JPS62237011A - Steam turbine forcibly cooling device for nuclear power generation - Google Patents

Steam turbine forcibly cooling device for nuclear power generation

Info

Publication number
JPS62237011A
JPS62237011A JP7811286A JP7811286A JPS62237011A JP S62237011 A JPS62237011 A JP S62237011A JP 7811286 A JP7811286 A JP 7811286A JP 7811286 A JP7811286 A JP 7811286A JP S62237011 A JPS62237011 A JP S62237011A
Authority
JP
Japan
Prior art keywords
turbine
pressure turbine
air
casing
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7811286A
Other languages
Japanese (ja)
Inventor
Taku Ebina
蝦名 卓
Hiroo Iwase
岩瀬 宏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7811286A priority Critical patent/JPS62237011A/en
Publication of JPS62237011A publication Critical patent/JPS62237011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To permit the forcibly cooling of a turbine casing by connecting the seat drain pipe of a main steam stop valve connected with a high pressure casing and an off-gas piping through a vacuum pump. CONSTITUTION:A main steam stop valve 7 is installed into a main steam inlet pipe 5 connected with a high pressure turbine inlet part 4, and a seat drain pipe 8 is connected with an off-gas pipe 12 for the communication between an air extracting device 11 and a funnel through a vacuum pump 23. After the turbine stop, an air stop valve 16 in a piping 15 is opened to operate the vacuum pump 23, and air is introduced into a casing 2, which is cooled. Therefore, the high pressure turbine can be cooled in a short time, and the generation of thermal stress and crack of a turbine rotor, etc. can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明の原子力発電用蒸気タービンに於ける高圧タービ
ンを停止後、速やかに分解作業に着手可能な原子力発電
用蒸気タービンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a steam turbine for nuclear power generation in which disassembly work can be started immediately after the high pressure turbine in the steam turbine for nuclear power generation is stopped.

〔従来の技術〕[Conventional technology]

火力発電用蒸気タービンに於ける強制冷却装置には、例
えば、実公昭52−57281号公報に記載の「タービ
ンの冷却装置」および特公昭60−33968号公報に
記載の「蒸気タービンの冷却方法及びその装置」等があ
る。上記の 発明は蒸気タービンの冷却方法に関しては
それぞれ優れた実用的効果を奏しているが、原子力発電
用蒸気タービン原動機に於いては、原子力発電特有の蒸
気条件および、放射線による汚染などによりこの発明が
触れていない難しい問題もある。
Forced cooling devices in steam turbines for thermal power generation include, for example, the "Turbine Cooling Device" described in Japanese Utility Model Publication No. 52-57281 and the "Steam Turbine Cooling Method and Method" described in Japanese Patent Publication No. 60-33968. "The device" etc. The above inventions each have excellent practical effects regarding the cooling method of steam turbines, but in the case of steam turbine prime movers for nuclear power generation, the inventions are difficult to achieve due to steam conditions specific to nuclear power generation and contamination by radiation. There are also difficult issues that have not been touched upon.

原子力タービンの高圧タービンに於いてタービンケーシ
ングは、定期検査、あるいは、緊急時の開放、点検を容
易に行ない得るように1周知の通り、上ケーシングと下
ケーシングとに分割出来る構造になっている。そして、
上ケーシングおよび下ケーシングは各ケーシングの水平
フランジ部分で締付はボルトによって一体化されている
In a high-pressure turbine of a nuclear power turbine, the turbine casing has a structure that can be divided into an upper casing and a lower casing, as is well known, in order to facilitate periodic inspections or opening and inspection in emergencies. and,
The upper casing and lower casing are tightened together by bolts at the horizontal flange of each casing.

又、タービンケーシングにはタービンロータ、バッキン
グケース、パツキンヘッド、ダイヤフラム(記載せず)
などが締結部品により適正な間隙を保って組込まれてい
る。更に、ケーシングの外側にはケーシングの熱放散を
防ぐために、金属保温、又は、無機質の保温が維行され
ている。高圧タービン全体としては、放射線を遮ぎるた
めの遮蔽板で覆っているのが通例である。
In addition, the turbine casing includes a turbine rotor, backing case, packing head, and diaphragm (not shown).
etc. are assembled with appropriate gaps maintained by fastening parts. Furthermore, metal heat insulation or inorganic heat insulation is maintained on the outside of the casing in order to prevent heat dissipation from the casing. The entire high-pressure turbine is usually covered with a shielding plate to block radiation.

一方、定期検査、あるいは、9急時等に高圧タービンの
分解・点検を行なうためには、ケーシングを分解し、内
蔵した部品を各々分解しなければならない、しかし、高
圧タービンに於けるケーシングの分解に当たっては、ケ
ーシング(高圧1段石)のメタル温度が150℃に冷却
されていないとタービンロータ、タービンケーシング等
に温度の熱応力がかかるため、現状では自然冷却に軽り
、タービン停止後、五目後に分解作業に着手していた。
On the other hand, in order to disassemble and inspect the high-pressure turbine during regular inspections or in emergency situations, it is necessary to disassemble the casing and disassemble each built-in component. If the metal temperature of the casing (high-pressure first stage stone) is not cooled to 150℃, thermal stress will be applied to the turbine rotor and turbine casing. Later, disassembly work began.

即ち、タービン停止後五目後にしか分解作業に着手出来
ないということは、いたづらに停止期間を長くすること
になる。
That is, the fact that disassembly work can only be started five minutes after the turbine has been stopped will unnecessarily lengthen the outage period.

このため、タービン停止後、速やかに分解作業に着手出
来るとなれば、停止期間が短縮される。
Therefore, if the disassembly work can be started immediately after the turbine is stopped, the stoppage period can be shortened.

原子力発電設備は、巨額の投資を行なって建設されたも
のであり、停止期間も最短となるように常に工夫して運
用されなければならない。
Nuclear power generation facilities have been constructed with a huge amount of investment, and must always be operated in a way that minimizes downtime.

稼動を開始すると巨額の利益(電力売却益)を生むので
停止期間の長短によって生じる経済的な得失は図り知れ
ない程大きい。従って、いかにしてタービンの停止期間
を最少にして巨額の利益を生み出すかが大きな課題であ
った。
Once the system starts operating, it generates huge profits (profits from selling electricity), so the economic gains and losses caused by the length of the outage period are immeasurably large. Therefore, a major challenge was how to minimize the period during which the turbine was stopped and generate a huge profit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、高圧タービンケーシングのメタル温度をケー
シングへ主蒸気管を介して接続されている主蒸気止め弁
のシートドレン管へ配管を接続しこの配管途上へ真空ポ
ンプを設置することにより。
The present invention measures the metal temperature of the high-pressure turbine casing by connecting piping to the seat drain pipe of the main steam stop valve, which is connected to the casing via the main steam pipe, and by installing a vacuum pump in the middle of this piping.

高圧タービン前後タービン室内の空気を導入し、従来の
自然冷却期間の天日間を二日間に短縮することによって
、タービンの停止期間を短縮する装とを提供するもので
ある。
The present invention provides a system for shortening the period during which the turbine is stopped by introducing air into the turbine chambers before and after the high-pressure turbine, thereby shortening the conventional natural cooling period of two days under the sun.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、高圧タービンのメタル温度が自然冷却
法によらず、高圧タービンの低温部であり高圧タービン
の仕事を終えた湿分分離器と接続する個所へ高圧タービ
ンの前後に設置されているシャフトバッキングリングの
櫛歯とタービンロータ間の間隙から強制的に空気を送入
し、ケーシン゛グに接続されている主蒸気入口管を介し
て接続されている主蒸気止め弁のシートドレン管へ配管
を接続し、この配管を低圧タービンから復水器を介して
接続されているオフガス配管へ結びオフガス配管へ接続
しているオフガス設備、希ガスホールドアツプ設備を介
してタービン建屋へ設置した煙突へ排出することによっ
て達成される。
The feature of the present invention is that the metal temperature of the high-pressure turbine is not controlled by the natural cooling method, but is installed before and after the high-pressure turbine in a low-temperature part of the high-pressure turbine and connected to a moisture separator that has finished its work. Air is forced into the gap between the comb teeth of the shaft backing ring and the turbine rotor, and the seat drain pipe of the main steam stop valve is connected via the main steam inlet pipe connected to the casing. This pipe is connected to the off-gas pipe connected from the low-pressure turbine via the condenser to the off-gas equipment connected to the off-gas pipe, and the chimney installed in the turbine building via rare gas hold-up equipment. This is achieved by discharging the

〔作用〕[Effect]

本発明は、高圧ケーシングに接続されている主蒸気止め
弁のシートドレン管と、オフガス配管間を真空ポンプを
介して接続することによって、高圧タービンケーシング
内に強制的に空気を送入することにより、タービンケー
シングを強制冷却することが可能となり、タービン停止
後、短時間でタービンケーシングのメタル温度を開放可
能な温度にしたことにある。
The present invention connects the seat drain pipe of the main steam stop valve connected to the high-pressure casing and the off-gas piping via a vacuum pump, thereby forcibly feeding air into the high-pressure turbine casing. The reason is that the turbine casing can be forcedly cooled, and the metal temperature of the turbine casing can be brought to a temperature that allows the turbine to be opened in a short time after the turbine is stopped.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図および第2図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

である。また、第2図は空気送入部の概略図を示す。冷
却空気1としてタービン室内の空気を高圧タービン2前
後のシャフトバッキング部3の櫛歯とタービンロー多2
4の間隙AA部からタービンケーシング2内の低温部で
ある高圧タービンの仕事を終えた湿分分離器19との接
続部へ送入し、ケーシングの内部を通過しながら徐々に
昇温し、最も高温部である約282℃の高圧タービン入
口部4を経由して、主蒸気入口管5を介して主蒸気止め
弁7へ導きシートドレン配管7と低圧タービン8と復水
器10、空気抽出器11、および、オフガス配管12を
介して真空ポンプ23を接続配管15を用いてオフガス
配管工2へ接続することにより、オフガス設備13.希
ガスホールドアツプ設備14を介してタービン建屋17
の屋外に設置されている煙突18により大気へ冷却空気
1を排出できることとなり、タービンケーシング2、お
よび、タービンロータ24等に温度の熱応力をかけるこ
となく最適な冷却を行ない得る。オフガス配管工2へ接
続することは放射線により汚染された高圧タービン内2
を通過した空気の排出処理を十分に考慮したためである
。この場合、プラント運転中は空気止弁16は閉めてお
くものとする。
It is. Moreover, FIG. 2 shows a schematic diagram of the air inlet section. The air inside the turbine chamber is used as cooling air 1 to pass through the comb teeth of the shaft backing part 3 before and after the high-pressure turbine 2 and the turbine rotor 2.
4 through the gap AA section in the turbine casing 2, which is a low-temperature section connected to the moisture separator 19 where the high-pressure turbine has finished its work. It passes through the high-pressure turbine inlet section 4, which is a high-temperature section at about 282° C., and is led to the main steam stop valve 7 via the main steam inlet pipe 5, the seat drain pipe 7, the low-pressure turbine 8, the condenser 10, and the air extractor. 11, and off-gas equipment 13. by connecting the vacuum pump 23 via the off-gas pipe 12 to the off-gas plumber 2 using the connecting pipe 15. Turbine building 17 via rare gas hold-up equipment 14
The cooling air 1 can be discharged to the atmosphere through the chimney 18 installed outdoors, and optimal cooling can be performed without applying thermal stress to the turbine casing 2, turbine rotor 24, etc. The connection to the off-gas plumber 2 is in the high pressure turbine 2 contaminated by radiation.
This is because sufficient consideration has been given to the exhaust treatment of the air that has passed through. In this case, the air stop valve 16 is kept closed during plant operation.

原子炉(記載せず)からの高温、高圧蒸気は主蒸気管1
5を介して高圧タービン2に湛かれるが。
High-temperature, high-pressure steam from the nuclear reactor (not shown) is transferred to main steam pipe 1.
5 to the high pressure turbine 2.

主蒸気5の途中には蒸気加減弁6と主蒸気止め弁7とが
設置されており、この主蒸気はこれらを介して高圧ター
ビン2に入る。高圧タービン2で仕事をした蒸気はクロ
スアラウンド管20.湿分分離器19および組合せ中間
弁21を介して低圧タービン9に導かれてここで仕事を
する。
A steam control valve 6 and a main steam stop valve 7 are installed in the middle of the main steam 5, and the main steam enters the high-pressure turbine 2 through these. The steam that has worked in the high pressure turbine 2 is transferred to the cross-around pipe 20. It is conducted via a moisture separator 19 and a combined intermediate valve 21 to a low-pressure turbine 9 where it performs work.

又、低圧タービン9で仕事を終えた蒸気は復水器10に
排出され、ここで凝縮される。
Further, the steam that has completed its work in the low pressure turbine 9 is discharged to the condenser 10, where it is condensed.

タービン2,3の内、特に、高圧タービン2では高温の
蒸気を使用しているため、タービン停止時の冷却にきわ
めて時間を要するため、本発明の冷却装置はここに適用
される。
Among the turbines 2 and 3, the high-pressure turbine 2 in particular uses high-temperature steam, and therefore requires a very long time to cool down when the turbine is stopped, so the cooling device of the present invention is applied here.

即ち、空気の導入手段により、タービン停止時の開放に
先立ってタービン室内の空気を真空ポンプ23を運転し
て、高圧タービン2へ空気を送入する。
That is, the air introducing means operates the vacuum pump 23 to supply the air in the turbine chamber to the high-pressure turbine 2 prior to opening when the turbine is stopped.

操作手段としては、タービン停止時に生じる主蒸気止め
弁79組合せ中間弁21を閉じてクロスアラウンド管2
0からのドレン管22.蒸気加減弁シートドレン管22
.主蒸気入口管のドレン管22を全開させて、各ドレン
を排出させた後に各々を閉じ、配管15の空気止弁16
を開いて真空ポンプ23を作動させてケーシング2へ空
気を導入することによって、ケーシング内の冷却を開始
する。
The operating means is to close the main steam stop valve 79 combination intermediate valve 21 that occurs when the turbine is stopped, and close the cross-around pipe 2.
Drain pipe from 022. Steam control valve seat drain pipe 22
.. The drain pipe 22 of the main steam inlet pipe is fully opened, and after each drain is discharged, each is closed, and the air stop valve 16 of the piping 15 is closed.
By opening the casing and operating the vacuum pump 23 to introduce air into the casing 2, cooling inside the casing is started.

この空気弁16は、高圧タービン2内を運転中の蒸気流
入方向とは逆方向のつまり、出口側の低温部から入口側
の低温部に向かって流下しながら、冷却させることが出
来るので、ケーシング2.タービンロータ24の熱応力
およびクラック等を防止することが出来る。
This air valve 16 can cool the high-pressure turbine 2 while flowing in the opposite direction to the steam inflow direction during operation, that is, from the low-temperature part on the outlet side toward the low-temperature part on the inlet side. 2. Thermal stress and cracks in the turbine rotor 24 can be prevented.

第4図にタービンの冷却特性を示す0本発明を実施する
ことにより、従来の自然冷却ではタービン停止ミロ後に
しか分解出来なかったものが、約、二日後に分解可能と
なり、三日間の停止期間の短縮が可能となった。
Figure 4 shows the cooling characteristics of the turbine. By implementing the present invention, things that could only be decomposed after the turbine was stopped using conventional natural cooling can now be decomposed in about two days, reducing the shutdown period to three days. It became possible to shorten the

尚、この場合、「タービンメタル温度降下が同様の温度
降下率(約5℃/ Hz )に沿って、冷却されるよう
に真空ポンプの開度を調節する」 「伸び差がロータシ
ョートの傾向となるので伸び差計を十分確認する」 「
ターニング装置が連続的に運転されているかを十分確認
する」ことが必要である。
In this case, ``adjust the opening of the vacuum pump so that the temperature drop of the turbine metal follows the same temperature drop rate (approximately 5℃/Hz)'' and ``the difference in elongation is the tendency for rotor short-circuiting.'' Please check the differential extensometer carefully.
It is necessary to thoroughly check that the turning equipment is being operated continuously.

従って、以上の操作を繰返すことにより、各部分に対し
て、急激な温度差を作用させることよっておだやかな冷
却を達成することが出来るので、過大な熱応力も発生せ
ずクラック、および、過度な伸び差も生じさせないで、
ケーシングのメタル温度が150℃となった時点で冷却
が完了となり、この時点で強制冷却装置の作動を停止と
し1分解を行なう。換言すれば、この構成によって空気
をケーシングに送入することによって達せられるもので
あって、タービン上流側からの送入によっては到底達せ
られるものではない。
Therefore, by repeating the above operations, it is possible to achieve gentle cooling by applying a sudden temperature difference to each part, thereby preventing cracks and excessive thermal stress. Without causing any difference in elongation,
Cooling is completed when the metal temperature of the casing reaches 150° C. At this point, the operation of the forced cooling device is stopped and one decomposition is performed. In other words, this configuration can achieve this by introducing air into the casing, and cannot at all be achieved by introducing air from the upstream side of the turbine.

第3図はシャフトバッキング部櫛歯とタービンローター
との間隙の詳細を示したものであり、高圧タービン2へ
の蒸気流入は印のように真空ポンプ23によって低温部
より高温部への径路を示す。
Figure 3 shows the details of the gap between the comb teeth of the shaft backing part and the turbine rotor, and the steam inflow to the high-pressure turbine 2 is routed from the low-temperature part to the high-temperature part by the vacuum pump 23, as shown by the mark. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、強制的に空気を送入するための真空ポ
ンプ、真空ポンプを接続する配管、および、運転中にこ
の配管を分解するための、元弁のみの設置で、高圧ター
ビンの冷却を短時間に行なうことが可能となり、ケーシ
ング、タービンロータなどの熱応力、クラックなどが回
避可能となり、効率の良い冷却が実施出来て停止時間の
短縮が図れる。
According to the present invention, a high-pressure turbine can be cooled by installing only a vacuum pump for forcibly feeding air, piping connecting the vacuum pump, and a main valve for disassembling this piping during operation. This can be done in a short time, making it possible to avoid thermal stress and cracks in the casing, turbine rotor, etc., allowing efficient cooling and shortening downtime.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系M図、第2図は空気送入
部の概略図、第3図は第2図に於ける■部詳細図、第4
図は本発明と従来の冷却特性図である。 1・・・冷却用空気。
Fig. 1 is a system M diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram of the air inlet section, Fig. 3 is a detailed view of the
The figure shows the cooling characteristics of the present invention and the conventional cooling characteristic. 1... Cooling air.

Claims (1)

【特許請求の範囲】[Claims] 1、原子力発電用蒸気タービンの高圧タービンに於ける
定期検査、あるいは、緊急時等に蒸気タービンを停止し
て分解を行なう場合に、前記高圧タービン前後のタービ
ンロータとシャフトバッキングリング櫛歯との間隙から
強制的に送入させた空気を前記高圧タービン内から排出
させるために、既設置の主蒸気止め弁用シートドレン管
に真空ポンプと共に空気排出用配管を介して接続させ、
かつ、前記空気排出用配管を低圧タービン、復水器、空
気抽出器を介してタービン内の放射線によつて汚染され
たガスを低濃度にし、安全に大気へ排出させるために設
置されているオフガス排出配管へ接続し、オフガス設備
および希ガスホールドアップ設備へ導いて大気へ排出す
ることを特徴とする原子力発電用蒸気タービン強制冷却
装置。
1. During periodic inspection of the high-pressure turbine of a steam turbine for nuclear power generation, or when stopping and disassembling the steam turbine in an emergency, the gap between the turbine rotor and the shaft backing ring comb teeth before and after the high-pressure turbine. In order to exhaust the air forcibly introduced from the high-pressure turbine from inside the high-pressure turbine, connect it to the already installed main steam stop valve seat drain pipe together with a vacuum pump via an air exhaust pipe,
and an off-gas installed to lower the concentration of radiation-contaminated gas in the turbine and safely discharge it to the atmosphere through the air exhaust piping, a low-pressure turbine, a condenser, and an air extractor. A forced cooling system for a steam turbine for nuclear power generation, which is connected to an exhaust pipe, and is led to an off-gas facility and a rare gas hold-up facility, and is then discharged to the atmosphere.
JP7811286A 1986-04-07 1986-04-07 Steam turbine forcibly cooling device for nuclear power generation Pending JPS62237011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7811286A JPS62237011A (en) 1986-04-07 1986-04-07 Steam turbine forcibly cooling device for nuclear power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7811286A JPS62237011A (en) 1986-04-07 1986-04-07 Steam turbine forcibly cooling device for nuclear power generation

Publications (1)

Publication Number Publication Date
JPS62237011A true JPS62237011A (en) 1987-10-17

Family

ID=13652800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7811286A Pending JPS62237011A (en) 1986-04-07 1986-04-07 Steam turbine forcibly cooling device for nuclear power generation

Country Status (1)

Country Link
JP (1) JPS62237011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140686A (en) * 2014-01-27 2015-08-03 株式会社東芝 Steam turbine pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799219A (en) * 1980-12-12 1982-06-19 Hitachi Ltd Air cooling method and apparatus for steam turbine
JPS57212305A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Turbine casing
JPS58214896A (en) * 1982-06-07 1983-12-14 株式会社東芝 Off-gas processing device
JPS58220907A (en) * 1982-06-15 1983-12-22 Hitachi Ltd Cooling of steam turbine and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799219A (en) * 1980-12-12 1982-06-19 Hitachi Ltd Air cooling method and apparatus for steam turbine
JPS57212305A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Turbine casing
JPS58214896A (en) * 1982-06-07 1983-12-14 株式会社東芝 Off-gas processing device
JPS58220907A (en) * 1982-06-15 1983-12-22 Hitachi Ltd Cooling of steam turbine and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140686A (en) * 2014-01-27 2015-08-03 株式会社東芝 Steam turbine pipe

Similar Documents

Publication Publication Date Title
JP2954797B2 (en) Forced cooling system for steam turbine
CN106523044A (en) Cylinder temperature acceleration cooling method of nuclear power station steam turbine high/medium-pressure cylinder
Arakelyan et al. Increased reliability, manoeuvrabity and durability of steam turbines through the implementation of the generator driving mode
CN114234173B (en) Nuclear power station steam generator cooling system
JPS62237011A (en) Steam turbine forcibly cooling device for nuclear power generation
US3919846A (en) Turbine by-pass arrangement for thermal power plants
JPH08218811A (en) Cooling method for steam turbine and device therefor
JPS58220907A (en) Cooling of steam turbine and apparatus therefor
JPH0281905A (en) Forced cooling method for steam turbine and cooling device for the same
CN204939504U (en) Comprise the TRT power generation system of electrically operated valve
JPS591645A (en) Recovering device for waste heat for copper smelting converter
JPS5853603A (en) Method of sealing turbine gland by utilizing waste heat
JPH0650106A (en) Cooling/heating device for steam turbine
CN212079466U (en) Closed cooling water system of gas turbine
RU2795489C1 (en) Installation for improvement of gas production efficiency
CN220582927U (en) Air separation system
CN203703140U (en) Nitrogen sealing device
CN215333020U (en) Steam inlet system of double-pressure steam turbine for natural gas waste heat power generation
JPS61201802A (en) Turbine forced cooling method and its device
JPH06330709A (en) Power generation plant
US3895887A (en) Gas turbine for use in a closed cycle plant
RU2098640C1 (en) Steam turbine cooling method
CN116906828A (en) Skid-mounted temperature and pressure reducing system and working method thereof
JPS6159479B2 (en)
JPS635103A (en) Auxiliary steam supply method of combined cycle power plant