JPS62232618A - Adjusting method for position of concave lens - Google Patents

Adjusting method for position of concave lens

Info

Publication number
JPS62232618A
JPS62232618A JP7714186A JP7714186A JPS62232618A JP S62232618 A JPS62232618 A JP S62232618A JP 7714186 A JP7714186 A JP 7714186A JP 7714186 A JP7714186 A JP 7714186A JP S62232618 A JPS62232618 A JP S62232618A
Authority
JP
Japan
Prior art keywords
concave lens
image
half mirror
adjustment
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7714186A
Other languages
Japanese (ja)
Inventor
Seiichi Uchimura
内村 清一
Masamichi Morimoto
正通 森本
Zenichi Okabashi
岡橋 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7714186A priority Critical patent/JPS62232618A/en
Publication of JPS62232618A publication Critical patent/JPS62232618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve adjustment accuracy and reliability by digitizing a spot image of an astigmatism shape, which is generated from a half mirror, calculating the second moment of area against a short axis and a long axis and deriving their ratio, and executing a position adjustment in the optical axis direction of a concave lens. CONSTITUTION:When a light beam from an adjusting semiconductor laser 19 passes through a concave lens 2 and transmits through a half mirror 4, an astigmatism is generated and the light is reflected by a mirror 8, passes through a microscope 11 and forms an image as a spot image 16 of an astigmatism shape on the image pickup surface of an image pickup part 10. A stage 32 is made to ascend in the direction (c) by the fourth driving part 25 and the tip of an adjusting pin 18 is inserted into a groove part of the outside diameter of the concave lens 2. With respect to a short axis and a long axis of the spot image of an astigmatism shape which is formed by an image processing part 23, the second moment of area is calculated, and a ratio of two kinds of the second moments of area is derived. When its ratio is '1' or not in the vicinity of a prescribed numerical value, a signal is sent to the third driving part 21 through a controller part 33 from the image processing part 23, and the concave lens is moved in the optical axis direction (b) by the adjusting pin 18.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコンパクトディスクプレーヤー用光ピツクアッ
プ等の製造工程に用いられる凹レンズの位置調整方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for adjusting the position of a concave lens used in the manufacturing process of optical pickups for compact disc players and the like.

従来の技術 近年、光ピツクアップの生産の伸びは著しく、製造工程
においては自動化が進められているが、凹レンズの位置
調整については作業者が目視でモニター上の画像形状を
見ながら調整していたため作業に熟練を要するとともに
作業者間で調整のばらつきがあり品質が不安定であった
Conventional technology In recent years, the production of optical pickups has grown significantly, and automation is progressing in the manufacturing process, but the position of the concave lens was adjusted by the operator visually while looking at the image shape on the monitor. In addition to requiring skill, the quality was unstable due to variations in adjustment between workers.

以下図面を参照しながら、上述した従来の凹レンズ位置
調整方法の一例について説明する。
An example of the conventional concave lens position adjustment method described above will be described below with reference to the drawings.

第3図は光ピツクアップの光学系、第4図は従来の調整
方法を示す。まず第3図の光学系について説明する。半
導体レーザ9からの光はハーフミラー4と45° ミラ
ーで反射し、対物レンズ7で絞られ平板6記録面で反射
し、45° ミラー8で反射、ハーフミラ−4を透過後
、凹レンズで集光されて光検出器1上に焦点を結ぶ。
FIG. 3 shows an optical system for optical pickup, and FIG. 4 shows a conventional adjustment method. First, the optical system shown in FIG. 3 will be explained. The light from the semiconductor laser 9 is reflected by the half mirror 4 and the 45° mirror, focused by the objective lens 7, reflected by the recording surface of the flat plate 6, reflected by the 45° mirror 8, transmitted through the half mirror 4, and then condensed by the concave lens. is focused on the photodetector 1.

次に従来の方法について説明する。Next, a conventional method will be explained.

撮像部10と顕微鏡11を、上下方向aに移動させるス
ライドユニット12と凹レンズ2を光軸方向すに移動さ
せる調整ピン18、光検出器1のかわりに設けられた調
整用半導体レーザ19からなる。
It consists of a slide unit 12 that moves the imaging section 10 and the microscope 11 in the vertical direction a, an adjustment pin 18 that moves the concave lens 2 in the optical axis direction, and an adjustment semiconductor laser 19 provided in place of the photodetector 1.

以上のよう例構成された凹レンズ位置調整されたについ
て、以下その動作について説明する。半導体レーザ9を
発光させると光はノ・−7ミラー4で反射、45° ミ
ラー8で反射後、顕微鏡11を通過して撮像部1oの撮
像面上に円形スポット像14として結像される。この時
、スライドユニット12の微動ハンドル13を回し顕微
鏡11、撮像部1oを上下スライドさせ円形スポット像
14が最小となる位置を目視でさがす。次に半導体レー
ザ9を消し、調整用半導体レーザ19を発光させる。調
整用光導体レーザ19からの光は凹レンズ2を通過し・
・−7ミラー4を透過後、45° ミラー8から顕微鏡
11で撮像部10の撮像面上に結ばれるが、この光はノ
・−フミラー4により非点収差形状のスポット像1らと
なる。このスポット像16が基準のスポット形状と同じ
形状になるように調整ピン18で凹レンズ2を光軸方向
すに移動させ、同一形状となれば調整が完了する。要す
るにこの凹レンズ位置調整は、半導体レーザ9から撮像
部10の撮像面までの光路長と、調整用半導体し〜ザラ
9から上記撮像面までの光路長を、凹レンズ2を移動さ
せることにより、同一の長さにすることであり、調整用
半導体レーザ19の発光位置は光検出器1の受光面位置
と同じ位置になる。
The operation of the concave lens position adjusted as configured above will be described below. When the semiconductor laser 9 emits light, the light is reflected by the -7 mirror 4, reflected by the 45° mirror 8, passes through the microscope 11, and is imaged as a circular spot image 14 on the imaging surface of the imaging section 1o. At this time, the fine adjustment handle 13 of the slide unit 12 is turned to slide the microscope 11 and the imaging section 1o up and down to visually find the position where the circular spot image 14 is at its minimum. Next, the semiconductor laser 9 is turned off and the adjustment semiconductor laser 19 is made to emit light. The light from the adjustment light guide laser 19 passes through the concave lens 2.
- After passing through the -7 mirror 4, the light is focused from the 45° mirror 8 onto the imaging surface of the imaging unit 10 by the microscope 11, but the light is turned into an astigmatic spot image 1 by the no-f mirror 4. The concave lens 2 is moved in the optical axis direction using the adjustment pin 18 so that the spot image 16 has the same shape as the reference spot shape, and when the spot image 16 becomes the same shape, the adjustment is completed. In short, this concave lens position adjustment is performed by moving the concave lens 2 to make the optical path length from the semiconductor laser 9 to the imaging surface of the imaging section 10 and the optical path length from the adjustment semiconductor layer 9 to the imaging surface the same. The light emitting position of the adjusting semiconductor laser 19 is the same as the light receiving surface position of the photodetector 1.

発明が解決しようとする問題点 しかしながら上記の様な構成では、(1)モニター上の
画像14.16はすべて作業者が目視で判断しなければ
ならないので作業は熟練を要し、作業者間での調整精度
にばらつきがあり品質が不安定、(2)凹レンズ2を移
動させるのは調整ピン18で手動により行なうので、調
整精度は0.02鵡程度で信頼性、分解能のうえでも不
充分であるという問題点を有していた。
Problems to be Solved by the Invention However, with the above configuration, (1) All images 14 and 16 on the monitor must be visually judged by the operator, so the work requires skill, and (2) Since the concave lens 2 is moved manually using the adjustment pin 18, the adjustment accuracy is about 0.02 mm, which is insufficient in terms of reliability and resolution. It had some problems.

本発明は上記問題点例話み、目視による判断にかえて画
像認識し、凹レンズを自動調整することにより調整精度
と信頼性の向上をねらいとした凹レンズ位置調整方法を
提供するものである。
The present invention addresses the above problems and provides a concave lens position adjustment method that uses image recognition instead of visual judgment and automatically adjusts the concave lens to improve adjustment accuracy and reliability.

問題点を解決するための手段 上記問題点を解決するために本発明の凹レンズ位置調整
方法は、調整用半導体レーザからの光を上記凹レンズ通
過後、上記ハーフミラ−を通過させて得た非点収差形状
のスポット像と撮像手段により撮像し、撮像された画像
をデジタル化することによって得られるデジタル画像の
断面2次モーメントを上記デジタル画像の短軸および長
軸に対して計算し、上記2種類の断面2次モーメントの
比が所定の数値に最も近くなるように上記凹レンズの元
側1方向の位置を調整する。
Means for Solving the Problems In order to solve the above-mentioned problems, the concave lens position adjustment method of the present invention eliminates astigmatism by passing the light from the adjustment semiconductor laser through the concave lens and then through the half mirror. The second moment of inertia of the digital image obtained by capturing a spot image of the shape and the imaging means and digitizing the captured image is calculated with respect to the short axis and long axis of the digital image, and the two types of The position of the concave lens in one direction on the base side is adjusted so that the ratio of the second moments of area becomes closest to a predetermined value.

作   用 本発明は上記した方法により、ハーフミラ−を通過して
得た非点収差形状のスポット像が、凹レンズと調整用半
導体レーザの間隔で縦長に変化したり、横長に変化した
状態の断面2次モーメントを画像処理で求めることで、
作業者の目視による判断が不用となり、調整精度、分解
能が向上するという特有の効果を有する。
Function The present invention uses the above-described method to obtain a cross section 2 in which an astigmatism-shaped spot image obtained by passing through a half mirror changes to be vertically long or horizontally long due to the distance between the concave lens and the adjustment semiconductor laser. By determining the next moment using image processing,
This has the unique effect of eliminating the need for visual judgment by the operator and improving adjustment accuracy and resolution.

実施例 以下本発明の一実施例の凹レンズ位置調整方法について
図面を参照しながら説明する。
EXAMPLE Hereinafter, a concave lens position adjusting method according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における凹レンズ位置調整方法
の正面図を示すものである。第1図において、2oは光
学系が構成されている基台17を受けるベース、28は
光検出器1の代シに設けられた調整用半導体レーザ19
を保持するテーブル、27は凹レンズ2の光軸に対し垂
直方向eに移動させる第1駆動部、29はテーブル28
と第1駆動部27を保持し、26はテーブル28と第1
駆動部を移動させることにより調整用半導体レーザ19
を凹レンズ2の光軸方向dに移動させる第2駆動部、2
1は調整ビン18を保持するステージ30を凹レンズ2
の光軸に対し移動させる第3駆動部、25はステージ3
0と第3駆動部を保持するステージ32を凹レンズ2の
光軸に対し垂直方向Cに移動させる第4駆動部、22は
顕微鏡11と撮像部10を保持するZステージ31を、
45゜ミラー8から出射する光軸に対し垂直方向aに移
動させる第5駆動部、23は撮像部1oから得た画像を
デジタル化して断面2次モーメントを求めその情報を各
駆動部をコントロールするコントローラ部33とモニタ
ー16に送る画像処理部、24はコントローラ部33を
制御する操作部である。
FIG. 1 shows a front view of a method for adjusting the position of a concave lens according to an embodiment of the present invention. In FIG. 1, 2o is a base for receiving a base 17 on which an optical system is constructed, and 28 is an adjustment semiconductor laser 19 provided in place of the photodetector 1.
27 is a first drive unit that moves the concave lens 2 in the direction e perpendicular to the optical axis; 29 is a table 28;
26 holds the table 28 and the first drive unit 27.
Adjustment semiconductor laser 19 can be adjusted by moving the drive unit.
a second drive unit that moves the concave lens in the optical axis direction d of the concave lens 2;
1 is a stage 30 that holds the adjustment bin 18 with a concave lens 2
A third drive unit 25 moves the stage 3 with respect to the optical axis of the stage 3.
0 and a fourth drive unit that moves the stage 32 that holds the third drive unit in the direction C perpendicular to the optical axis of the concave lens 2;
A fifth drive unit 23 moves the optical axis in the direction a perpendicular to the optical axis emitted from the 45° mirror 8, and a fifth drive unit 23 digitizes the image obtained from the imaging unit 1o to obtain the second moment of area and uses that information to control each drive unit. An image processing section 24 is an operation section that controls the controller section 33 and the image processing section that sends the image to the monitor 16.

以上のように構成された凹レンズ位置調整方法について
、以下第1図及び第2図を用いてその動作を説明する。
The operation of the concave lens position adjustment method configured as described above will be described below with reference to FIGS. 1 and 2.

まず基台17に組まれている半導体レーザ9を発光させ
る。半導体レーザ9からの光はハーフミラ−4で90’
反射し、さらに45゜ミラー8で90°垂直に反射し顕
微鏡11にて撮像部10の撮像面上に円形スポット像1
4として結像される。次に第6駆動部22にて、Zステ
ージ31(5a方向に移動させながら画像処理部23で
面積を計算し、コントローラ部33を通じ第5駆動部2
2に信号を送り、面積が最小となったところで停止させ
る。これで半導体レーザ9から撮像部1oの撮像面まで
の光路長の設定が完了する。
First, the semiconductor laser 9 assembled on the base 17 is caused to emit light. The light from the semiconductor laser 9 is reflected by the half mirror 4 at 90'.
It is reflected and further vertically reflected at 90° by a 45° mirror 8, and a circular spot image 1 is formed on the imaging surface of the imaging unit 10 by the microscope 11.
It is imaged as 4. Next, while moving the Z stage 31 (5a direction) in the sixth drive unit 22, the image processing unit 23 calculates the area, and the fifth drive unit 2
Send a signal to 2 to stop when the area becomes the minimum. This completes the setting of the optical path length from the semiconductor laser 9 to the imaging surface of the imaging section 1o.

完了後は半導体レーザ9の発光を消す。After completion, the emission of the semiconductor laser 9 is turned off.

つぎに調整用半導体レーザ19を発光させ、その発光原
点が光検出器3の受光面と同じ位置で、かつ凹レンズ2
の光軸上になるように第1駆動部27、第2駆動部26
で移動させる。調整用半導体レーザ19からの光は凹レ
ンズ2を通過してハーフミラ−4を透過する。ハーフミ
ラ−4を透過する際、非点収差が発生し45″ミラー8
で反射し顕微鏡11を経て撮像部1oの撮像面上に非点
収差形状のスポット像16として結像される。第4駆動
部25によりステージ32をC方向に上昇させ調整ピン
18の先端を凹レンズ2の外径の溝部に挿入する。画像
処理部23で結像された非点収差形状のスポット像16
の短軸と長軸に対し、断面2次モーメントを計算し、上
記2種類の断面2次モーメントの比を求める。その比が
1あるいは所定の数値付近にない時は、画像処理部23
からコントローラ部33を通じ、第3駆動部21に信号
を送り調整ビン18で凹レンズを光軸方向すに移動させ
、その時の断面2次モーメントの比が1あるいは所定の
数値に最も近くなるまで上記作業を自動的に繰り返す。
Next, the adjustment semiconductor laser 19 is caused to emit light, and the light emission origin is at the same position as the light receiving surface of the photodetector 3, and the concave lens 2
The first drive section 27 and the second drive section 26 are placed on the optical axis of the
to move it. The light from the adjustment semiconductor laser 19 passes through the concave lens 2 and then through the half mirror 4. When passing through the half mirror 4, astigmatism occurs and the 45" mirror 8
The reflected light passes through the microscope 11 and is formed as an astigmatic spot image 16 on the imaging surface of the imaging unit 1o. The stage 32 is raised in the C direction by the fourth drive unit 25 and the tip of the adjustment pin 18 is inserted into the groove on the outer diameter of the concave lens 2. Astigmatism-shaped spot image 16 formed by the image processing unit 23
Calculate the moment of inertia of area with respect to the short axis and long axis of , and find the ratio of the above two types of moment of inertia of area. When the ratio is not 1 or around a predetermined value, the image processing unit 23
A signal is sent to the third drive unit 21 through the controller unit 33, and the adjustment bin 18 moves the concave lens in the optical axis direction, and the above operation is performed until the ratio of the second moment of area at that time becomes 1 or closest to a predetermined value. is automatically repeated.

調整完了後は凹レンズ2をビスで固定する。固定後、ビ
ス締めにより凹レンズ2がずれていないかを確認するた
め、再度断面2次モーメントの比を計測して完了。断面
2次モーメントの比の変化量と凹レンズ位置の変化量の
関係は第2図のようになる。
After completing the adjustment, fix the concave lens 2 with screws. After fixing, the ratio of the second moment of area was measured again to confirm that the concave lens 2 had not shifted due to tightening the screws. The relationship between the amount of change in the ratio of the second moment of area and the amount of change in the position of the concave lens is as shown in FIG.

発明の効果 以上のように本発明は、ハーフミラ−にょシ発生する非
点収差形状のスポット像をデジタル化し断面2次モーメ
ントを上記の短軸と長軸に対し計算し、断面2次モーメ
ントの比を求めることにより、凹レンズの光軸方向の位
置調整を行なうため、目視による判断がなく自動化が可
能となり、調整精度および信頼性の向上と作業性も向上
させることができる。
Effects of the Invention As described above, the present invention digitizes the astigmatism-shaped spot image generated by the half mirror, calculates the second moment of area with respect to the short axis and long axis, and calculates the ratio of the second moment of area. By determining the position of the concave lens in the optical axis direction, automation is possible without visual judgment, and adjustment accuracy and reliability can be improved, as well as workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における凹レンズ位置調整方
法の正面図、第2図は断面2次モ、−メントの比と凹レ
ンズ位置の変化量の関係を示すグラフ、第3図は光ピツ
クアップの光学系の構成図、第4図は従来の凹レンズ位
置調整方法の正面図である。 2・・・・−・凹レンズ、4・・山・ハーフミラ−11
0・・・・・・撮像部、11・・・・・・顕微鏡、18
・・・・・調整ピン、19・・・・・・調整用半導体レ
ーザ、23・・・・・画像処理部。
Fig. 1 is a front view of a method for adjusting the position of a concave lens in an embodiment of the present invention, Fig. 2 is a graph showing the relationship between the ratio of the quadratic moment of cross section and the amount of change in the position of the concave lens, and Fig. 3 is an optical pickup. FIG. 4 is a front view of a conventional concave lens position adjustment method. 2...Concave lens, 4...Mountain/half mirror-11
0...Imaging unit, 11...Microscope, 18
...adjustment pin, 19 ... semiconductor laser for adjustment, 23 ... image processing section.

Claims (1)

【特許請求の範囲】 半導体レーザから発した光が、光軸に対し 45°傾けて設置されたハーフミラーにより反射し、進
行方向を90°変えた後、対物レンズによって平板上に
焦点を結び、上記平板上の焦点で反射し、進行方向を反
転させて上記対物レンズを経て、上記ハーフミラーに達
し、上記ハーフミラーで反射せず透過し、凹レンズによ
って光検出器上で焦点を結ぶように構成された光学系の
、上記凹レンズの光軸方向の位置を調整する方法であっ
て、上記光検出器の位置に調整用半導体レーザを設けて
発光させ、この光を、上記凹レンズ、上記ハーフミラー
を通過させて得た非点収差形状の画像を撮像手段により
撮像し、撮像された画像をデジタル化することによって
得られるデジタル画像の断面2次モーメントを、上記デ
ジタル画像の短軸および長軸に対して計算し、上記2種
類の断面2次モーメントの比が所定の数値に最も近くな
るように上記凹レンズの光軸方向の位置を調整する凹レ
ンズ位置調整方法。
[Claims] Light emitted from a semiconductor laser is reflected by a half mirror installed at an angle of 45 degrees with respect to the optical axis, and after changing its traveling direction by 90 degrees, it is focused onto a flat plate by an objective lens, It is reflected at a focal point on the flat plate, reverses its traveling direction, passes through the objective lens, reaches the half mirror, is transmitted through the half mirror without being reflected, and is focused on a photodetector by a concave lens. A method for adjusting the position of the concave lens in the optical axis direction of the optical system, wherein an adjustment semiconductor laser is provided at the position of the photodetector to emit light, and this light is transmitted to the concave lens and the half mirror. The second moment of area of the digital image obtained by capturing an image of the astigmatism shape obtained by passing the image with an imaging means and digitizing the image is calculated with respect to the short axis and long axis of the digital image. A concave lens position adjustment method for adjusting the position of the concave lens in the optical axis direction so that the ratio of the two types of second moments of area becomes closest to a predetermined value.
JP7714186A 1986-04-03 1986-04-03 Adjusting method for position of concave lens Pending JPS62232618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7714186A JPS62232618A (en) 1986-04-03 1986-04-03 Adjusting method for position of concave lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7714186A JPS62232618A (en) 1986-04-03 1986-04-03 Adjusting method for position of concave lens

Publications (1)

Publication Number Publication Date
JPS62232618A true JPS62232618A (en) 1987-10-13

Family

ID=13625525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7714186A Pending JPS62232618A (en) 1986-04-03 1986-04-03 Adjusting method for position of concave lens

Country Status (1)

Country Link
JP (1) JPS62232618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386939A (en) * 1989-08-29 1991-04-11 Asahi Optical Co Ltd Beam splitter inspecting device for optical system for optical information recording and reproducing device
JPH05334718A (en) * 1992-02-18 1993-12-17 Fujitsu Ltd Light beam adjusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386939A (en) * 1989-08-29 1991-04-11 Asahi Optical Co Ltd Beam splitter inspecting device for optical system for optical information recording and reproducing device
JPH05334718A (en) * 1992-02-18 1993-12-17 Fujitsu Ltd Light beam adjusting method

Similar Documents

Publication Publication Date Title
JP2613118B2 (en) Confocal scanning microscope
CN101400474A (en) Laser beam welding head
US11977213B2 (en) Predictive focus tracking apparatus and methods
CN107765425B (en) Self-focusing laser scanning projection method based on symmetrical defocus double detector
CN109219496A (en) The device with optical distance-measuring device and prism deflection unit of process monitoring and the laser Machining head with it when laser processing
JPH0122977B2 (en)
JP2000294608A (en) Method and device for projecting surface picture image
JPS62232618A (en) Adjusting method for position of concave lens
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JPS6161178B2 (en)
JPH077653B2 (en) Observation device by scanning electron microscope
JPH10122823A (en) Positioning method and height measuring device using the method
JP2019155402A (en) Centering method for laser beam and lase processing device
JP2003014611A (en) Scanning type probe microscope
JP2000164680A (en) Position adjusting device for wafer
JP2003177292A (en) Lens adjusting device and method
JP3379928B2 (en) measuring device
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP4877588B2 (en) Focus correction method
CN220178394U (en) Focusing device
JPH10126659A (en) Image measurement camera and image measurement device
JPH11219528A (en) Method and device for adjusting emission optical axis of optical pickup
JP2861671B2 (en) Overlay accuracy measuring device
JPH0553059A (en) Confocal scanning microscope
JP3429572B2 (en) Optical head adjustment method and apparatus