JPS62231012A - Super modified cross-section fiber - Google Patents

Super modified cross-section fiber

Info

Publication number
JPS62231012A
JPS62231012A JP7161186A JP7161186A JPS62231012A JP S62231012 A JPS62231012 A JP S62231012A JP 7161186 A JP7161186 A JP 7161186A JP 7161186 A JP7161186 A JP 7161186A JP S62231012 A JPS62231012 A JP S62231012A
Authority
JP
Japan
Prior art keywords
fiber
cross
aspect ratio
branches
irregular cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7161186A
Other languages
Japanese (ja)
Inventor
Kazuo Kurita
和夫 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7161186A priority Critical patent/JPS62231012A/en
Publication of JPS62231012A publication Critical patent/JPS62231012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:The titled cross-section fibers which are thermoplastic synthetic fibers having the cross-sectional shape consisting of many branches elongating from the central part and having a specific fineness of each fiber and aspect ratio and rich in dry feeling and with permanent set in fatigue, etc., removed. CONSTITUTION:Cross-section fibers which are thermoplastic synthetic fibers, e.g. polyethylene terephthalate, obtained by spinning and drawing 1 polyamide with preferably >=3.4 relative viscosity, more preferably a polyester with >=0.7 intrinsic viscosity, having a cross-sectional shape of each fiber 1 consisting of 3-5 branches 2 radially elongating from the central part and satisfying formulas I and II (De is the fineness of each fiber; A is the length of the above- mentioned branches 2 in the radial direction; B is the average transverse width of the above-mentioned branches 2; A/B is the aspect ratio of the above- mentioned branches 2). The above-mentioned aspect ratio is preferably >=4.0, more preferably >=4.5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱可塑性高分子からなる光沢と感触に優れた
超異形断面繊維に関するものであり、本発明繊維は、上
記断面繊維の特性が十分有効に利用できる分野であれば
、いかなる用途に用いても差しつかえない。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a super irregular cross-section fiber made of a thermoplastic polymer and having excellent gloss and feel. It can be used for any purpose as long as it can be used effectively.

[従来の技術] 合成繊維、特にポリエステル繊維を各種天然繊維が持つ
優れた風合に近づけるべく数多くの提案や工夫がなされ
、中でも、絹様糸については、そノ付加価値が著しく高
いことから、非常に多くの研究が進められている。
[Prior Art] Numerous proposals and innovations have been made to make synthetic fibers, especially polyester fibers, come close to the excellent texture of various natural fibers. Among them, silk-like threads have a significantly high added value, so A great deal of research is underway.

例えば、単糸の断面形状を3葉の異形断面にして光沢を
向上させたものや、単糸の繊度を細くしてドレープ性を
付与したもの、あるいは前記の糸条を用いて異収縮混繊
糸となし、布帛の表面にふくらみやソフト性を付与した
ものが広く知られている。このように、合成繊維特有の
ヌメリ感や剛直さといった光学的、物理的な性能を、製
糸及び後加工技術によって与え本絹の持つ優れた性能に
近づけるという提案がなされ、昨今においては本絹の性
能を部分的に超える様な絹様糸も開発されている。
For example, the cross-sectional shape of a single yarn is made into a trilobal irregular cross-section to improve gloss, the fineness of a single yarn is made thinner to give it drape properties, or the yarns mentioned above are used to give different shrinkage mixed fibers. Threads, pears, and fabrics with fluff and softness added to the surface are widely known. In this way, proposals have been made to bring the optical and physical properties of synthetic fibers, such as sliminess and rigidity, to the excellent properties of real silk by using spinning and post-processing techniques. Silk-like yarns that partially exceed the performance have also been developed.

しかしながら、このような従来公知の絹様糸もまだまだ
欠点を有している。
However, such conventionally known silk-like threads still have drawbacks.

すなわち、前述の絹様糸は本絹の種類の中でも、いわゆ
る家蚕系風合に似せた絹様糸であって、布帛にした場合
、豊かな光沢やドレープ性、あるいはぬくもりやふくら
み感が優れており、秋から冬にかけてのファッション素
材として極めて好ましいものであるが、反面春から夏に
かけての素材としては暑苦しい感じが強く、特に盛夏時
においては素材が同じであるにもかかわらず、メタリッ
クな光沢、ヌメリ感1重量感という好ましくない評価を
甘受せざるを得なかった。
In other words, among the types of real silk, the silk-like thread mentioned above is a silk-like thread that resembles the texture of so-called domestic silkworms, and when made into fabric, it has rich luster, drapability, and excellent warmth and fluffiness. It is extremely desirable as a fashion material from autumn to winter, but on the other hand, as a material from spring to summer, it feels too hot, especially in midsummer, even though the material is the same, it has a metallic luster, I had no choice but to accept the unfavorable evaluation of slimy feel and 1 heavy feeling.

[発明が解決しようとする問題点] 前述の様に絹様糸の開発においても各種流行や四季折々
の季節の変化に適応したきめの細かい配慮が必要なので
あり、絹様の布帛にされやかさ。
[Problems to be Solved by the Invention] As mentioned above, in the development of silk-like thread, careful consideration is required to adapt to various trends and seasonal changes, and silk-like fabrics must be flexible.

ドライ感や軽さを与える糸条の粘度や形状、あるいはポ
リマーなどに注目して、これまでいくつかの検討が行な
われてきたが必ずしも満足するものは得られなかった。
Several studies have been conducted so far, focusing on the viscosity and shape of the yarn, or the polymers that give it a dry feel and lightness, but none of them were necessarily satisfactory.

例えば、ドライ感を与えるために糸条の断面形状を一般
的な3葉から6葉、あるいは8葉と、いわゆるマルチロ
ーバル断面糸にしたところ、突起部が多くなるに従って
ヌメリ感が無くなり、わずかながらもドライ感が出てく
るものの、突起部が多いため光の反射抑制が進み、染色
するとくすみが生じるといった問題があった。
For example, when we changed the cross-sectional shape of the yarn from the usual 3-lobed to 6-lobed or 8-lobed yarn to give a dry feel, we found that as the number of protrusions increased, the slimy feeling disappeared, and although it was slightly Although it gives a dry feel, there are problems in that the large number of protrusions inhibits light reflection, resulting in dullness when dyed.

そこで、アルカリ減量の技術を利用し、微粒の無機又は
有機化合物を混入したポリエステルを糸条にし、布帛に
した後にアルカリ溶液にて糸条中の無機又は有機化合物
を溶出することにより糸条表面に微細な溶出孔を作り、
その凹凸によってドライ感を付与する方法が考えられて
きた。
Therefore, using alkali weight loss technology, polyester mixed with fine particles of inorganic or organic compounds is made into yarn, and after being made into fabric, the inorganic or organic compounds in the yarn are eluted with an alkaline solution, and the surface of the yarn is Create fine elution holes,
A method of imparting a dry feeling through the unevenness has been considered.

このアルカリ処理法を用いると糸条表面の微細な凹凸に
より布帛を指先で滑らせた時のドライ感はかなり向上す
る様になったが、微細な凹凸のために光の反射抑制が進
み、布帛の光沢が全く消えてしまうという欠点が生じる
When this alkali treatment method is used, the dry feeling when the fabric is slid with a fingertip is considerably improved due to the fine irregularities on the thread surface, but the fine irregularities suppress the reflection of light and cause the fabric to dry. The disadvantage is that the gloss disappears completely.

また、ポリエステル中の無機又は有機化合物をアルカリ
溶液で溶出することによって、糸条表面に微細な溶出孔
が無数に生成するため、糸条表面カリ溶液による減量速
度が速いものとなり、減量が過度に進んで布帛にヘタリ
が生じ易くなるという欠点も生ずるのである。
In addition, by eluting inorganic or organic compounds in polyester with an alkaline solution, countless fine elution pores are generated on the yarn surface, so the weight loss rate due to the potassium solution on the yarn surface becomes fast, resulting in excessive weight loss. Another drawback is that the fabric tends to become loose.

そうかといってこのへタリを無くすためにアルカリ溶液
による減量時間を短縮した場合、今度は減量斑が発生し
かえって品位を低下することになる。また、例えばポリ
マーの粘度を高くしてヘタリの少ない超異形断面繊維を
得ようとすれども、従来技術では単糸デニールが10デ
ニールを超えるものしか達成されず従って衣料品には適
さないという欠点があった。
On the other hand, if the weight loss time using an alkaline solution is shortened in order to eliminate this sagging, weight loss spots will occur and the quality will deteriorate. Furthermore, for example, attempts have been made to increase the viscosity of the polymer to obtain fibers with extremely irregular cross-sections that have less set, but conventional techniques have the disadvantage that they are only able to achieve a single yarn denier of more than 10 deniers, making them unsuitable for clothing. there were.

そこで本発明者らは従来の合成繊維が有する前述の欠点
、即ちヌメリ感、染色のくすみ、ヘタリ等が生じ易い等
という欠点を解消することを目的に種々研究を積み重ね
た結果、ドライ感にあふれしかも染色上の問題がなくベ
タリにくい合成繊維を完成するに至った。
Therefore, the inventors of the present invention have conducted various research aimed at solving the above-mentioned drawbacks of conventional synthetic fibers, such as slimy feeling, dullness of dyeing, and tendency to sag. In addition, we have succeeded in creating a synthetic fiber that does not cause dyeing problems and is less sticky.

[問題点を解決するための手段] 上記目的を達成し得た本発明熱可塑性合成繊維る3個以
上5個以下の枝からなり、Deを単糸繊度、Aを枝の放
射方向の長さ、Bを枝の平均横幅、A/Bを枝のアスペ
クト比としたとき、0.5d≦De≦10d及び3.0
≦A/Bの両条件を満足する点に要旨を有するものであ
る。
[Means for Solving the Problems] The thermoplastic synthetic fiber of the present invention that achieves the above object is composed of 3 to 5 branches, where De is the single filament fineness and A is the length of the branches in the radial direction. , where B is the average width of the branch and A/B is the aspect ratio of the branch, 0.5d≦De≦10d and 3.0
The gist is that both conditions of ≦A/B are satisfied.

[作用コ 従来の3〜5個の枝を有する異形合成繊維は、第2図に
その断面形状を示す如く枝部2の放射方向の長さAが比
較的短い為、中心部から放射方向に延びる枝2の長さA
と枝2の平均横幅B(B1、からB□8までの平均)の
比[アスペクト比(A/B)で表わす]を多数の例につ
いては測定したところ、0.7程度以下しかないことが
分かった。またこの点を更に研究したところ、布帛のヌ
メリ感等は、該アスペクト比が小さいことによってもた
らされるものであることが明らかになってきた。即ちア
スペクト比(A/B)が3.0未満であるとヌメリ感が
強く現われ、天然繊維の有する光沢及び感触を得ること
はできない。そこで本発明者らは前記アスペクト比に着
目し、該比が3.0以上になる様に工夫した結果、メタ
リックな光沢とサラリとした風合(ドライ感)を持つ合
成繊維を得ることができた。また前記アスペクト比が4
.0以上になればドライ感が一層強いものとなり、更に
4.5以上になると風合いや手触りにおいて最適繊維と
なることが分かった。
[Operations] Conventional deformed synthetic fibers having 3 to 5 branches have a relatively short length A in the radial direction of the branch portions 2, as shown in the cross-sectional shape in Figure 2. Length A of the extending branch 2
When we measured the ratio of the average width B of branch 2 and the average width B (average from B1 to B□8) [expressed as aspect ratio (A/B)] for many examples, we found that it was only about 0.7 or less. Do you get it. Further research into this point has revealed that the sliminess of the fabric is caused by the small aspect ratio. That is, if the aspect ratio (A/B) is less than 3.0, a slimy feeling will appear strongly, and the gloss and feel of natural fibers cannot be obtained. Therefore, the present inventors focused on the aspect ratio, and as a result of devising the ratio to be 3.0 or more, they were able to obtain a synthetic fiber with a metallic luster and a smooth texture (dry feel). . Also, the aspect ratio is 4
.. It was found that when the value is 0 or more, the dry feel becomes even stronger, and when it is 4.5 or more, the fiber is optimal for texture and feel.

ただし単繊維の繊度(単糸繊度と言うこともある)が0
.5 d (デニール)未満である場合には、単繊維の
強力が著しく低下し、実用面で不都合が生じ、一方10
dより大きくなると衣料用として編織を行なうことが困
難となって本発明繊維のせっかくの特性を十分享受し得
なくなる。尚本発明繊維の特性を更に有効に引出すには
*ta維の繊度は0.5d以上、8d以下が好ましく、
最適な範囲は0.5 d以上、7d以下である。
However, the fineness of single fibers (sometimes called single yarn fineness) is 0.
.. If it is less than 5 d (denier), the strength of the single fiber will be significantly reduced, causing practical problems;
If it is larger than d, it becomes difficult to knit or weave it for clothing, and the characteristics of the fiber of the present invention cannot be fully enjoyed. In order to more effectively bring out the characteristics of the fibers of the present invention, *the fineness of the TA fibers is preferably 0.5 d or more and 8 d or less;
The optimal range is 0.5 d or more and 7 d or less.

[実施例コ 第1図は本発明の代表的な合成繊維における単繊維1の
断面形状を示すものであり、中心部から放射方向に延び
る3個の枝2を有し、枝2は中心部から離れる(先端へ
向う)に従って少しずつ細くなっていく。本発明に係る
合成繊維における単繊維1の断面形状は該実施例に限定
されず、第3図(a)〜 (c)に示す様に枝2の本数
は3個以上5個以下であれば良く、また枝2の横幅は根
元から先端に向って実買上同−のものであっても構わな
い。
[Example 1] Figure 1 shows the cross-sectional shape of a single fiber 1 in a typical synthetic fiber of the present invention, which has three branches 2 extending radially from the center. It becomes thinner little by little as you move away from it (toward the tip). The cross-sectional shape of the single fiber 1 in the synthetic fiber according to the present invention is not limited to the above embodiment, and as shown in FIGS. 3(a) to 3(c), the number of branches 2 is from 3 to 5. Alternatively, the width of the branch 2 may be the same as the actual branch from the base to the tip.

また前記合成繊維の材料となる熱可塑性高分子は特に限
定されるものではなく、例えば次の様なものが代表例と
して掲げられる。即ちポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ポリメチレンテレフタレー
ト等に代表されるポリエステルやポリカプロラクタム、
ポリヘキサメチレンアジパミド、ポリへキサメチレンセ
バクアミド、ポリテトラメチレンアジパミド等に代表さ
れるポリアミドやポリプロピレン、ポリエチレン、ポリ
ブテン−1,ポリオキシメチレン等に代表されるポリ−
α−オレフィン類及びポリビニルアルコール等が利用さ
れる。尚これ等の熱可塑性高分子には、艶消し剤2顔料
、光安定剤、熱安定剤、酸化防止剤、帯電防止剤、染色
向上剤或は接着性向上剤等を本発明繊維の特性に重大な
悪影響を与えない限りは自由に配合することができる。
Further, the thermoplastic polymer used as the material of the synthetic fiber is not particularly limited, and the following are listed as representative examples. That is, polyesters represented by polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, etc., polycaprolactam,
Polyamides such as polyhexamethylene adipamide, polyhexamethylene sebaamide, polytetramethylene adipamide, etc.; polyamides such as polypropylene, polyethylene, polybutene-1, polyoxymethylene, etc.
α-olefins, polyvinyl alcohol, etc. are used. These thermoplastic polymers may contain matting agents, pigments, light stabilizers, heat stabilizers, antioxidants, antistatic agents, dyeing improvers, adhesion improvers, etc. to improve the properties of the fibers of the present invention. They can be mixed freely as long as they do not cause any serious adverse effects.

第1図に示した枝2のアスペクト比の算定には、中心部
側根元の横幅B waxから先端部の横幅B +mln
までの平均横幅Bと前記根元から前記先端部までの長さ
Aが用いられる。しかるに該アスペクト比を3.0以上
に設定しようとすれば単繊維の強度を実用上問題のない
レベルに維持しなければならず、このことは紡糸ノズル
を工作する上での精度維持面からも重要な要求項目とな
る。また枝のアスペクト比が3.0以上である様な繊維
を紡糸するためには、ドープとなる高分子材料の粘度を
高くしておく必要があり、たとえばポリエチレンテレフ
タレートを主体とするポリエステルを材料とするときは
、衣料用繊維の紡出に必要と考えられている一般的な固
有粘度(後に詳述する)では不十分であって繊維断面形
状の保形が困難であり、少なくとも前記固有粘度が0.
7以上のものを使用しなければならない。
To calculate the aspect ratio of branch 2 shown in Fig. 1, the width at the base of the center side B wax to the width at the tip B + mln
The average width B up to and the length A from the root to the tip are used. However, in order to set the aspect ratio to 3.0 or more, it is necessary to maintain the strength of the single fiber at a level that does not cause any practical problems, and this is also important from the viewpoint of maintaining accuracy when manufacturing the spinning nozzle. This is an important requirement. In addition, in order to spin fibers with branch aspect ratios of 3.0 or more, it is necessary to increase the viscosity of the polymer material used as the dope. In this case, the general intrinsic viscosity (described in detail later) that is considered necessary for spinning clothing fibers is insufficient and it is difficult to maintain the cross-sectional shape of the fiber. 0.
7 or higher must be used.

尚ポリエステルの固有粘度は次の方法によって測定する
。即ち75重量%のp−クロロフェノールと25重量%
のテトラクロルエタンからなる混合溶剤に重合体を室温
において溶解し、オストワルドーフェンスヶ毛細粘度計
を使用し30℃において粘度を測定する。
The intrinsic viscosity of polyester is measured by the following method. i.e. 75% by weight p-chlorophenol and 25% by weight
The polymer is dissolved in a mixed solvent consisting of tetrachloroethane at room temperature, and the viscosity is measured at 30° C. using an Ostwald-Fens capillary viscometer.

固有粘度は、溶液粘度の溶媒粘度に対する比の自然対数
を、溶液100m1当たりの重合体のグラム数で表わし
た重合体溶液の濃度によって除した値が濃度ゼロに近づ
くときの極限値である。
Intrinsic viscosity is the limit value at which the natural logarithm of the ratio of solution viscosity to solvent viscosity divided by the concentration of the polymer solution in grams of polymer per 100 ml of solution approaches zero concentration.

また例えばポリカブラミドを主体とするポリアミドを材
料とするときは、従来必要と考えられている一般的な相
対粘度(後で詳述する)では保形上の困難性があり、本
発明繊維を得るには相対粘度は3.0以上であることが
好ましい。
Furthermore, when polyamide, which is mainly composed of polycabramide, is used as a material, it is difficult to maintain the shape with the general relative viscosity (described in detail later) that is conventionally considered necessary, and it is difficult to obtain the fiber of the present invention. It is preferable that the relative viscosity is 3.0 or more.

尚ポリアミドの相対粘度は次の方法によって測定する。The relative viscosity of polyamide is measured by the following method.

即ち96.3±0.1重量%試薬特級濃硫酸中に重合体
濃度がLong/mlになるように試料を溶解させてサ
ンプル溶液を調整し、20℃±0.05℃の温度で氷落
下秒数6〜7秒のオストワルド粘度計を用い、溶液相対
粘度を測定する。測定に際し、同一の粘度計を用い、サ
ンプル溶液を調整した時と同じ硫酸20m1の落下時間
To  (秒)と、サンプル溶液20m1の落下時間T
I (秒)の比より、相対粘度RVを下記の式を用いて
算出する。
That is, prepare a sample solution by dissolving the sample in 96.3 ± 0.1% by weight reagent special grade concentrated sulfuric acid so that the polymer concentration is Long/ml, and drop it on ice at a temperature of 20°C ± 0.05°C. Measure the relative viscosity of the solution using an Ostwald viscometer with 6-7 seconds. During the measurement, the same viscometer was used, and the falling time To (seconds) of 20 ml of sulfuric acid was the same as when preparing the sample solution, and the falling time T of 20 ml of the sample solution was measured.
From the ratio of I (seconds), the relative viscosity RV is calculated using the following formula.

RV=T、/T0 上記高粘度の高分子材料を紡糸するに当たっては、紡糸
機の耐圧強度を通常の300 kg/ am”から50
0 kg/ CI2以上に上げることが必要であり、さ
らに好ましくは1000 kg/ 0m2以上にするこ
とが望まれる。また紡糸された糸を延伸熱処理して本発
明超異形断面糸を得るに際しては、非接触型のヒーター
を用いて延伸することが好ましい。
RV=T, /T0 When spinning the above-mentioned high viscosity polymer material, the pressure strength of the spinning machine should be increased from the usual 300 kg/am” to 50 kg/am”.
It is necessary to raise it to 0 kg/CI2 or more, and more preferably to 1000 kg/0m2 or more. Furthermore, when the spun yarn is subjected to drawing heat treatment to obtain the ultra-irregular cross-section yarn of the present invention, it is preferable to use a non-contact type heater for drawing.

衷」口I土 固有粘度が1.0と0.6のポリエチレンテレフタレー
トを第3図(a)に示す様な形状のノズルによって紡糸
した。紡糸ノズルの枝長さAは0.9 mm、横幅Bは
0.1 mmであり、該ノズルが18個配設された口金
を用い、紡糸温度290℃。
Polyethylene terephthalate having an intrinsic viscosity of 1.0 and 0.6 was spun using a nozzle shaped as shown in FIG. 3(a). The branch length A of the spinning nozzle was 0.9 mm, the width B was 0.1 mm, a spinneret with 18 nozzles was used, and the spinning temperature was 290°C.

紡糸速度s o o m/分、吐出量18g/分、冷却
風速0.5 m/secの条件下で紡糸を行なった後、
200℃、100cmの非接触スリットヒータを用いて
1,8フイラメントで繊度100dの糸条を得た。
After spinning under the conditions of a spinning speed of s o m/min, a discharge rate of 18 g/min, and a cooling air speed of 0.5 m/sec,
Using a 100 cm non-contact slit heater at 200° C., a yarn with a fineness of 100 d was obtained with 1.8 filaments.

得られた糸条を羽二重に製織し、この織物に製錘、プレ
セット、アルカリ減量及び染色等の加工を施し、同一色
の無地染め織物を作り、該織物における光沢やドライ感
等の比較を行なった。その結果を第1表に示す。
The obtained yarn is woven into habutae, and this fabric is subjected to processing such as spinning, presetting, alkali weight loss, and dyeing to produce a plain dyed fabric of the same color. I made a comparison. The results are shown in Table 1.

第   1   表 衷IU生主 相対粘度が4.0 、3.5 、2.5のナイロン6を
実験例1とほぼ同条件で紡糸・延伸した(ただし紡糸温
度は280℃とした)。こうして得られた糸条を実験例
1と同様に製織、後加工して無地染めの羽二重織物を得
て夫々の評価を行なった。その結果を第2表に示す。
First, nylon 6 having an IU main relative viscosity of 4.0, 3.5, and 2.5 was spun and drawn under almost the same conditions as in Experimental Example 1 (however, the spinning temperature was 280°C). The yarn thus obtained was woven and post-processed in the same manner as in Experimental Example 1 to obtain plain dyed habutae fabrics, and each was evaluated. The results are shown in Table 2.

[発明の効果] 本発明合成繊維は天然繊維に酷似した特性を有するもの
であり、ドライ感にあふれ、しかもへタリや染色上の問
題等の欠点を解消した布帛が得られる様になった。
[Effects of the Invention] The synthetic fibers of the present invention have properties very similar to natural fibers, making it possible to obtain fabrics that are full of dryness and eliminate drawbacks such as curling and dyeing problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の単繊維断面を示す説明図、第2図は従
来の単繊維断面を示す説明図、第3図(a)〜 (c)
は本発明の他の実施例を示す説明図である。
Fig. 1 is an explanatory diagram showing a cross section of a single fiber according to the present invention, Fig. 2 is an explanatory diagram showing a cross section of a conventional single fiber, and Figs. 3 (a) to (c).
FIG. 2 is an explanatory diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 (1)熱可塑性合成繊維であって、単繊維の断面形状が
、中心部から放射状に延びる3個以上5個以下の枝から
なり、且つ下記式(イ)、(ロ)を満足するものである
ことを特徴とする超異形断面繊維。 0.5d≦De≦10d・・・(イ) 3.0≦A/B・・・(ロ) 但しDeは単糸繊度、Aは上記枝の放射方向の長さ、B
は上記枝の平均横幅、A/Bは上記枝のアスペクト比を
示す。 (2)アスペクト比(A/B)が4.0以上である特許
請求の範囲第1項に記載の超異形断面繊維。 (3)アスペクト比(A/B)が4.5以上である特許
請求の範囲第2項に記載の超異形断面繊維。 (4)単糸繊度(De)が、0.5d≦De≦8dの範
囲内である特許請求の範囲第1〜3項のいずれかに記載
の超異形断面繊維。 (5)単糸繊度(De)が0.5d≦De≦7dの範囲
内である特許請求の範囲第4項に記載の超異形断面繊維
。 (6)熱可塑性合成繊維が相対粘度3.4以上のポリア
ミドを紡糸・延伸したものである特許請求の範囲第1〜
5項のいずれかに記載の超異形断面繊維。 (7)熱可塑性合成繊維が固有粘度0.7以上のポリエ
ステルを紡糸・延伸したものである特許請求の範囲第1
〜5項のいずれかに記載の超異形断面繊維。
[Scope of Claims] (1) A thermoplastic synthetic fiber, in which the cross-sectional shape of a single fiber consists of 3 or more and 5 or less branches extending radially from the center, and has the following formula (a) or (ro). ) A super irregular cross-section fiber that satisfies the following. 0.5d≦De≦10d...(a) 3.0≦A/B...(b) However, De is the single yarn fineness, A is the length of the branch in the radial direction, and B
is the average width of the branch, and A/B is the aspect ratio of the branch. (2) The ultra-irregular cross-section fiber according to claim 1, which has an aspect ratio (A/B) of 4.0 or more. (3) The ultra-irregular cross-section fiber according to claim 2, which has an aspect ratio (A/B) of 4.5 or more. (4) The ultra-irregular cross-section fiber according to any one of claims 1 to 3, wherein the single fiber fineness (De) is within the range of 0.5d≦De≦8d. (5) The ultra-irregular cross-section fiber according to claim 4, wherein the single fiber fineness (De) is within the range of 0.5d≦De≦7d. (6) The thermoplastic synthetic fiber is obtained by spinning and drawing polyamide having a relative viscosity of 3.4 or more.
The super irregular cross-section fiber according to any one of Item 5. (7) Claim 1 in which the thermoplastic synthetic fiber is obtained by spinning and drawing polyester having an intrinsic viscosity of 0.7 or more.
The ultra-irregular cross-section fiber according to any one of items 1 to 5.
JP7161186A 1986-03-28 1986-03-28 Super modified cross-section fiber Pending JPS62231012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7161186A JPS62231012A (en) 1986-03-28 1986-03-28 Super modified cross-section fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7161186A JPS62231012A (en) 1986-03-28 1986-03-28 Super modified cross-section fiber

Publications (1)

Publication Number Publication Date
JPS62231012A true JPS62231012A (en) 1987-10-09

Family

ID=13465617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7161186A Pending JPS62231012A (en) 1986-03-28 1986-03-28 Super modified cross-section fiber

Country Status (1)

Country Link
JP (1) JPS62231012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198279U (en) * 1986-06-05 1987-12-17
US5676723A (en) * 1992-06-25 1997-10-14 Canon Kabushiki Kaisha Mold for forming an optical element
KR20040013274A (en) * 2002-08-05 2004-02-14 주식회사 휴비스 Shaped thermoplastic fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936714A (en) * 1982-08-26 1984-02-29 Teijin Ltd Crimped modified hollow yarn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198279U (en) * 1986-06-05 1987-12-17
US5676723A (en) * 1992-06-25 1997-10-14 Canon Kabushiki Kaisha Mold for forming an optical element
KR20040013274A (en) * 2002-08-05 2004-02-14 주식회사 휴비스 Shaped thermoplastic fiber

Similar Documents

Publication Publication Date Title
US6803000B2 (en) Process of making yarn from two types of polyester
TWI387669B (en) Scalloped oval bicomponent fibers with good wicking, high uniformity spun yarns comprising such fibers,fabrics,garments,and nonwoven fabrics
CN109415846B (en) Sea-island type composite fiber having excellent moisture absorption, false twisted yarn, and fiber structure
JPS61113819A (en) Novel fiber cloth and yarn and its production
JP2005507033A (en) Heterogeneous composite yarn, its cloth and manufacturing method
EP2873756A1 (en) Sheath-core bicomponent fibre
TW202001018A (en) Fabrics and spun yarns comprising polyester staple fiber
JPS62231012A (en) Super modified cross-section fiber
US4359557A (en) Process for producing low pilling textile fiber and product of the process
JPS60167923A (en) Polyester modified cross section yarn
JP4372239B2 (en) Woven knitted fabric with excellent antistatic, water absorption, and moisture absorption / release properties
JPS6290345A (en) Different finness and different shrinkage blended spun yarn
JPS62231011A (en) Super modified multilobed cross-section fiber
JPS6228405A (en) Fiber having special cross-sectional shape
US4473996A (en) Polyester conjugate crimped yarns
JPH04272223A (en) Splittable conjugate fiber
JP5012646B2 (en) Split-type polyamide / polyester composite fibers, woven and knitted fabrics, and textile products
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP3598027B2 (en) Special composite crimped yarn
JP2885493B2 (en) Mixed fiber woven fabric and its manufacturing method
JP3418607B2 (en) Covering yarn
JPH1150335A (en) Polyester fiber and its production
JP3128529B2 (en) Method for producing cationically dyeable spontaneously extensible polyester filament yarn, and method for producing fabric using filament yarn obtained by the method
JP3863051B2 (en) Polyester spotted yarn
KR20050034235A (en) Method of preparing polyester fiber having improved elasticity and the polyester fiber thereby