JPS62231424A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS62231424A
JPS62231424A JP7453586A JP7453586A JPS62231424A JP S62231424 A JPS62231424 A JP S62231424A JP 7453586 A JP7453586 A JP 7453586A JP 7453586 A JP7453586 A JP 7453586A JP S62231424 A JPS62231424 A JP S62231424A
Authority
JP
Japan
Prior art keywords
layer
carbon
magnetic
target
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7453586A
Other languages
Japanese (ja)
Other versions
JPH0668835B2 (en
Inventor
Kazuyuki Miyamoto
和幸 宮本
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP7453586A priority Critical patent/JPH0668835B2/en
Publication of JPS62231424A publication Critical patent/JPS62231424A/en
Publication of JPH0668835B2 publication Critical patent/JPH0668835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which is stably obtainable with good workability and has good performances including durability, etc., by providing a layer which has <=0.05mm max. particle size and consists substantially of carbon on the upper side and/or lower side of a magnetic layer. CONSTITUTION:The layer which has <=0.05mm max. particle size and consists substantially of carbon is provided on the upper side and/or lower side of the magnetic layer 2. The max. particle size of the material for forming the carbon layer of the layer (carbon layer) substantially consisting of the carbon is further preferably <=0.02mm. On the other hand, the max. particle size is preferably >=0.03mm in terms of the cost and yield of producing a target. This carbon layer may be formed as a protective layer 3 on the surface of the thin film magnetic layer 2 on a nonmagnetic substrate 1 or may be further formed as an underlying layer 4 under the magnetic layer 2. In either case, the carbon layer can be provided in at least one layer on the substrate as the protective layer or underlying layer having 0.01-0.5mum thickness.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は磁気ディスク、磁気テープ等の磁気記録媒体及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to magnetic recording media such as magnetic disks and magnetic tapes, and methods of manufacturing the same.

口、従来技術 薄膜型磁気記録媒体においては、保護N(或いは、それ
以外に中間層)として、炭素層をスパンタ法により製膜
する技術が一般的である。その材料としては、炭素材タ
ーゲットが使用される。
In prior art thin-film magnetic recording media, a common technique is to form a carbon layer as a protective layer (or as an intermediate layer) by a spunter method. A carbon material target is used as the material.

このようなターゲットは一般に、最大粒子径が 。Such targets generally have a maximum particle size of .

0.05mmを越える(但し、0.1nu++以下)炭
素材からなっている。
It is made of carbon material with a thickness exceeding 0.05 mm (but not more than 0.1 nu++).

しかしながら、従来のターゲット材は最大粒子径が大き
すぎるために、製膜時の放電が不安定であり、製膜速度
が遅く、製品の劣化や歩留の低下が生じることが判明し
た。
However, it has been found that the maximum particle size of conventional target materials is too large, resulting in unstable discharge during film formation, slow film formation speed, and product deterioration and reduced yield.

ハ1発明の目的 本発明の目的は、安定かつ作業性良く得られ、かつ耐久
性等の性能の良好な磁気記録媒体及びその製造方法を提
供することにある。
C.1 Objective of the Invention An object of the present invention is to provide a magnetic recording medium that is stable, has good workability, and has good performance such as durability, and a method for manufacturing the same.

二0発明の構成及びその作用効果 即ち、本発明は、最大粒子径が0.05mm以下であっ
て実質的に炭素からなる材料によって形成された層が、
磁性層の上側及び/又は下側に設けられている磁気記録
媒体に係るものである。
20 Structure of the invention and its effects, that is, the present invention provides that a layer formed of a material having a maximum particle diameter of 0.05 mm or less and consisting essentially of carbon,
This relates to a magnetic recording medium provided above and/or below a magnetic layer.

この磁気記録媒体は、上記の実質的に炭素からなる層(
以下、単に炭素層と称する。)の存在によって、磁性層
の表面保護や、支持体等との接着性や上層の製膜性向上
といった効果があると共に、その炭素層の形成材料の最
大粒子径を0.05IllIl以下と小さくしているの
で、耐久性等の性能が大きく向上する。この炭素層の形
成材料の上記最大粒子径は更に0.02mm以下がよい
This magnetic recording medium consists of the above-mentioned layer consisting essentially of carbon (
Hereinafter, it will simply be referred to as a carbon layer. ) has the effect of protecting the surface of the magnetic layer, improving adhesion to the support, etc., and improving the film formability of the upper layer, and also reduces the maximum particle size of the material forming the carbon layer to 0.05IllIl or less. This greatly improves performance such as durability. The maximum particle diameter of the carbon layer forming material is preferably 0.02 mm or less.

一方、ターゲット製造のコスト、歩留まりの関係上、最
大粒子径は0.003mm以上が好ましい。また、この
炭素層は、第1図及び第2図に示すように、非磁性支持
体1上の薄膜磁性N2の表面に保護層3として形成され
てよいし、更に磁性層2下に下地層4として形成されて
もよい。いずれにしても、炭素層は支持体上に少なくと
も1層、層厚が0.01〜0.5μmの保護層又は下地
層として設けることができる。下地層の場合には、その
上層の製膜性を良好にコントロールでき、かつ支持体を
予めそれ程加工しなくてすむために加工コストを少なく
できる。
On the other hand, in view of target manufacturing cost and yield, the maximum particle diameter is preferably 0.003 mm or more. Further, this carbon layer may be formed as a protective layer 3 on the surface of the thin magnetic N2 on the non-magnetic support 1, as shown in FIGS. 4 may be formed. In any case, at least one carbon layer can be provided on the support as a protective layer or base layer with a layer thickness of 0.01 to 0.5 μm. In the case of the base layer, the film formability of the upper layer can be well controlled, and the processing cost can be reduced because the support does not have to be processed much in advance.

ここで、上記の支持体1としては、AIl、陽極酸化被
膜(例えばアルマイト処理)を設けたAl、N1−Pメ
ッキ処理を施したA1、ポリイミド、ポリアラミド、ポ
リカーボネート等のプラスチック等が使用できる。支持
体1の形状は、盤状、フィルム状等種々であってよい。
Here, as the above-mentioned support 1, plastics such as Al, Al with an anodized coating (for example, alumite treatment), Al with N1-P plating treatment, polyimide, polyaramid, polycarbonate, etc. can be used. The support 1 may have various shapes such as a plate shape or a film shape.

また、上記の磁性N2として、Co −Ni XCo 
−Ni −Fe 。
Moreover, as the above magnetic N2, Co-Ni XCo
-Ni-Fe.

Co −Ni −Cr % Co −Cr % T−F
e zoz、Baフェライト等の公知の薄膜磁性層を用
いることができ、その層厚は0.03〜0.6μmであ
ってよい。なお、磁性層膜厚に関して面内記録に適した
ものとして0.03〜0.2μm5一方、垂直記録に適
したものとして、0.08〜0.6μmであるのが好ま
しい。磁性層2はスパッタ法、真空蒸着法等の公知の方
法で形成できる。
Co-Ni-Cr% Co-Cr% T-F
A known thin film magnetic layer such as ezoz or Ba ferrite may be used, and the layer thickness may be 0.03 to 0.6 μm. The thickness of the magnetic layer is preferably 0.03 to 0.2 .mu.m5 suitable for in-plane recording, and 0.08 to 0.6 .mu.m suitable for perpendicular recording. The magnetic layer 2 can be formed by a known method such as a sputtering method or a vacuum evaporation method.

また、本発明は、上記炭素層を形成するに際し、最大粒
子径が0.05mm以下であって実質的に炭素からなる
材料をターゲット材としてスパッタを行うことによって
、前記ターゲット材に対応した層を磁性層の上側及び/
又は下、(!1.1+に形成する磁気記録媒体の製造方
法も提供するものである。
Further, in forming the carbon layer, the present invention performs sputtering using a material substantially consisting of carbon having a maximum particle size of 0.05 mm or less as a target material, thereby forming a layer corresponding to the target material. The upper side of the magnetic layer and/or
Also provided below is a method for manufacturing a magnetic recording medium formed in (!1.1+).

即ち、この製造方法によれば、ターゲット材として、最
大粒子径が0.05mm以下であって実質的に炭素から
なる材料(以下、単に炭素材と称する。)を用いている
ので、最大粒子径を従来品より小さくしていることによ
って、スパッタ時の放電が安定となり、製膜速度の向上
、歩留の向上を実現できる。使用する炭素材(ターゲッ
ト材)の最大粒子径は更に0.02mm以下がよい。
That is, according to this manufacturing method, since a material having a maximum particle diameter of 0.05 mm or less and consisting essentially of carbon (hereinafter simply referred to as carbon material) is used as the target material, the maximum particle diameter By making it smaller than conventional products, the discharge during sputtering becomes stable, and it is possible to improve the film forming speed and yield. The maximum particle diameter of the carbon material (target material) used is preferably 0.02 mm or less.

なお、本発明において、上記の「最大粒子径」とは、顕
微鏡観察で測定した粒子の長軸径のうち最大のものを意
味する。
In addition, in the present invention, the above-mentioned "maximum particle diameter" means the largest long axis diameter of particles measured by microscopic observation.

本発明の製造方法はスパッタ法に基くものであるが、第
3図に示す対向ターゲットスパッタ法で形成してよい。
Although the manufacturing method of the present invention is based on a sputtering method, it may be formed by a facing target sputtering method as shown in FIG.

即ち、第3図において、11は真空槽、12は真空槽1
1を排気する真空ポンプ等からなる排気系、13は真空
槽ll内に所定のガスを導入してガス圧力を10柑〜1
0−’Torr程度に設定するガス導入系である。ター
ゲット電極は、ターゲットホルダー14により一対のタ
ーゲットTI、Tzを互いに隔てて平行に対向配置した
対向ターゲット電極として構成されている。これらのタ
ーゲット間には、磁界発生手段(図示せず)による磁界
が形成される。
That is, in FIG. 3, 11 is a vacuum chamber, and 12 is a vacuum chamber 1.
1 is an exhaust system consisting of a vacuum pump, etc. for evacuating 1;
This is a gas introduction system set at approximately 0-'Torr. The target electrodes are configured as opposed target electrodes in which a pair of targets TI and Tz are separated from each other by a target holder 14 and arranged to face each other in parallel. A magnetic field is generated between these targets by magnetic field generating means (not shown).

このように構成されたスパッタ装置において、平行に対
向し合った両ターゲッ1−TI ST2の各表面と垂直
方向に磁界を形成し、この磁界により陰極降下部(即ち
、クーゲッl−T、−T、間に発生したプラズマ雰囲気
と各ターゲソ) T +及びT2との間の領域)での電
界で加速されたスパッタガスイオンのターゲット表面に
対する衝撃で放出されたγ電子をターゲット間の空間に
とじ込め、対向した他方のターゲット方向へ移動させる
。他方のターゲット表面へ移動したγ電子は、その近傍
の陰極降下部で反射される。こうして、γ電子はターゲ
ット’rt−’rz間において磁界に束縛されながら往
復運動を繰返すことになる。この往復運動の間に、γ電
子は中性の雰囲気ガスと衝突して雰囲気ガスのイオンと
電子とを生成させ、これらの生成物がターゲットからの
γ電子の放出と雰囲気ガスのイオン化を促進させる。従
って、ターゲッ) T +  T z間の空間には高密
度のプラズマが形成され、これに伴ってターゲット物質
が充分にスパッタされ、側方の基体1上に堆積してゆく
ことになる。
In the sputtering apparatus configured in this way, a magnetic field is formed in a direction perpendicular to each surface of both targets 1-TIST2 that face each other in parallel, and this magnetic field causes the cathode fall portions (i.e., Kugetl-T, -T The γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field between the plasma atmosphere generated between , and the region between T + and T2) on the target surface are trapped in the space between the targets. , move toward the other opposing target. The γ electrons that have moved to the other target surface are reflected at the cathode fall section nearby. In this way, the γ electrons repeatedly move back and forth between the targets 'rt-'rz while being constrained by the magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, a high-density plasma is formed in the space between the targets T + Tz, and the target material is sputtered sufficiently and deposited on the substrate 1 on the side.

この対向ターゲットスパッタ装置は、他の飛翔手段に比
べて、高速スパッタによる高堆積速度の製膜が可能であ
り、また基体がプラズマに直接曝されることがなく、低
い基体温度での製膜が可能である等のことから有利であ
る。しかも、対向ターゲットスパッタ装置によって飛翔
した膜材料の基板への入射エネルギーは、通常のスパッ
タ装置のものよりも小さいので、材料が所望の方向へ方
向性を以って堆積し易い。また他に、マグネトロンスパ
・ツタ法で製膜しても、何ら効果は変わらずに得られる
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate through high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. This is advantageous because it is possible. Moreover, since the incident energy of the film material ejected by the opposed target sputtering device onto the substrate is smaller than that of a normal sputtering device, the material is easily deposited directionally in a desired direction. In addition, even if the film is formed by the magnetron spa/vine method, the same effect can be obtained.

ホ、実施例 以下、本発明の実施例を詳細に説明する。E, Example Examples of the present invention will be described in detail below.

去灸拠土 使用ターゲット  ボコ(Poco)社製グラファイト
ターゲット (最大粒子径 0 、05mm) 到達真空度    5 X 10−’Torr以下Ar
ガス圧    3.OX 10−’Torr投入パワー
    3 、5 W / crA炭素層膜厚    
0.03μm 以上のスパッタ条件のもとで、所定の例えばG。
Target for moxibustion base: Graphite target made by Poco (maximum particle size: 0.05 mm) Ultimate vacuum: 5 x 10-' Torr or less Ar
Gas pressure 3. OX 10-'Torr input power 3,5 W/crA carbon layer thickness
Under sputtering conditions of 0.03 μm or more, a predetermined amount of G, for example.

−Ni薄膜記録磁性層上に炭素層のスパッタ製膜を試み
た。その結果を表−1に記す。
An attempt was made to form a carbon layer by sputtering on the -Ni thin film recording magnetic layer. The results are shown in Table-1.

表−1 製膜中の異状放電発生量(予備放電60分間中を除く。Table-1 Amount of abnormal discharge during film formation (excluding 60 minutes of preliminary discharge).

)平均0.4回/分 製膜速度          0.05μm/分保護膜
表面粗さ       Rz =0.008 p m製
膜後、保護層耐久試験(CS S (ContactS
 tart and S top)テスト〕を行ったと
ころ、10.000回以上経過後も何ら変化はなかった
)Average 0.4 times/min Film forming speed 0.05 μm/min Protective film surface roughness Rz =0.008 pm After film forming, protective layer durability test (CS S (ContactS
tart and top) test], there was no change at all even after 10,000 times or more.

ル較皿 使用ターゲット材 比較品 グラファイトターゲット(
最大粒子径 0 、06mm) 到達真空度    5 X 1O−bTorr以下Ar
ガス圧    3.OX 10−″Torr投入パワー
    3.5 W/cJ 炭素層膜厚    0.03μm 以上のス/<7タ条件のもとで、Co−Ni1膜記録磁
性層上に炭素層のスバ・ツタ製膜を試みた。
Target material using comparison plate Comparison product Graphite target (
Maximum particle size: 0.06mm) Ultimate vacuum: 5 x 1O-bTorr or less Ar
Gas pressure 3. OX 10-'' Torr Input power 3.5 W/cJ Carbon layer thickness 0.03 μm A carbon layer was formed on the Co-Ni 1 recording magnetic layer under the condition of 0.03 μm or more. I tried.

その結果を表−2に記す。The results are shown in Table-2.

表−2 製膜中の異状放電発生量(予備放電60分間中を除く。Table-2 Amount of abnormal discharge during film formation (excluding 60 minutes of preliminary discharge).

)平均1.3回/分 製膜速度          0.03μm/分保護膜
表面粗さ       RZ =0.014 μm製膜
後、保護層耐久性試験(CSSテスト)を行い、400
0回経過後、保護膜上にへ・ノド走行による傷が発生し
た。
)Average 1.3 times/min Film forming speed 0.03 μm/min Protective film surface roughness RZ = 0.014 μm After film forming, a protective layer durability test (CSS test) was conducted and 400
After 0 cycles, scratches were generated on the protective film due to running.

実施例及び比較例から明らかなように、実施例において
は、比較例と同一条件にて製膜したにもかかわらず、異
状放電は減少し、製膜速度は早まり、かつ保護膜表面粗
さは減少した。その結果として、耐久性が向上し、満足
できる耐久性が得られた。そして、ターゲットの最大粒
子径は0.05n+m以下がよ(、また最大粒子径0.
02n+n+のグラファイトターゲットを用いたところ
、更に満足できる耐久性が得られ、異状放電発生回数、
製膜速度、表面粗さ等も同様であった。
As is clear from the Examples and Comparative Examples, in the Examples, although the films were formed under the same conditions as in the Comparative Examples, the abnormal discharge decreased, the film forming speed increased, and the surface roughness of the protective film decreased. Diminished. As a result, durability was improved and satisfactory durability was obtained. The maximum particle diameter of the target should be 0.05n+m or less (and the maximum particle diameter should be 0.05n+m or less).
When a graphite target of 02n+n+ was used, more satisfactory durability was obtained, and the number of abnormal discharge occurrences was reduced.
The film forming speed, surface roughness, etc. were also similar.

スl」レエ 使用ターゲット材 ボコ(Poco)社製グラファイト
ターゲット 蛯大粒子径    0.02mm ) 到達真空度    5 X 10−’Torr以下Ar
ガス圧    3.Ox 10−’Torr投入パワー
    3.5W/co! 炭素層膜厚    0.03μm 以上のスパッタ条件のもとで、所定の例えばC。
Target material used: Poco graphite target (Large particle size: 0.02mm) Ultimate vacuum: 5 x 10-'Torr or less Ar
Gas pressure 3. Ox 10-'Torr input power 3.5W/co! A predetermined amount of carbon, for example, is applied under sputtering conditions such that the carbon layer thickness is 0.03 μm or more.

−Ni薄膜記録磁性層上に炭素層のスパッタ製膜を試み
た。その結果を以下に記す。
An attempt was made to form a carbon layer by sputtering on the -Ni thin film recording magnetic layer. The results are described below.

異状放電発生回数  平均0.3回/分製膜速度   
   0.05μm/分保護膜表面粗さ   Rz =
0.008 p m製膜後、C3Sテストを行ったとこ
ろ、10,000回経過後、何ら変化はなかった。
Number of occurrences of abnormal discharge Average 0.3 times/min Film forming speed
0.05μm/min Protective film surface roughness Rz =
After 0.008 pm film formation, a C3S test was conducted and no change was observed after 10,000 cycles.

去JLfL灸 使用ターゲット  ポコ(Poco)社製グラファイト
ターゲット (Q大粒子径    0.05mm) 到達真空度    5 X 1O−6Torr以下A「
ガス圧    3.OX 10−’Torr投入パワー
    3.5 W/cd 以上のスパッタ条件のもとで、第2図に示すような層構
成を有した磁気ディスクを製造した。ここで、下地炭素
層膜厚は0.1μm、保護層は0.03μmである。
Target used for moxibustion by JLfL Graphite target manufactured by Poco (Q large particle diameter 0.05 mm) Ultimate vacuum 5 x 10-6 Torr or less A
Gas pressure 3. A magnetic disk having a layer structure as shown in FIG. 2 was manufactured under sputtering conditions of OX 10-' Torr input power 3.5 W/cd or more. Here, the thickness of the underlying carbon layer is 0.1 μm, and the thickness of the protective layer is 0.03 μm.

耐久性試験(C3Sテスト)を行った結果、10,00
0回経過後、何ら変化はなかった。
As a result of the durability test (C3S test), 10,00
There was no change after 0 times.

上記した結果から、最大粒子径が製膜プロセス、膜質、
耐久性におよぼす効果は大きく、本発明に基いてターゲ
ット材の最大粒子径及び得られた炭素層の最大粒子径を
0.05+n+a以下とすることが極めて重要であるこ
とが分る。
From the above results, it is clear that the maximum particle size depends on the film forming process, film quality,
This has a large effect on durability, and it is understood that it is extremely important to keep the maximum particle diameter of the target material and the maximum particle diameter of the obtained carbon layer to 0.05+n+a or less based on the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を例示するものであって、第1図及び第2
図は磁気記録媒体の各断面図、第3図は対向ターゲット
スパッタ装置の概略断面図 である。 なお、図面に示す符号において、 1−・−−−−−−−−・非磁性支持体2−−−一−・
・−・・−・−磁性層 3−・−・・−・−−−−−・炭素層(保護層)4−・
・−・・・−・−炭素N(下地層)11−・−・−−−
−−・・−・・真空槽12−・−・−・・−・・・排気
系 +3−−・−−−−−・−・・ガス導入系T + 、T
 z −−−−−−−−−−−−・・ターゲットである
The drawings illustrate the invention and include FIGS. 1 and 2.
Each figure is a cross-sectional view of a magnetic recording medium, and FIG. 3 is a schematic cross-sectional view of a facing target sputtering apparatus. In addition, in the symbols shown in the drawings, 1-.
・−・・−・−Magnetic layer 3−・−・・−・−−−−−・Carbon layer (protective layer) 4−・
・−・−・−Carbon N (base layer) 11−・−・−−−
−−・・・・Vacuum chamber 12−・−・−・・・・Exhaust system +3−−・−−−−−・−・・Gas introduction system T + , T
z −−−−−−−−−−−−...Target.

Claims (1)

【特許請求の範囲】 1、最大粒子径が0.05mm以下であって実質的に炭
素からなる材料によって形成された層が、磁性層の上側
及び/又は下側に設けられている磁気記録媒体。 2、最大粒子径が0.05mm以下であって実質的に炭
素からなる材料をターゲット材としてスパッタを行うこ
とによって、前記ターゲット材に対応した層を磁性層の
上側及び/又は下側に形成する磁気記録媒体の製造方法
[Claims] 1. A magnetic recording medium in which a layer formed of a material substantially consisting of carbon and having a maximum particle diameter of 0.05 mm or less is provided above and/or below a magnetic layer. . 2. By performing sputtering using a material substantially consisting of carbon having a maximum particle size of 0.05 mm or less as a target material, a layer corresponding to the target material is formed above and/or below the magnetic layer. A method for manufacturing a magnetic recording medium.
JP7453586A 1986-03-31 1986-03-31 Magnetic recording medium and manufacturing method thereof Expired - Fee Related JPH0668835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7453586A JPH0668835B2 (en) 1986-03-31 1986-03-31 Magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7453586A JPH0668835B2 (en) 1986-03-31 1986-03-31 Magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62231424A true JPS62231424A (en) 1987-10-12
JPH0668835B2 JPH0668835B2 (en) 1994-08-31

Family

ID=13550076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7453586A Expired - Fee Related JPH0668835B2 (en) 1986-03-31 1986-03-31 Magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0668835B2 (en)

Also Published As

Publication number Publication date
JPH0668835B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US6190516B1 (en) High magnetic flux sputter targets with varied magnetic permeability in selected regions
US6689253B1 (en) Facing target assembly and sputter deposition apparatus
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
US5714044A (en) Method for forming a thin carbon overcoat in a magnetic recording medium
JPS62231424A (en) Magnetic recording medium and its production
US4476000A (en) Method of making a magnetic film target for sputtering
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JPS62231423A (en) Magnetic recording medium and its production
JPS61210521A (en) Production of magnetic disk
JPS62264432A (en) Manufacture of magnetic recording medium provided with sputtered protecting layer
JPS62231422A (en) Magnetic recording medium and its production
JP2703359B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0278018A (en) Production of perpendicular magnetic recording medium
JPH04356728A (en) Production of magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPH02277768A (en) Sputtering method
JP3020245B2 (en) Magnetron sputtering method and method for manufacturing magnetic recording medium
JPS63259838A (en) Method and apparatus for producing thin magnetic film recording medium
JPS61220131A (en) Production of vertical magnetic recording medium
JPH01227220A (en) Production of magnetic recording medium
JPH1053865A (en) Sputtering device
JPS6350465A (en) Sputtering device
JP2000057569A (en) Production of magnetic recording medium and magnetic recording medium
JPS62264426A (en) Magnetic recording medium deposited with magnetic layer consisting of magnetic metallic oxide
JPH01166332A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees