JPS6223425B2 - - Google Patents

Info

Publication number
JPS6223425B2
JPS6223425B2 JP55006596A JP659680A JPS6223425B2 JP S6223425 B2 JPS6223425 B2 JP S6223425B2 JP 55006596 A JP55006596 A JP 55006596A JP 659680 A JP659680 A JP 659680A JP S6223425 B2 JPS6223425 B2 JP S6223425B2
Authority
JP
Japan
Prior art keywords
thin film
battery
annular
sealing body
film portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55006596A
Other languages
Japanese (ja)
Other versions
JPS56103861A (en
Inventor
Tomokazu Mitamura
Nobuharu Koshiba
Akira Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP659680A priority Critical patent/JPS56103861A/en
Publication of JPS56103861A publication Critical patent/JPS56103861A/en
Publication of JPS6223425B2 publication Critical patent/JPS6223425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ電池の防爆機構に関するもの
である。 アルカリ電池においては、ガス発生を防ぐこと
は特に困難であり、負極に亜鉛を使用する場合な
どは電池の開路状態においてもわずかではあるが
亜鉛が溶解して水素ガスが発生する。また二次電
池の場合は、過充電ないしは過放電によりガス発
生が起こる。普通、電池は電解液の漏出等の防止
のため密閉構造になつているが、特にアルカリ電
解液を使用する場合は、そのクリープ性による漏
出防止のため電池容器が極めて密に密封されてい
る。そこでガス発生が起こると、ガスが内部に蓄
積され、容器の内圧が上昇する。さらに誤つて不
当な条件で放電されたり貯蔵されたりした場合に
は、その内圧上昇も急激で、遂には電池容器の破
裂に至り、電池使用機器や電池取扱者に傷害を及
ぼすことがあり極めて危険である。 本発明は、アルカリ電池において、内圧上昇時
のガス逸散機構に関するもので、急激なガス発生
においても確実にガスを電池外部へ排出させ、電
池容器の破裂を防止するものである。 従来のガス逸散機構として、封口体の一部に薄
膜部を設け、ガス圧の上昇によつて薄膜が破れて
ガスが逃げるというものがあつたが、安全なガス
逸散のためには内圧の比較的低い状態(30Kg/cm2
程度以下)で薄膜が十分破れなければならない。
そのため薄膜の肉厚としては、0.2mm以下に成形
する必要があつた。しかし、0.2mm以下の薄膜を
有する封口体の樹脂成形には、かなり高度な技術
を要し、成形金型の精度、条件管理等で難しい面
があり、成形不良の発生が避けられなかつた。 そこで、本発明は、薄膜部が0.2mm以上に成形
された封口体を使用したアルカリ電池において
も、ガス発生時に安全かつ確実にガスを外部に逸
散させる構造を提供するものである。 以下、本発明をその実施例に基づき説明する。 第1図は、本発明の実施例におけるアルカリマ
ンガン電池を示す。1は正極缶で、その内部には
二酸化マンガンと黒鉛からなる円筒形の成形正極
合剤2が配置されていて、その内側に苛性カリ、
粘性物質及び汞化亜鉛からなるゲル状負極3がセ
パレータ4を介して注入されている。5は正極缶
1の開口を封口する比較的軟質のポリエチレン等
からなる合成樹脂製封口体、6はその外側に配し
た負極底板、7は負極集電子である。負極底板6
はガス逸散孔6aを有し、周縁部を硬質の合成樹
脂、例えばエポキシ樹脂からなる環状体8に埋設
している。また封口体5は、缶1の開口部近傍の
外側に溝入れ加工をして形成した棚部1aと缶1
の開口端1bの折曲部とに挾圧される断面コ字状
部5aと、集電子7を密にとりかこむ円筒部5b
と、両者を連結する環状薄膜部5c、およびコ字
状部5aの端部に形成されセパレータ4の外側に
接する円筒部5dからなる。 9は正極端子キヤツプ、10はポリ塩化ビニル
などの熱収縮性樹脂チユーブ、11,12は絶縁
リング、13は外装缶である。 この例では、環状体8の内径aと封口体5の薄
膜部5cの外径cとは等しく、環状体8の内側上
端のエツジ部8aは環状の薄膜部5cとコ字状部
5aとの連結部に当接している。 第2図は、ガス発生時における封口体の環状薄
膜部付近の断面拡大図である。ガス発生のため封
口体5の環状薄膜部5cが膨張し、環状体8の内
壁上端エツジ部8aによつて矢印xに示す方向の
剪断力が生じている。ガス発生が継続して電圧内
圧の上昇に伴い環状薄膜部5cの変形も増大する
と同時に剪断力も増大し、遂には薄膜部5cのエ
ツジ部8aに当たる部分5c′が破れ、ガスが負極
底板6の逸散孔6aより外部へ排出される仕組み
になつている。 次に、環状体8の内径a、封口体の環状薄膜部
5cの内径b、外径cの各寸法を種々変え、環状
体8の内壁上端エツジ部8aが環状薄膜部5cの
外縁、中間部、内縁に接する状態、即ち、a=c
の場合はエツジ部8aが環状薄膜部5cの外縁に
位置し、a=b+c/2の場合はエツジ部8aが薄膜 部5cの中間部に位置し、a=bの場合はエツジ
部8aが薄膜部5cの内縁に位置する寸法関係で
薄膜部5cが破壊されるときの圧力を測定する実
験を行つた。その結果を次表に示す。なお、薄膜
部の厚さは0.3mmとし、この薄膜破壊時の圧力
は、試料5個についての平均値で表した。
The present invention relates to an explosion-proof mechanism for alkaline batteries. In alkaline batteries, it is particularly difficult to prevent gas generation, and when zinc is used in the negative electrode, a small amount of zinc dissolves and hydrogen gas is generated even when the battery is in an open circuit state. In the case of secondary batteries, gas generation occurs due to overcharging or overdischarging. Normally, batteries have a sealed structure to prevent electrolyte leakage, but especially when an alkaline electrolyte is used, the battery container is sealed extremely tightly to prevent leakage due to its creep properties. When gas generation occurs, the gas accumulates inside and the internal pressure of the container increases. Furthermore, if the battery is accidentally discharged or stored under inappropriate conditions, the internal pressure will rise rapidly, eventually leading to the battery container bursting and causing injury to the equipment using the battery and the person handling the battery, which is extremely dangerous. It is. The present invention relates to a gas dissipation mechanism in an alkaline battery when the internal pressure increases, and is intended to reliably discharge gas to the outside of the battery even in the event of sudden gas generation, thereby preventing the battery container from bursting. Conventional gas dissipation mechanisms include providing a thin film part in a part of the sealing body, and when the gas pressure increases, the thin film ruptures and the gas escapes, but for safe gas dissipation, it is necessary to relatively low state (30Kg/cm 2
The thin film must be sufficiently ruptured at a temperature of less than 100%.
Therefore, it was necessary to mold the thin film to a thickness of 0.2 mm or less. However, resin molding of a sealing body with a thin film of 0.2 mm or less requires fairly advanced technology, and there are difficulties in precision of molding molds, control of conditions, etc., and the occurrence of molding defects is unavoidable. Therefore, the present invention provides a structure that safely and reliably dissipates gas to the outside when gas is generated, even in an alkaline battery using a sealing body in which the thin film portion is formed to be 0.2 mm or more. Hereinafter, the present invention will be explained based on examples thereof. FIG. 1 shows an alkaline manganese battery in an embodiment of the present invention. 1 is a positive electrode can, inside of which a cylindrical molded positive electrode mixture 2 made of manganese dioxide and graphite is arranged, and inside it is caustic potash,
A gelled negative electrode 3 made of a viscous substance and zinc chloride is injected through a separator 4 . 5 is a synthetic resin sealing body made of relatively soft polyethylene or the like for sealing the opening of the positive electrode can 1, 6 is a negative electrode bottom plate disposed on the outside thereof, and 7 is a negative electrode current collector. Negative electrode bottom plate 6
has a gas dissipation hole 6a, and its peripheral portion is embedded in an annular body 8 made of hard synthetic resin, such as epoxy resin. The sealing body 5 also includes a shelf portion 1a formed by grooving the outside of the can 1 near the opening, and a shelf portion 1a formed by grooving the outside of the can 1 near the opening.
A cylindrical portion 5b that closely surrounds the current collector 7 is
, an annular thin film portion 5c connecting the two, and a cylindrical portion 5d formed at the end of the U-shaped portion 5a and in contact with the outside of the separator 4. 9 is a positive terminal cap, 10 is a heat-shrinkable resin tube such as polyvinyl chloride, 11 and 12 are insulating rings, and 13 is an outer can. In this example, the inner diameter a of the annular body 8 and the outer diameter c of the thin film portion 5c of the sealing body 5 are equal, and the edge portion 8a at the inner upper end of the annular body 8 is between the annular thin film portion 5c and the U-shaped portion 5a. It is in contact with the connecting part. FIG. 2 is an enlarged cross-sectional view of the vicinity of the annular thin film portion of the sealing body when gas is generated. Due to gas generation, the annular thin film portion 5c of the sealing body 5 expands, and a shearing force in the direction shown by the arrow x is generated by the upper edge portion 8a of the inner wall of the annular body 8. As gas generation continues and the voltage internal pressure increases, the deformation of the annular thin film portion 5c also increases and at the same time the shearing force also increases, and finally the portion 5c' of the thin film portion 5c that corresponds to the edge portion 8a ruptures, and the gas escapes from the negative electrode bottom plate 6. It is designed to be discharged to the outside through the scattering holes 6a. Next, the dimensions of the inner diameter a of the annular body 8 and the inner diameter b and outer diameter c of the annular thin film portion 5c of the sealing body are variously changed so that the upper edge portion 8a of the inner wall of the annular body 8 is the outer edge of the annular thin film portion 5c, and the intermediate portion is , in contact with the inner edge, i.e., a=c
In the case of , the edge part 8a is located at the outer edge of the annular thin film part 5c, in the case of a=b+c/2, the edge part 8a is located in the middle part of the thin film part 5c, and in the case of a=b, the edge part 8a is located at the outer edge of the annular thin film part 5c. An experiment was conducted to measure the pressure at which the thin film portion 5c is destroyed in relation to the dimensions located at the inner edge of the portion 5c. The results are shown in the table below. The thickness of the thin film portion was 0.3 mm, and the pressure at the time of breaking the thin film was expressed as an average value for five samples.

【表】 第1表に示すように、 b≦a<b+c/2 なる関係がある場合は、薄膜部5cはその膨張す
る面積が小さいため破壊されにくく、電池の破壊
に至るものがあり、危険である。一方、 b+c/2≦a≦c なる関係にあれば、30Kg/cm2程度以下の圧力で薄
膜部5cが破れ、安全にガス逸散が行われる。さ
らに上記の関係を保つて、薄膜部5cの外径寸法
cと環状体8のエツジ部8aの内径寸法aとが近
接しているほどより低い圧力で薄膜部が破れるこ
とも確認された。 次に、LR6の電池に適用したときの試験結果を
説明する。a、b、cを第1表のNo.2の値にし、
薄膜部5cの厚さを0.3mmにした電池をAとす
る。比較例として、a、b、cをAと同じ寸法関
係とし、薄膜部5cの厚さを0.15mmにした電池を
B、a、b、cを第1表のNo.4の値とし、薄膜部
の厚さを0.3mmとした電池をCとし、Aの電池の
環状体8の内周縁のエツジ8aを除き、代りに半
径1mmの丸みRをつけた電池をDとする。 これらの各電池について、3個の電池によつて
逆装填した1個の電池が充電される状態に1時間
接続して電池の破裂防止効果を調べた。また60℃
で1カ月保存して耐漏液性を調べた。これらの結
果を第2表に示す。なお、試料数は200個とし
た。これらの電池の正極缶の封口強度は、最大内
圧100Kg/cm2まで耐えうるものであつた。
[Table] As shown in Table 1, if there is a relationship b≦a<b+c/2, the thin film portion 5c has a small expansion area and is difficult to be destroyed, which may lead to the destruction of the battery and is dangerous. It is. On the other hand, if the relationship b+c/2≦a≦c holds, the thin film portion 5c will be ruptured at a pressure of about 30 kg/cm 2 or less, and gas will be safely dissipated. Furthermore, while maintaining the above relationship, it was also confirmed that the closer the outer diameter dimension c of the thin film part 5c and the inner diameter dimension a of the edge part 8a of the annular body 8 are, the lower the pressure will cause the thin film part to break. Next, we will explain the test results when applied to LR6 batteries. Set a, b, and c to the values of No. 2 in Table 1,
Let A be a battery in which the thickness of the thin film portion 5c is 0.3 mm. As a comparative example, a battery in which a, b, and c have the same dimensional relationship as A, and the thickness of the thin film portion 5c is 0.15 mm is taken as B, a, b, and c are the values of No. 4 in Table 1, and the thin film A battery with a thickness of 0.3 mm is designated as C, and a battery with the inner peripheral edge 8a of the annular body 8 of the battery in A removed and replaced with a rounded radius of 1 mm is designated as D. Each of these batteries was connected for 1 hour in a state in which one battery reversely loaded with three batteries was charged, and the effect of preventing the battery from bursting was investigated. Also 60℃
The sample was stored for one month and its leakage resistance was examined. These results are shown in Table 2. The number of samples was 200. The sealing strength of the positive electrode can of these batteries was such that it could withstand a maximum internal pressure of 100 kg/cm 2 .

【表】 薄膜部を薄くした電池Bでは、破裂防止には効
果があるが、成形不良などによる薄膜部のピンホ
ールより漏液する不都合があり、薄膜部を厚くし
た電池Cでは耐漏液性はよいが、破裂防止効果が
悪い。Cと同様に環状体のエツジ部を除き、代り
に丸みRをつけた電池Dでも耐漏液はよいが、丸
みRが薄膜部に接する状態では、内圧増大による
薄膜の膨張に際しても薄膜に剪断力が十分に作用
せず、薄膜破壊が十分でないため、破裂防止効果
は乏しい。 なお、電池Dにおける薄膜部破壊時の圧力を測
定した結果、103Kg/cm2であつた。この値は正極
缶の封口強度にほぼ一致し、安全なガス逸散がで
きなかつたものと思われる。このことから、環状
体の内周上端のエツジ部の存在が、膨張する薄膜
に対しての剪断力を増し、薄膜破壊に十分な効果
を発揮する、本発明の電池Aは、耐漏液性、破裂
防止いずれも優れている。 以上のように、本発明によれば、耐漏液性に優
れ、内圧の異常上昇時には安全に、かつ確実にガ
スを外部に逸散し、破裂のないアルカリ電池を得
ることができる。
[Table] Battery B, which has a thinner membrane part, is effective in preventing explosions, but it has the disadvantage of leaking from pinholes in the thin membrane part due to poor molding, etc., and battery C, which has a thicker membrane part, has poor leakage resistance. Good, but poor burst prevention effect. Similarly to C, battery D has good leakage resistance by removing the edge of the annular body and adding a rounded radius instead, but when the rounded radius is in contact with the thin film part, shearing force is applied to the thin film even when the thin film expands due to an increase in internal pressure. does not work sufficiently and the thin film is not sufficiently destroyed, so the rupture prevention effect is poor. In addition, as a result of measuring the pressure at the time of destruction of the thin film portion in battery D, it was 103 Kg/cm 2 . This value almost corresponds to the sealing strength of the positive electrode can, and it is thought that safe gas dissipation was not possible. From this, the existence of the edge at the upper end of the inner periphery of the annular body increases the shearing force against the expanding thin film, and the battery A of the present invention exhibits a sufficient effect to destroy the thin film. Both are excellent in preventing bursting. As described above, according to the present invention, it is possible to obtain an alkaline battery that has excellent leakage resistance, safely and reliably dissipates gas to the outside when the internal pressure increases abnormally, and does not explode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の電池を示す要部欠截
側面図、第2図は内圧上昇時における封口体の薄
膜部付近の拡大断面図である。 1……正極缶、2……正極合剤、3……負極、
4……セパレータ、5……封口体、5a……断面
コ字状部、5b……円筒部、5c……薄膜部、6
……負極底板、6a……ガス逸散孔、7……集電
子、8……環状体、8a……エツジ部。
FIG. 1 is a cutaway side view of a main part showing a battery according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the vicinity of the thin film portion of the sealing body when the internal pressure increases. 1... Positive electrode can, 2... Positive electrode mixture, 3... Negative electrode,
4... Separator, 5... Sealing body, 5a... U-shaped section, 5b... Cylindrical part, 5c... Thin film part, 6
... Negative electrode bottom plate, 6a ... Gas dissipation hole, 7 ... Current collector, 8 ... Annular body, 8a ... Edge portion.

Claims (1)

【特許請求の範囲】 1 発電要素を収納した正極缶と、正極缶の開口
を封口する合成樹脂製封口体と、この封口体の外
側に配設したガス逸散孔を有する負極底板とを備
えるアルカリ電池において、前記底板がその周縁
に硬質の合成樹脂からなる環状体を有するととも
に、前記封口体が負極集電子をとりかこむ円筒部
と前記環状体をおおう断面コ字状部および前記円
筒部と断面コ字状部とを連結する環状の薄膜部を
有し、前記環状体の内周上端エツジ部を封口体の
薄膜部に当接させたことを特徴とするアルカリ電
池。 2 環状体の内径寸法をa、封口体の薄膜部の内
径および外径寸法をそれぞれbおよびcとしたと
き、 b+c/2≦a≦c なる関係にある特許請求の範囲第1項記載のアル
カリ電池。
[Claims] 1. A positive electrode can housing a power generating element, a synthetic resin sealing body for sealing the opening of the positive electrode can, and a negative electrode bottom plate having gas dissipation holes arranged outside the sealing body. In the alkaline battery, the bottom plate has an annular body made of a hard synthetic resin at its periphery, and the sealing body includes a cylindrical part surrounding a negative electrode current collector, a U-shaped cross-sectional part that covers the annular body, and the cylindrical part. 1. An alkaline battery comprising an annular thin film portion connecting the U-shaped cross-sectional portion, and an inner peripheral upper edge portion of the annular member being brought into contact with the thin film portion of the sealing body. 2. The alkali according to claim 1, which has the following relationship: b+c/2≦a≦c, where a is the inner diameter of the annular body, and b and c are the inner and outer diameters of the thin film portion of the sealing body, respectively. battery.
JP659680A 1980-01-22 1980-01-22 Alkaline battery Granted JPS56103861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP659680A JPS56103861A (en) 1980-01-22 1980-01-22 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP659680A JPS56103861A (en) 1980-01-22 1980-01-22 Alkaline battery

Publications (2)

Publication Number Publication Date
JPS56103861A JPS56103861A (en) 1981-08-19
JPS6223425B2 true JPS6223425B2 (en) 1987-05-22

Family

ID=11642703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP659680A Granted JPS56103861A (en) 1980-01-22 1980-01-22 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS56103861A (en)

Also Published As

Publication number Publication date
JPS56103861A (en) 1981-08-19

Similar Documents

Publication Publication Date Title
EP0973213B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
US20040170887A1 (en) Non-aqueous electrolytic secondary battery
JP2000504479A (en) Sealed electrochemical cell with circuit break terminal
JPH06196150A (en) Battery and manufacture of battery
FI68929B (en) BLYACKUMULATOR
KR100202928B1 (en) Safety device for organic electrolyte battery
US4584248A (en) Sealed lead-acid secondary cell
JP4080131B2 (en) Manganese battery
GB2058440A (en) Improvements in or Relating to Galvanic Cells
JPS6224903B2 (en)
JP3589427B2 (en) Cylindrical alkaline battery
JPS6223425B2 (en)
US4074023A (en) Primary dry cell with masked separator
JP3527548B2 (en) Safety device for secondary battery and non-aqueous electrolyte secondary battery with safety device
EP0322872B1 (en) Dry cell
JPH02117063A (en) Cylindrical alkaline battery
JPH07296790A (en) Square type sealed battery
JPH097572A (en) Cylindrical alkaline battery
KR20040110535A (en) Secondary battery assembly with gas discharge mechanism by case rupture
JPS60200456A (en) Enclosed type cylindrical alkaline storage battery
JPH0584026U (en) Organic electrolyte battery
JPH055642Y2 (en)
JPH0389454A (en) Cylindrical alkaline battery
JPH08273649A (en) Sealed battery
JPS6035171Y2 (en) alkaline battery