinders, and other cylinders. a housing having a second discharge chamber that receives discharge from the housing; and a non-return check that is interposed between the first discharge chamber and the second discharge chamber and allows only fluid to flow from the second discharge chamber to the first discharge chamber. a valve, a valve part that opens and closes the second discharge chamber and the low pressure space, and a plunger that is coupled to the valve part and has a pressure chamber inside and opens and closes the valve part by fluid pressure from the first discharge chamber. a first fluid passageway having a thin communication hole connecting the first discharge chamber and the pressure chamber; a second fluid passageway connecting the pressure chamber and the low-pressure space; and an electromagnetic fluid passageway for opening and closing the second fluid passageway. A variable displacement compressor characterized by comprising a valve. 2 The diameter of the thin communication hole of the first fluid passage is 0.3 mm ~
1.2 mm, and the diameter of the second fluid passage is 1.2 times or more the diameter of the thin communication hole.
Compressor as described in section.
JP57077969A 1982-05-10 1982-05-10 Variable displacement compressor Granted JPS58195089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077969A JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077969A JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Publications (2)

Publication Number Publication Date
JPS58195089A JPS58195089A (en) 1983-11-14
JPH048635B2 true JPH048635B2 (en) 1992-02-17

Family

ID=13648749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077969A Granted JPS58195089A (en) 1982-05-10 1982-05-10 Variable displacement compressor

Country Status (1)

Country Link
JP (1) JPS58195089A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
ES2623055T3 (en) 2009-01-27 2017-07-10 Emerson Climate Technologies, Inc. System and discharge method for a compressor
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Also Published As

Publication number Publication date
JPS58195089A (en) 1983-11-14

Similar Documents

Publication Publication Date Title
US5871337A (en) Swash-plate compressor with leakage passages through the discharge valves of the cylinders
KR100372125B1 (en) non-return valve
JPH09324758A (en) Cam plate compressor
JPH07119631A (en) Swash plate type variable displacement compressor
JP3254871B2 (en) Clutchless one-sided piston type variable displacement compressor
JP3326909B2 (en) Swash plate type variable displacement compressor
KR20010006784A (en) non-return valve
KR100212769B1 (en) Variable volume capacity typed compressor
JPH07324678A (en) Swash plate type compressor
JPS61145379A (en) Variable displacement compressor
JPH048635B2 (en)
JPS6172889A (en) Operating shock absorber in compressor
JPH0494470A (en) Variable displacement swash plate type compressor
JPS6354907B2 (en)
US4573878A (en) Variable-delivery compressor
JPH0343687A (en) Coolant compressor and capacity control method thereof
JPH0861230A (en) Tilting plate type compressor
JP3182950B2 (en) Clutchless structure in one-side piston type variable displacement compressor.
JP2002031058A (en) Reciprocating refrigerant compressor
JP3505252B2 (en) Variable capacity swash plate compressor
JPH109146A (en) Variable displacement compressor
JPH11304027A (en) Sealing structure of pressure control valve
JP3161159B2 (en) Clutchless one-sided piston type variable displacement compressor
JPS5946377A (en) Compressor with variable capacity
JP2001027182A (en) Variable-displacement compressor and capacity control valve