JPS5853603A - Method of sealing turbine gland by utilizing waste heat - Google Patents

Method of sealing turbine gland by utilizing waste heat

Info

Publication number
JPS5853603A
JPS5853603A JP14949681A JP14949681A JPS5853603A JP S5853603 A JPS5853603 A JP S5853603A JP 14949681 A JP14949681 A JP 14949681A JP 14949681 A JP14949681 A JP 14949681A JP S5853603 A JPS5853603 A JP S5853603A
Authority
JP
Japan
Prior art keywords
steam
turbine
exhaust gas
gland
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14949681A
Other languages
Japanese (ja)
Inventor
Shinji Hiei
日栄 信治
Yoichi Ichiki
一木 洋一
Asao Asano
浅野 朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP14949681A priority Critical patent/JPS5853603A/en
Publication of JPS5853603A publication Critical patent/JPS5853603A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction

Abstract

PURPOSE:To reduce the consumption of a steam generated from an atomic furnace by preheating water supplied to a gland steam producer by utilizing a waste heat generated from an exhaust gas recombination device in a turbine gland steam system. CONSTITUTION:Water supplied from an supplementary feed water system 22 is supplied to a turbine gland steam generator 1 through an exhaust gas condenser 2. Supplied water passing through said exhaust gas condenser 2 is preheated by a recombined produced gas which is elevated in its temperature by an exothermic reaction in an exhaust gas recombination device 12. Fed water is exaporated by the high temperature steam introduced from a steam bleeding system 23 in said gland steam generator 1 and is supplied to a gland sealing position 21 of a steam turbine 20 to make sealing operation. Thus, the consumption of the steam generated from an atomic furnace which is a heat source of said gland steam generator can be saved efficiently.

Description

【発明の詳細な説明】 本発明は、沸騰水盤および加圧水go原子力発電プラン
トのタービングランド蒸気発生装置Kllする4hOで
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a 4hO for boiling water basin and pressurized water go turbine gland steam generator of a nuclear power plant.

上記の原子力発生プラントには1従来一般に、次に説明
するタービングランド蒸気系、及び気体廃11[物処理
系が設けられている。そしてタービングランド蒸気系に
おいては原子炉で発生させ良蒸気の一部をタービングラ
ンド部をシールする九めに消費して熱エネルギーのロス
を生じておシ、−万、気体廃棄物処理系では廃熱が発生
するので、これを原子炉補機冷却系によって冷却してい
る。
The above-mentioned nuclear power generation plant is generally provided with a turbine gland steam system and a gaseous waste treatment system, which will be described next. In the turbine gland steam system, a portion of the good steam generated in the reactor is consumed in sealing the turbine gland, resulting in a loss of thermal energy. Since heat is generated, this is cooled by the reactor auxiliary cooling system.

第1図は上記のタービングランド蒸気系の系統図である
。蒸気タービン20は原子炉(図示せず)で発生した高
温高圧蒸気によって回転せしめられる。上記タービン2
0のグランドシール部21゜21の蒸気濡洩を防止する
ため、タービングランド蒸気発生装置1會設け、ターピ
ング2ンド蒸気供給管5及びタービングランド蒸気調圧
弁8を介して蒸気を供給する。
FIG. 1 is a system diagram of the turbine gland steam system mentioned above. The steam turbine 20 is rotated by high-temperature, high-pressure steam generated in a nuclear reactor (not shown). The above turbine 2
In order to prevent steam leakage from the gland seal portion 21.degree. 21, a turbine gland steam generator 1 is provided, and steam is supplied via a tarped 2nd steam supply pipe 5 and a turbine gland steam pressure regulating valve 8.

上記のタービングランド蒸気発生装置IK蒸気を発生さ
せるため、補給水系22から供給水入口管3t−介して
ほぼ常温の供給水を供給し、蒸気タービンの抽気系23
から原子炉発生蒸気入口管6を介して高温蒸気を供給す
る。供給水に熱を与えた蒸気は一部液化し、給水加熱器
24に導かれる。
In order to generate the above-mentioned turbine gland steam generator IK steam, supply water at approximately room temperature is supplied from the make-up water system 22 through the supply water inlet pipe 3t, and the steam turbine extraction system 23
High-temperature steam is supplied from the reactor via the reactor-generated steam inlet pipe 6. The steam that has given heat to the feed water is partially liquefied and guided to the feed water heater 24 .

を九、上述のタービングランド蒸気系をバックアップす
るため、所内蒸気系25の蒸気を所内蒸気止め弁15及
び所内蒸気入口管14を介してタービンのグランドクー
ル部21に供給すること一可能になっている。
(9) In order to back up the turbine ground steam system mentioned above, it is possible to supply steam from the station steam system 25 to the ground cooling section 21 of the turbine via the station steam stop valve 15 and the station steam inlet pipe 14. There is.

上述のようKして、タービングランド蒸気発生装置11
によって消費される原子炉発生蒸気の量は、例えば11
00MW6級の原子力発電プラントの場合、15000
kg/h強である。
As described above, the turbine gland steam generator 11
For example, the amount of reactor generated steam consumed by
15,000 for a 00MW class 6 nuclear power plant
kg/h.

wi2図は前述の気体廃棄物処理系の系統図である。Figure wi2 is a system diagram of the aforementioned gaseous waste treatment system.

原子力発電プラントにおいては、炉心で発生した水素ガ
ス及び酸素ガスが復水器の残留ガス中に混入する。気体
廃棄物処理系は上記残留ガス中の水素ガス濃度を可燃限
界(4マOt%)以下に希釈してこれをホールドアツプ
装置に送る。
In nuclear power plants, hydrogen gas and oxygen gas generated in the reactor core mix into residual gas in the condenser. The gaseous waste treatment system dilutes the hydrogen gas concentration in the residual gas to below the flammable limit (4%) and sends it to the hold-up device.

(第2図参照)主復水器26内の残留ガス(排ガス)は
予熱器11で加熱された後、排ガス再結合器12に送ら
れ、触媒反応によって含有水素ガスと含有酸素ガスとが
化合せしめられる。水素と酸素との化合は発熱反応であ
るから排ガスは昇温する。これを排ガス復水器2に導き
、原子炉補機冷却系27から供給される冷却水によって
冷却する。上記の排ガス復水器2で液化した水は主復水
器26に導かれ、気体成分は除湿冷却器13によって除
湿されt後金ガスホールドアツプ装置28に送られ、気
体核分裂生成物の放射能を減衰させてから大気中に放出
される。
(See Figure 2) The residual gas (exhaust gas) in the main condenser 26 is heated in the preheater 11 and then sent to the exhaust gas recombiner 12, where the hydrogen gas and oxygen gas are combined by a catalytic reaction. I am forced to do it. Since the combination of hydrogen and oxygen is an exothermic reaction, the temperature of the exhaust gas increases. This is led to the exhaust gas condenser 2 and cooled by cooling water supplied from the reactor auxiliary equipment cooling system 27. The water liquefied in the exhaust gas condenser 2 is led to the main condenser 26, and the gaseous components are dehumidified by the dehumidification cooler 13 and then sent to the gold gas hold-up device 28, where the radioactivity of gaseous fission products is is attenuated before being released into the atmosphere.

上記の排ガス復水器2が消費する原子炉補機冷却系の冷
却水量は、例えば1100 MWe 級の原子力発電プ
ラントの場合、約500 ma 7hであり、冷却水に
よって吸収される熱量は約4X10”1(Cat/hで
ある。
The amount of cooling water consumed by the above-mentioned exhaust gas condenser 2 in the reactor auxiliary cooling system is approximately 500 ma 7 hours in the case of a 1100 MWe class nuclear power plant, for example, and the amount of heat absorbed by the cooling water is approximately 4 x 10" 1 (Cat/h.

本発明は上記の事情に鑑みて為され、排ガス再結合によ
って発生する廃熱をタービングランド蒸気発生装置の熱
源として利用し、原子力発電プラ熱 ントの総合効率を向上せしめ得る方法を提供することを
目的とするものである。
The present invention has been made in view of the above circumstances, and aims to provide a method for improving the overall efficiency of a nuclear power plant by utilizing waste heat generated by exhaust gas recombination as a heat source for a turbine gland steam generator. This is the purpose.

上記の目的を達成するため、本発明に係る方法は、廃ガ
ス再結合器から発生する廃熱を用いて、タービングラン
ド蒸気発生装置の供給水を予熱するととによシ、排ガス
の再結合による生成ガスの冷却と、タービングランド蒸
気発生装置供給水の予熱とを同時に行い、タービングラ
ンド蒸気発生装置の熱源として使用する原子炉発生蒸気
の消費量を節減することを特徴とする。
In order to achieve the above object, the method according to the present invention uses the waste heat generated from the waste gas recombiner to preheat the feed water of the turbine gland steam generator. It is characterized by cooling the generated gas and preheating the water supplied to the turbine grand steam generator at the same time, thereby reducing the consumption of reactor generated steam used as a heat source for the turbine grand steam generator.

次に1本発明の一実施例t−第3図について説明する。Next, an embodiment of the present invention shown in FIG. 3 will be described.

本実施例においては、補給水系22からの供給水を排ガ
ス復水器2を介してタービングランド蒸気発生器lに供
給する。
In this embodiment, supply water from the make-up water system 22 is supplied to the turbine gland steam generator l via the exhaust gas condenser 2.

上記の排ガス復水器2t−通過する供給水は、排ガス再
結合器12における発熱反応によって昇温した再結合生
成ガスによって予熱される。上記排ガス復水器2の高温
側流体は、主復水器26から排ガスを抽出して予熱器1
1で予熱した後再結合器12で触媒反ろを行わせて昇−
させ廃ガス供給圧力調壷弁9を介して排ガス復水器2に
送入する。
The feed water passing through the exhaust gas condenser 2t is preheated by the recombined gas heated by the exothermic reaction in the exhaust gas recombiner 12. The high-temperature side fluid of the exhaust gas condenser 2 is extracted from the main condenser 26 and is then supplied to the preheater 1.
After preheating in step 1, the catalyst is heated in recombiner 12.
The exhaust gas is fed to the exhaust gas condenser 2 via the exhaust gas supply pressure regulating valve 9.

AMの排ガスは排ガス復水器2で冷却され、その一部が
液化する。液化した成分(主として水)は主復水器26
′に4き、気体成分は除湿冷却器13會終て希ガスホー
ルドアンプ装置28に導く。
The exhaust gas of the AM is cooled in the exhaust gas condenser 2, and a part of it is liquefied. The liquefied components (mainly water) are transferred to the main condenser 26
After passing through the dehumidifying cooler 13, the gas component is led to the rare gas hold amplifier device 28.

前記の排ガス復水器2の低昌側流体である供給水は補給
水系22から排ガス復水器2に導かれ、ここ1jtIり
i通する間に高温の排ガスと熱父換して昇1し、タービ
ングランド蒸気発生装置1に流入する。流入し次供給水
は、タービングランド蒸気発生装置1において抽気系2
3から送入された高龜蒸気によって加熱されて蒸気とな
る。このようにして発生した蒸気は、第1図について説
明した従来技術に係る方法と同様にして蒸気タービン2
0のグランド7一ル部21に供給してシール作用を行わ
せ、グランド蒸気復水器29に回収する。
The feed water, which is the low-temperature side fluid of the exhaust gas condenser 2, is led from the make-up water system 22 to the exhaust gas condenser 2, and while passing through here, it exchanges heat with the high-temperature exhaust gas and rises. , flows into the turbine gland steam generator 1. The inflowing supply water is passed through the extraction system 2 in the turbine gland steam generator 1.
It is heated by the high-temperature steam sent in from 3 and becomes steam. The steam thus generated is transferred to a steam turbine in a manner similar to the prior art method described with reference to FIG.
It is supplied to the gland 7-1 part 21 of No. 0 to perform a sealing action, and is recovered to the gland steam condenser 29.

以上説明しtように本発明を適用してグランドシール用
の蒸気を発生させると、タービングランド蒸気発生装置
1に流入する供給水は排ガス復水器2において予熱され
ているので、抽気系23から送入する加熱用蒸気6の消
費−が低減される。
When the present invention is applied to generate steam for gland sealing as described above, the supply water flowing into the turbine gland steam generator 1 is preheated in the exhaust gas condenser 2, so The consumption of the heating steam 6 to be fed is reduced.

たとえば1100MWeNの1皇子力発電プラントにお
いて、従来技術に係る方法ではタービングランドモール
用の蒸気を発生させるために9.5X10゜[cat/
 hの原子炉発生蒸気を消費するが、本発明を適用する
と排ガス再結合による発生熱t&8XIO” KCat
/ht利用できるので原子炉発生蒸気消費量の約40%
が節減できる。
For example, in a 1100 MWeN Ichiji power plant, the conventional method uses 9.5×10° [cat/
h of reactor generated steam is consumed, but when the present invention is applied, the generated heat due to exhaust gas recombination is consumed
/ht can be used, so approximately 40% of the steam consumption generated by the reactor is consumed.
can be saved.

その上、従来技術に係る方法においては、原子炉補機冷
却系27(第2図参照)の冷却水を用いて排ガス復水器
2を冷却しなければならないが、本発明方法では上記の
冷却水を使用しないので原子炉補機冷却系の冷却水循環
負荷が低減される。
Furthermore, in the method according to the prior art, the exhaust gas condenser 2 must be cooled using the cooling water of the reactor auxiliary cooling system 27 (see FIG. 2), but in the method of the present invention, the cooling water described above must be used. Since no water is used, the cooling water circulation load on the reactor auxiliary equipment cooling system is reduced.

例えば1100MWe級の原子力発電グランドの場合、
従来方法における冷却水循環流量はsoom”/hで、
この循環負荷は補機冷却系統の負荷の約lθ%に相当す
るものである。従って、本発明方法によれば原子炉補機
冷却系設備容置を約10%低減せしめ得る。
For example, in the case of a 1100 MWe class nuclear power generation ground,
The cooling water circulation flow rate in the conventional method is soom”/h,
This circulating load corresponds to about lθ% of the load on the auxiliary equipment cooling system. Therefore, according to the method of the present invention, the equipment space for the reactor auxiliary equipment cooling system can be reduced by about 10%.

以上説明した本発明方法の構成から容易に理解し得るよ
うに、従来技術に係るタービングランドシール方法を実
施していた原子力発電プラント設備を用いて本発明に係
るタービングランドシール方法を実施する場合、従来用
いていた主l!機器はほとんどそのtま使用することが
でき島配管系統を改造することの他、別設の追加設備を
要しない。
As can be easily understood from the configuration of the method of the present invention explained above, when implementing the turbine gland sealing method according to the present invention using nuclear power plant equipment that has implemented the turbine gland sealing method according to the prior art, Previously used main l! The equipment can be used for almost the entire time, and apart from modifying the island piping system, no additional equipment is required.

そして、例えばI100MWI級の原子力発電プラント
において本発明を実施すると、発電熾出力で約200K
Wの出力増加が得られる。この出力増はプラント#it
Im率を75%として試算すると1年間約¥16.04
)0.000の収益増となる。
For example, if the present invention is implemented in an I100MWI class nuclear power plant, the power generation output will be approximately 200K.
An increase in output of W is obtained. This increase in output is the plant #it
If the Im rate is 75%, it will cost approximately 16.04 yen per year.
) Revenue will increase by 0.000.

以上説明し友ように、本発明は、原子炉発生蒸気を動力
源とする蒸気タービンのタービングランド蒸気発生装置
に供給水を導き、上記タービングランド蒸気発生装置で
発生した蒸気によって蒸気タービンのグランドシール部
のシールを行うタービングランド蒸気系において、排ガ
ス再結合器から発生する廃熱を用いて酌記タービングラ
ンド蒸気発生装置の供給水を予熱することにより、ター
ビングランド蒸気発生装置の熱源である原子炉発生蒸気
の消費量を節減し、原子力発電プラントの総会効率を向
上せしめることができる。
As explained above, the present invention leads supply water to a turbine gland steam generator of a steam turbine using nuclear reactor generated steam as a power source, and uses the steam generated in the turbine gland steam generator to seal the steam turbine gland. In the turbine gland steam system, which performs sealing of the turbine gland steam generator, waste heat generated from the exhaust gas recombiner is used to preheat the supply water of the turbine gland steam generator, thereby reducing the The consumption of generated steam can be reduced and the overall efficiency of nuclear power plants can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般に用いられているタービングランド蒸
気系の系統図、第2図は同じく気体廃棄物処理系の系統
図、第3図は本発明に係る廃熱杓用によるタービングラ
ンドシール方法の一実施例における系統図である。 l・・・タービングランド蒸気発生装置、2・・・排ガ
ス復水器、11・・・予熱器、12・・・排ガス再結合
器、13・・・廃ガス除湿冷却器、20・・・蒸気ター
ピ/、21・・・#メタ−ビングランドシール部。 代理人 弁理士 秋本正実
Fig. 1 is a system diagram of a turbine gland steam system commonly used in the past, Fig. 2 is a system diagram of a gaseous waste treatment system, and Fig. 3 is a system diagram of a turbine gland sealing method using a waste heat ladle according to the present invention. It is a system diagram in one example. l... Turbine grand steam generator, 2... Exhaust gas condenser, 11... Preheater, 12... Exhaust gas recombiner, 13... Waste gas dehumidification cooler, 20... Steam Tarpy/, 21...#Meta-bing land seal part. Agent Patent Attorney Masami Akimoto

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉発生蒸気を動力源とする蒸気タービンのター
ビングランド蒸気発生装置く供給水を導き、上記タービ
ングランド蒸気発生装置で発生した蒸気により蒸気ター
ビンのグランドシール部のシールを行うタービングラン
ド蒸気系において、排ガス再結合器から発生する廃熱を
用いて前記の供給水を予熱するととにより、ターピング
楚ンド蒸気発生装置の熱源である原子炉発生蒸気の消費
量を節減することt%黴とする廃熱利用によるタービン
グランドクール方法。
1. A turbine grand steam system that guides supply water to the turbine grand steam generator of a steam turbine powered by reactor-generated steam, and seals the grand seal part of the steam turbine with the steam generated by the turbine grand steam generator. In this method, waste heat generated from the exhaust gas recombiner is used to preheat the feed water, thereby reducing the consumption of reactor generated steam, which is the heat source of the tarped steam generator, by t% mold. Turbine ground cooling method using waste heat.
JP14949681A 1981-09-24 1981-09-24 Method of sealing turbine gland by utilizing waste heat Pending JPS5853603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14949681A JPS5853603A (en) 1981-09-24 1981-09-24 Method of sealing turbine gland by utilizing waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14949681A JPS5853603A (en) 1981-09-24 1981-09-24 Method of sealing turbine gland by utilizing waste heat

Publications (1)

Publication Number Publication Date
JPS5853603A true JPS5853603A (en) 1983-03-30

Family

ID=15476415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14949681A Pending JPS5853603A (en) 1981-09-24 1981-09-24 Method of sealing turbine gland by utilizing waste heat

Country Status (1)

Country Link
JP (1) JPS5853603A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203507A (en) * 1984-03-28 1985-10-15 Sumitomo Rubber Ind Ltd Radial-ply tire
JPS6112407A (en) * 1984-06-29 1986-01-20 Yokohama Rubber Co Ltd:The Aired radial tire for passenger car
JPS6112409A (en) * 1984-06-29 1986-01-20 Yokohama Rubber Co Ltd:The Aired radial tire for passenger car
JPS6223801A (en) * 1985-07-24 1987-01-31 Bridgestone Corp Heavy duty pneumatic tire having low rolling resistance
JPS6285702A (en) * 1985-10-12 1987-04-20 Bridgestone Corp Radial type for passenger car
JPS62251203A (en) * 1986-04-22 1987-11-02 Bridgestone Corp Pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203507A (en) * 1984-03-28 1985-10-15 Sumitomo Rubber Ind Ltd Radial-ply tire
JPS6112407A (en) * 1984-06-29 1986-01-20 Yokohama Rubber Co Ltd:The Aired radial tire for passenger car
JPS6112409A (en) * 1984-06-29 1986-01-20 Yokohama Rubber Co Ltd:The Aired radial tire for passenger car
JPH0443804B2 (en) * 1984-06-29 1992-07-17 Yokohama Rubber Co Ltd
JPH0443803B2 (en) * 1984-06-29 1992-07-17 Yokohama Rubber Co Ltd
JPS6223801A (en) * 1985-07-24 1987-01-31 Bridgestone Corp Heavy duty pneumatic tire having low rolling resistance
JPS6285702A (en) * 1985-10-12 1987-04-20 Bridgestone Corp Radial type for passenger car
JPS62251203A (en) * 1986-04-22 1987-11-02 Bridgestone Corp Pneumatic tire

Similar Documents

Publication Publication Date Title
Jaszczur et al. Hydrogen production using high temperature nuclear reactors: Efficiency analysis of a combined cycle
CN101714413B (en) High-temperature gas cooled reactor steam generating system and method
JP2880925B2 (en) Hydrogen combustion gas turbine plant
JP2007291869A (en) Combined brayton cycle power generation system device using nuclear heat
CN103928064A (en) Thermally-operated conversion system
US20170098483A1 (en) Heat exchange system and nuclear reactor system
CN209591545U (en) A kind of secondary circuit security system for reactor emergency shut-down
JPS5853603A (en) Method of sealing turbine gland by utilizing waste heat
US6862330B2 (en) Systems and methods of producing hydrogen using a nuclear reactor
JPH05203792A (en) Power plant equipment and operation thereof
JP2007063066A (en) Method and equipment for producing hydrogen
CN111088082A (en) Energy-saving gasifier water-cooled wall cooling and burner cooling system and using method thereof
CN210637123U (en) Tower type photothermal power station bypass valve pressure reduction system
CN211713025U (en) Energy-saving gasifier water-cooled wall cooling and nozzle cooling system
JPS61258907A (en) Power system
Sato et al. Thermal load control methods for the HTTR-IS nuclear hydrogen production system
GB967493A (en) Processes for converting heat into mechanical work
JP2815424B2 (en) Radioactive gas waste treatment equipment
JPS58223800A (en) Method of heating condensed liquid waste storage tank for atomic power plant
JPS6332396A (en) Gas recombination facility
JP2809764B2 (en) Radioactive gas waste treatment equipment
JPS5910897A (en) Off-gas processing device
JPS59117587A (en) Coal gasification process
JPS6048615B2 (en) Method for recovering power from oxidation reaction process exhaust gas
Kim et al. Survey on Cooled-Vessel Designs in High Temperature Gas-Cooled Reactors