JPS6223095A - Sound insulation structural body - Google Patents

Sound insulation structural body

Info

Publication number
JPS6223095A
JPS6223095A JP60162540A JP16254085A JPS6223095A JP S6223095 A JPS6223095 A JP S6223095A JP 60162540 A JP60162540 A JP 60162540A JP 16254085 A JP16254085 A JP 16254085A JP S6223095 A JPS6223095 A JP S6223095A
Authority
JP
Japan
Prior art keywords
area
sound insulation
wall
sound
natural frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60162540A
Other languages
Japanese (ja)
Other versions
JPH0664475B2 (en
Inventor
市川 康治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP60162540A priority Critical patent/JPH0664475B2/en
Publication of JPS6223095A publication Critical patent/JPS6223095A/en
Publication of JPH0664475B2 publication Critical patent/JPH0664475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遮音性能の改善された多重壁構造からなる遮
音構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sound insulation structure having a multi-wall structure with improved sound insulation performance.

(従来技術) 近年、住宅騒音等の問題に対処するため、多(の遮音技
術、材料の研究開発がなされている。又建材においては
、建材性能の高性能化が求められている。即ち、省資源
・省エネルギー、安全性の向上の観点から断熱化、軽量
化、不燃化が要求され、空間の拡大、施工性の改善等の
観点から薄型化が求められている。この為、遮音材料及
び遮音構造も、これらの要求に合致するものが求められ
るに至っている。しかし、建材あるいは建築物等の遮音
性能の向上と上記要求性能は、しばしば背反し、これを
両立させることが困難であった。
(Prior Art) In recent years, in order to deal with problems such as residential noise, research and development of many sound insulation technologies and materials have been carried out.In addition, there is a demand for higher performance of building materials. In order to save resources, save energy, and improve safety, insulation, weight reduction, and non-combustibility are required, and thinning is required to expand space and improve workability.For this reason, sound insulation materials and Sound insulation structures that meet these requirements have come to be required.However, improvements in the sound insulation performance of building materials or buildings, etc. and the above-mentioned performance requirements are often in conflict, and it has been difficult to achieve both. .

一般に遮音材料においては、その遮音性能は音響透過に
おける質量剤に基ずき大略決定され、その遮音性能を示
す音響透過損失(TransmissionLoss、
以下、T、 L、と称す)は、その面密度全増加するに
従い向上する。また質量側以上にT、 L。
In general, the sound insulation performance of sound insulation materials is roughly determined based on the mass agent in sound transmission, and the sound transmission loss (TransmissionLoss), which indicates the sound insulation performance, is determined based on the mass agent in sound transmission.
(hereinafter referred to as T and L) improve as the total areal density increases. Also, T and L on the mass side.

を良(するため、遮音材料を平行に配置した二重壁また
は多重壁構造とし、また更に内部に吸音材等を挿入して
遮音効果を向上させることが一般に行なわれている。遮
音材料を有に軟質の遮音面材を剛性の面材全面に積層し
、あるいは多重壁構造体の一つまたは複数の壁面全面に
軟質の遮音性面材を張設するなどの施工法が行なわれ、
遮音性の改善が行なわれている0 (発明が解決しようとする問題点) しかし、このような方法では必然的に重量及び厚みの増
加を来す。又、特に問題点として、このような方法を用
いてもなお、コインシデンス効果及び特に低音域の共鳴
透過等によって特定の音域で著しいT、L、の低下、つ
まシ遮音欠損を生ずる場合が多い。また、近年特に注目
される騒音公害として、比較的低音域の騒音が問題視さ
れている。
In order to improve the sound insulation effect, it is common practice to create a double wall or multi-wall structure in which sound insulation materials are arranged in parallel, and to further improve the sound insulation effect by inserting sound absorbing materials inside. Construction methods are used, such as laminating a soft sound-insulating surface material over the entire surface of a rigid surface material, or extending a soft sound-insulating surface material over the entire surface of one or more walls of a multi-wall structure.
Improvements in sound insulation have been made (Problems to be Solved by the Invention) However, such methods inevitably result in an increase in weight and thickness. In addition, a particular problem is that even if such a method is used, a significant drop in T, L, and a loss of sound insulation in a particular sound range often occur due to the coincidence effect and resonance transmission, especially in the low range. Furthermore, relatively low-frequency noise has been viewed as a problem as noise pollution that has received particular attention in recent years.

例えば、ピアノ、ステレオ等の音響機基音やカラオケ騒
音、ドアの開閉前等の衝撃性前、大型冷蔵庫、クーラー
等のコンルッサーやファンの音(家庭用機器前)等の数
10HZから1. i o OHZの低音域の騒音源が
、居住者の近辺に著しく多く存在する。これらの低音域
の共鳴透過による遮音欠損に対して、これを多少よシ低
音側に移動しても、依然として問題の解決とはならない
。又、他の遮音欠損対策と、して、高性能な吸音材の挿
入や、面材を制振処理することも行なわれているが、コ
ストが高(、又効果も充分でないことが多い。
For example, fundamental sounds of sound equipment such as pianos and stereos, karaoke noises, impact noises such as before opening and closing doors, noises from compressors and fans of large refrigerators and air conditioners (in front of household appliances), etc. range from several tens of Hz to 1. i o There are significantly more low-frequency noise sources in the OHZ near residents. Even if the sound insulation loss caused by resonance transmission in the bass range is moved to the bass side, the problem still cannot be solved. Other countermeasures against sound insulation defects include inserting high-performance sound absorbing materials and applying vibration-damping treatment to face materials, but these are expensive (and often not sufficiently effective).

とシわけ重要な点は、遮音性能を向上させる一般的方法
が遮音欠損を改善する効果に乏しいと言う事であり、時
に、遮音欠損をさらに悪化させる事がある点である。例
えば、音の樹による遮音性能の低下を防止する手段とし
て多用される間柱の独立化は、二重壁の低音域の共鳴透
過を助長し、欠損による落ち込みをさらに数dB悪化さ
せる事が多い@これは、二重壁構造において対向する二
つの壁面が、間柱の独立化によって構造的に分離して相
対的に強度が低下し、それぞれの壁面が独立間柱を含め
て一体振動を起し易く、壁面全体にわたる共鳴状態を現
出する為と考えられる。
It is particularly important to note that common methods for improving sound insulation performance are not very effective in improving sound insulation deficiencies, and in some cases may even make the sound insulation deficits worse. For example, separating the studs, which is often used as a means to prevent the deterioration of sound insulation performance due to sound trees, promotes the resonance transmission of the low frequency range of double walls, often exacerbating the drop caused by defects by several dB. This is because the two opposing walls in a double-walled structure are structurally separated by the independent studs, resulting in a relative decrease in strength, and each wall surface, including the independent studs, tends to vibrate as a unit. This is thought to be due to the appearance of a resonant state over the entire wall surface.

このような遮音欠損の改善を、本山−人はすてに特鳳昭
58−115192号及び特願昭58−174491号
明細書で提案したが、別の手法によっても前記遮音欠損
を改善できることを見出し、本発明に至った〇 (問題点を解決するための手段) 本発明は前記問題点を構造体の構成要素である仕上材の
基本固有振動数に着目してなされたものであって、その
要旨は、壁体の少なくとも片面に空隙部を設けて仕上材
を所定間隔で配した固定材によシ固着して構成された多
x壁体であって、前記仕上材が該仕上材板面の図心を中
心とする直径60011にの円を内包する鉛直方向及び
水平方向の所定幅の帯状領域において基本固有振動数が
500H2以上である面積を前記帯状領域の全面積に対
し30%以下、300 HZ未満である面積を30%〜
60%として構成される遮音構造体に係る。
Mr. Motoyama had already proposed improvement of such sound insulation defects in Tokuho No. 58-115192 and Japanese Patent Application No. 174491/1981, but he also found that the sound insulation defects could be improved by another method. Heading, Achievement of the present invention〇 (Means for solving the problem) The present invention was made by focusing on the basic natural frequency of the finishing material that is a constituent element of the structure, in order to solve the above problem, The gist thereof is to provide a multi-wall body in which a gap is provided on at least one side of the wall body, and the finishing material is fixed to the fixing material arranged at predetermined intervals, the finishing material being fixed to the finishing material plate. In a belt-shaped region of a predetermined width in the vertical and horizontal directions that includes a circle with a diameter of 60011 centered on the centroid of the surface, the area where the fundamental natural frequency is 500H2 or more is 30% or less of the total area of the belt-shaped region , 30% to 30% of the area is less than 300 HZ
It concerns a sound insulation structure configured as 60%.

本発明に訃ける壁体としては、コンクリート、PC板、
ALC板、モルタル等から形成される窯業系壁体、鉄鋼
板等から形成される金属壁体又は石材、ブロック、タイ
ル、れんが等から形成される壁体等が用いられる。
Examples of wall bodies that can be used in the present invention include concrete, PC board,
A ceramic wall made of ALC board, mortar, etc., a metal wall made of steel plate, etc., or a wall made of stone, block, tile, brick, etc. are used.

また、仕上材としては、石こうボード、石綿板、ケイカ
ル板、パーティクルボード、  セメント板、合板等が
用いられる。
In addition, as finishing materials, gypsum board, asbestos board, silica board, particle board, cement board, plywood, etc. are used.

多重壁構造体としては、例えば第2図に示す如(コンク
リート等の壁体111に固定材(3)としてボンド接着
剤を用い、このボンドを例えば第3図に示す如(所定間
隔に配し、石こう板等の仕上材(2)を接着固定して構
成される。本例は壁体の片面に仕上材を配して構成した
が、両面に配した構造であってもよ(、また、固定材と
しては、梁や間柱等によって例えば第4図に示すように
壁面を仕切って壁体と仕上材が梁や間柱等を介挿して接
着剤等によシ固着され構成されてもよい。この場合にお
いて、梁等で仕切られる空隙部にグラスウール等の吸音
材や高分子材料発泡体等の断熱材等が充填されてもよい
As a multi-wall structure, for example, as shown in Fig. 2, bond adhesive is used as a fixing material (3) to the wall body 111 such as concrete, and this bond is arranged at predetermined intervals as shown in Fig. 3, for example. It is constructed by gluing and fixing the finishing material (2) such as gypsum board.In this example, the finishing material is placed on one side of the wall, but it may also be placed on both sides. The fixing material may be constructed by partitioning the wall surface with beams, studs, etc., as shown in FIG. 4, and fixing the wall and the finishing material with adhesive or the like through the beams, studs, etc. In this case, a cavity partitioned by a beam or the like may be filled with a sound absorbing material such as glass wool, a heat insulating material such as a polymer foam, or the like.

これらからなる本発明に係る多重壁構造体は以下の如き
特定の条件下で構成される。 すなわち、多重壁構造体
を構成する仕上材が、その板面に図心を中心とする直径
601mBの円を内包する、好ましくは80(Fj〜1
00aIkの帯状領域を鉛直方向及び水平方向に設け、
この直交する二つの帯状領域において基本固有振動数が
500 HZ以上である面積を帯状領域の全面積に対し
30チ以下、同様に300HZ未満である面積’i50
% 〜60%として形成される必要がある。
The multi-walled structure according to the present invention made of these materials is constructed under the following specific conditions. That is, the finishing material constituting the multi-wall structure includes a circle with a diameter of 601 mB centered on the centroid on its plate surface, preferably 80 (Fj ~ 1
A strip area of 00aIk is provided in the vertical and horizontal directions,
In these two orthogonal band-shaped regions, the area where the fundamental natural frequency is 500 Hz or more is 30 cm or less with respect to the total area of the band-shaped region, and the area where the fundamental natural frequency is also less than 300 Hz is 'i50.
% to 60%.

なお、前記基本固有振動数が400 HZ以上500H
Z未満である面積を前記帯状領域の全面積に対し40%
以下、同様に500 H2以上4 r:J OHZ未満
である面積を20%〜60%として構成されることが好
ましい。
In addition, the basic natural frequency is 400 HZ or more and 500 H
The area less than Z is 40% of the total area of the strip area.
Hereinafter, it is preferable that the area of 500 H2 or more and less than 4 r:J OHZ be 20% to 60%.

ここに、基本固有振動数とは、第1図に示す如き板の一
次の屈曲の固有振動数をいう(以下、単に固有振動数と
いい、略称としてFp k用いる)。
Here, the fundamental natural frequency refers to the natural frequency of primary bending of the plate as shown in FIG. 1 (hereinafter simply referred to as natural frequency, and abbreviated as Fp k).

帯状領域は第5図に示す如く鉛直方向及び水平方向に設
けられる。この場合に該領域内に図心を中心とする直径
60(至)の円を内包することが必要である。すなわち
、居住は主として壁体の図心部分及びその周辺領域に近
接して行われ全餐面の遮音性能を代表し得るとともに壁
面において支配的役割も果し得るからである。
The strip areas are provided in the vertical and horizontal directions as shown in FIG. In this case, it is necessary to include a circle with a diameter of 60 (up to) centered on the centroid within the area. That is, the living space is mainly located close to the centroid of the wall and its surrounding area, which can represent the sound insulation performance of the entire dining area and can also play a dominant role on the wall.

帯状領域の幅は余シ小さくては、固有振動数の差異を大
きくしても構造体全体への影響が小さく目的とする遮音
欠損の改善が得られない0構造体の大きさ等の諸条件を
勘案し、図心を中心とする直径60CIIkの円を内包
する幅を有する帯状領域において前記した固有振動数の
差異があれば、遮音欠損の改善がなされ、80〜100
(至)の幅において好ましくなされる。
If the width of the band-shaped region is too small, even if the difference in natural frequencies is increased, the effect on the entire structure will be small and the desired improvement of sound insulation defects will not be achieved. Conditions such as the size of the structure Taking this into consideration, if there is a difference in the natural frequency described above in a band-shaped region having a width that includes a circle with a diameter of 60 CIIk centered on the centroid, the sound insulation deficiency will be improved, and the frequency will be 80 to 100.
It is preferable to have a width of (to).

前記幅の帯状領域において前記した仕上材の固有振動数
が特定の条件下で分布している必要がある。
It is necessary that the natural frequencies of the above finishing material be distributed under specific conditions in the band-shaped region of the above width.

すなわち固有振動数を異にする複数の領域から形成され
ることである。
That is, it is formed from a plurality of regions having different natural frequencies.

遮音欠損は、主として壁体構造の構成部材単独のレベル
から、これ等各部材(空気層を含む)間の結合達成系の
レベル等の各レベルの共振現象に起因して発生する。ま
た、この時、音の入射または放射面となる仕上材の振動
挙動が重要な因子となる@例えば、コインシデンス効果
は板の屈曲振動の波長および伝般速度によってほぼ決定
される。
Sound insulation defects mainly occur due to resonance phenomena at various levels, from the level of individual constituent members of the wall structure to the level of the system for achieving coupling between these members (including the air layer). Also, at this time, the vibration behavior of the finished material that becomes the sound incident or radiation surface is an important factor. For example, the coincidence effect is almost determined by the wavelength and propagation speed of the bending vibration of the plate.

また、低音域の共鳴透過においてもその共鳴周波数fr
mLと板の固有振動数の関係が重要である。
Also, in resonance transmission in the low frequency range, the resonance frequency fr
The relationship between mL and the natural frequency of the plate is important.

一般に均質な長方形板の屈曲の固有振動数Fpは、周辺
支持の場合において次の式で与えられる。
In general, the natural frequency Fp of bending of a homogeneous rectangular plate is given by the following equation in the case of peripheral support.

Fp*157(1丁+聞)・■・V1ン7でモラ一つ−
ここでa、bは長方形の縦、横の長さ、■は板の厚さ、
Eはヤング率、ρは密度、νはポアソン比を示す。
Fp*157 (1 gun + listen)・■・One mora with V1-7-
Here, a and b are the length and width of the rectangle, ■ is the thickness of the board,
E represents Young's modulus, ρ represents density, and ν represents Poisson's ratio.

また、周辺固定の場合は、次式で与えられる。In addition, when the periphery is fixed, it is given by the following equation.

π   14  2.25 ”= 4v’A (a” ”−b”つ−g−Aン7て〒
コ一)−但し、この場合aは長辺、bは短辺の長さであ
る。
π 14 2.25 ”= 4v'A (a” ”-b”tsu-g-Aan7 〒
1) - However, in this case, a is the length of the long side and b is the length of the short side.

したがって、この例で言えば、長方形の形状(a、b)
を変更すればlPpも変化する事がわかる。
Therefore, in this example, the rectangular shape (a, b)
It can be seen that if you change , lPp will also change.

そこで、壁体においても構造補強材の使用位置(ないし
間隔等)を変更する事により板のFpを変更できる。ま
た、さらに、この補強材位置等金不均−にする事によっ
て仕上材のFp?不均質化する事が可能である。この様
にして、多重h4構造体中の仕上材のFpt=所定の条
件で分散すると、上記欠損の発生が大巾に低下する。
Therefore, the Fp of the plate can be changed by changing the position (or spacing, etc.) of the structural reinforcing material in the wall body. Furthermore, by making the position of the reinforcing material uneven, the Fp of the finishing material can be improved. It is possible to make it heterogeneous. In this way, when the finishing material is dispersed under the Fpt=predetermined condition in the multiple H4 structure, the occurrence of the above-mentioned defects is greatly reduced.

まず、固有振動数t−500HZ以上である面積が帯状
領域の全面積に対し30%以下でなければならない03
0%以上では入射音の固体伝搬成分と板振動成分が大幅
に重複し壁体の中音域の遮音性能を著しく悪化させるお
それが大となるからである。
First, the area where the natural frequency is t-500Hz or higher must be 30% or less of the total area of the band-shaped region03
This is because if it is more than 0%, the solid propagation component and plate vibration component of the incident sound will overlap significantly, and there is a great possibility that the mid-range sound insulation performance of the wall will be significantly deteriorated.

同様の理由から400 !’IZ以上の面積も40−以
下であることが好ましい0また、3001’lZ以下の
面積が帯状領域の全面積に対し30%〜60%の範囲に
あることが必要である。30%未満ではFPの分散化が
不十分となるからであり、60Ls以上では、500 
IIZ以下のFp領領域おいては低音域の共鳴透過によ
る遮音欠損が大きくなるおそれが高く、その為同領域面
積t−60%以下とする必要がある。また、ppの分散
効果も60%を超えると不十分となるためである〇 さらに、300HZ以上400 HZ未満の固有振動数
の面積が帯状領域の全面積に対し20慢乃至60%の範
囲にあることが好ましい。
400 for the same reason! It is preferable that the area greater than or equal to 'IZ is also less than or equal to 40-0. Furthermore, it is necessary that the area less than or equal to 3001'IZ be in the range of 30% to 60% of the total area of the band-shaped region. This is because if it is less than 30%, the dispersion of FP will be insufficient, and if it is more than 60Ls, it will be less than 500Ls.
In the Fp area below IIZ, there is a high possibility that sound insulation defects due to resonance transmission in the bass range will become large, and therefore the area of the area needs to be t-60% or less. In addition, the dispersion effect of pp becomes insufficient if it exceeds 60%.Furthermore, the area of the natural frequency of 300Hz or more and less than 400Hz is in the range of 20% to 60% of the total area of the band-shaped region. It is preferable.

この範囲にあることが前記した諸条件と関連して基本固
有振動数の分散化を図り易(し遮音欠損の改善に効果的
に作用してくれるからであるOなお、仕上材にあらかじ
め面密度や剛性を適宜不均質化してもよい。また、仕上
材が壁面の両面に配置された構造体にあっては相対向す
る帯状領域のFPt互に異ならしめることも有効である
Being within this range makes it easier to disperse the basic natural frequency in relation to the above-mentioned conditions (and effectively works to improve sound insulation defects). In addition, in a structure in which finishing materials are disposed on both sides of the wall surface, it is also effective to make the FPt of opposing band-shaped regions different from each other.

従って、前記帯状領域における基本固有振動数を異にす
る複数の領域の形成方法としては、例えば複数の領域か
ら構成され、該複数の領域の各領域の面密度及び/又は
剛性を異ならせて形成してもよ(、第3図に示す如くボ
ンドの煮付接着の配置を密な部分と疎な部分に配置し形
成してもよい0また、梁や間柱等の構造補強材によって
仕上材を複数の領域に仕切るに際し、該複数の領域の面
積を異にして形成してもよい。また、これ等を組合せて
もよい。々お、仕上材の上層にさらに化粧材を形成して
なる多重壁においても、その化粧材が例えば壁紙やビニ
ルクロス等の壁装材等の場合、また軟質遮音シートの如
き質量及び制振性等が付与される場合でも仕上材の一部
とみなして前記条件に加味することができる。
Therefore, as a method for forming a plurality of regions having different basic natural frequencies in the band-shaped region, for example, the plurality of regions are formed with different surface densities and/or rigidities. (As shown in Figure 3, the bond may be placed in dense areas and sparse areas.) In addition, multiple finishing materials may be applied using structural reinforcing materials such as beams and studs. When partitioning into regions, the areas may be formed with different areas.Also, these may be combined.In addition, a multi-layered wall formed by further forming a decorative material on the upper layer of the finishing material. Even if the decorative material is a wall covering material such as wallpaper or vinyl cloth, or if it has mass and vibration damping properties such as a soft sound insulating sheet, it is considered to be part of the finishing material and the above conditions are met. It can be added.

板の屈曲固有振動数は、前記した如(その支持固定条件
によって大巾に異なる。例えば、仕上材を格子状の木軸
に固定した場合(例穂4図)と接着材で点付けし喪場合
(例:第3図)の差異は大きい・また後者の場合では、
各接合部分の接着面積や形状によって本板材のFpは変
化する。しかし、いづれにしても、板のある部分の振動
性状は、比較的近傍の固定・境界条件によって決定され
、その概略値を算出する方法が存在する。前記した長方
形板の式は、その1例である。同様に形状等に応じてい
くつかの適合式を用いる事もできるし、有限要素法等の
数値計算によって解析的に求めあるいは設計する事もで
きる0また一方、FF’T波形解析機管用いれば、実験
的にFPt−検出しまた、これを設計に用いる事ができ
る。さらにモーダル解析を行なえば、板材各部分の振動
数や振動振巾(合わせて振動スペクトル)はもとより、
各種パラメータや振動の様態(モードシエイズ)等も明
示され、板材各部の屈曲の固有振動数Fpとその協働的
な振動領域(すなわち、F’pの不均質化領域)を確定
する事ができる◎また、当然、これ等をもとに構造設計
も可能である。
The natural flexural frequency of the board varies greatly depending on its supporting and fixing conditions, as described above. The difference between cases (e.g., Figure 3) is large; and in the latter case,
The Fp of the plate material varies depending on the bonding area and shape of each joint. However, in any case, the vibration properties of a certain part of the plate are determined by relatively nearby fixed and boundary conditions, and there is a method for calculating its approximate value. The equation for the rectangular plate described above is one example. Similarly, it is possible to use several adaptation formulas depending on the shape, etc., or it can be analytically determined or designed by numerical calculations such as the finite element method.On the other hand, if an FF'T waveform analyzer is used, , FPt- can be detected experimentally and used in design. Furthermore, if we perform modal analysis, we can determine not only the frequency and vibration amplitude of each part of the board (together with the vibration spectrum), but also the
Various parameters and modes of vibration (mode shapes) are also specified, and it is possible to determine the natural frequency Fp of bending of each part of the board and its cooperative vibration region (i.e., the inhomogeneous region of F'p). Yes, of course, it is also possible to design a structure based on these.

以上の方法により、仕上材の?、の分布を設計ないし判
定する事ができる。なお、接合(接着)部分の面積が特
に大きい場合、例えば、仕上材面積の40%を超える場
合には、固体伝搬音の悪影響が大きいためこの接合部分
の面積を前記のFp400 HZ以上の領域と見なさな
ければならず、非接合部分のはぼ全面積で、Fpを40
0HZ以下としなければならない◇しかしこう官った場
合を除けば、この接合・固定部分の面積は、板振動を行
なっている各隣接領域の面積に適宜割り振る事が許され
る。したがって通常仕上材の板振動によるFpの分布の
み全算定(考慮)すれば良い。
By the above method, finish material? It is possible to design or determine the distribution of . If the area of the bonded (adhesive) part is particularly large, for example, if it exceeds 40% of the area of the finished material, the negative effect of structure-borne sound will be large, so the area of this bonded part should not be in the above-mentioned Fp400 HZ or higher area. It must be assumed that the total area of the non-bonded part is Fp of 40
Must be 0Hz or less◇However, except for such cases, the area of this joint/fixing part may be allocated as appropriate to the area of each adjacent area where plate vibration is performed. Therefore, it is sufficient to fully calculate (consider) only the distribution of Fp due to the plate vibration of the normally finished material.

このように構造体を構成する仕上材の居住領域に該当す
る主要部分の領域を特定し、該領域における基本固有振
動数を前記した特定の条件下とすることにより、従来こ
のような多重壁構造体において大きな問題となっていた
遮音欠損を改善したものである。
In this way, by identifying the area of the main part that corresponds to the living area of the finishing materials that make up the structure and setting the basic natural frequency in that area under the above-mentioned specific conditions, it is possible to This improves the lack of sound insulation, which had become a major problem in the body.

(実施例) 以下に本発明を実施例にもとづき更に説明する。(Example) The present invention will be further explained below based on Examples.

比較例1 第2図に示す如き厚さ約501IIのALC壁(1)面
に約5(H)ISピッチの格子点にボンド接着剤(3)
を付着させ、面密度65−/が、厚さ9露欝の180×
180傷の石こうボード(2)を中空層(4)ヲ設けて
貼着し構成し九〇なお、中空層の幅は約20龍で、壁体
面積に対する接着面積比率は約25チであった。また、
仕上材である石こうボードの固有振動数は200 HZ
であった@この多重壁体に関し、音響透過損失(T、 
L、 )の測定を行った0結果を第9図に示す0 図に
示す通り、200 H!I付近で低音域の共鳴透過によ
る遮音欠損を生じている。
Comparative Example 1 Bond adhesive (3) was applied to the lattice points of about 5 (H) IS pitch on the ALC wall (1) with a thickness of about 501 II as shown in Fig. 2.
is deposited, and the area density is 65-/180× with a thickness of 9 dew.
It was constructed by gluing a gypsum board (2) with 180 scratches and a hollow layer (4).The width of the hollow layer was about 20 mm, and the ratio of the adhesive area to the wall area was about 25 mm. . Also,
The natural frequency of the finishing material, gypsum board, is 200 Hz.
@Regarding this multi-walled body, the sound transmission loss (T,
Figure 9 shows the results of the measurements of 200 H! Sound insulation defects occur near I due to resonance transmission in the low frequency range.

比較例2 比較例1で用い九ALC壁(1)の両面に比較例1で用
いた石こうボード伐1、(21を比較例1と同様にボン
ド接着剤を介して貼着し、三重壁からなる多重壁体を形
成した。仕上材である石こうボード各部の固有振動数は
両面とも比較例1と同様に約200111gであった0
なお、比較例1と本例の石こうボードに関しては基本固
有振動数はいずれの部分を測定しても殆んど差異はなか
った。
Comparative Example 2 Gypsum boards 1 and 21 used in Comparative Example 1 were attached to both sides of the 9 ALC wall (1) used in Comparative Example 1 using bond adhesive in the same manner as in Comparative Example 1, and from the triple wall The natural frequency of each part of the gypsum board, which is the finishing material, was about 200111 g on both sides, the same as in Comparative Example 1.
In addition, regarding the gypsum boards of Comparative Example 1 and this example, there was almost no difference in the basic natural frequency no matter which part was measured.

本例の多重壁体に関しても比較的1と同様にT、 L。Regarding the multi-walled body of this example, T and L are relatively similar to 1.

の測定を行った。結果を第9Nに示す。図に示す通り、
比較例1に比し質量側にそ(して全体的に遮音性は向上
しているが、低音域の共鳴透過による遮音欠損は両面施
工になったため、さらに拡大しており、さらに約4.0
00 IIs付近でコインシデンス効果による遮音欠損
も太き(見られる。
Measurements were made. The results are shown in No. 9N. As shown in the figure,
Compared to Comparative Example 1, the overall sound insulation performance is improved in terms of mass, but the sound insulation loss due to resonance transmission in the low frequency range is further expanded due to double-sided construction, and is approximately 4. 0
There is also a large sound insulation defect due to the coincidence effect near 00 IIs.

実施例1 比較例2で用いた多重壁体において、石こうボード(2
)を第5図に示す如< 20X20m角の木製棧で25
領域に仕切り、該棧を接着して石こうボードを接着剤で
固着し、本発明に係る遮音構造体を形成した。本構造体
における仕上材各部の基本固有振動数を第6図に示す図
心Pi中心とする直径60清の円を含んで鉛直および水
平方向に谷幅90(至)の帯状領域を設け、該帯状領域
のFPを求めたところ、500 Hg以上の領域は各5
1400〜500111gの領域は約10チ、300〜
400に震の領域は約40%及び500 Hg以上の領
域は約45%であった。
Example 1 In the multi-wall body used in Comparative Example 2, gypsum board (2
) as shown in Figure 5.
A sound insulation structure according to the present invention was formed by dividing the area into areas, gluing the timbers, and fixing a gypsum board with an adhesive. The basic natural frequency of each part of the finishing material in this structure is determined by providing a band-shaped area with a valley width of 90 (up to) in the vertical and horizontal directions, including a circle with a diameter of 60 squares centered at the centroid Pi shown in Figure 6. When the FP of the band-shaped area was calculated, each area of 500 Hg or more was
The area of 1400~500111g is about 10 inches, 300~
Approximately 40% of the areas had earthquakes of 400 Hg and 45% had earthquakes of 500 Hg or higher.

本構造体についても比較例1と同様にT、 L、の測定
を行った◎結果を第9図に示す0図に示す通り、比較例
2においてみられた2 00 Hm及び400071t
a付近の遮音欠損が大幅に改善されている。
This structure was also measured for T and L in the same manner as Comparative Example 1. The results are shown in Figure 9.
The sound insulation deficit near a has been significantly improved.

実施例2 比較例2で用いた多重壁体において、ボンド(3)の煮
付配置を第7図に示す如く不均等間隔とし、実施例1で
用いた棧等の構造補強材を用いずに、比較例2と同様に
石こうボードを両面に貼着し、本発明に係る遮音構造体
管形成した0ポンドの接着面積は全壁面の約SSSであ
った。
Example 2 In the multi-wall body used in Comparative Example 2, the bond (3) was arranged at uneven intervals as shown in Fig. 7, and the structural reinforcing material such as wood used in Example 1 was not used. Similar to Comparative Example 2, gypsum boards were adhered to both sides to form a sound insulating structure tube according to the present invention.The adhesive area of 0 pounds was approximately SSS of the entire wall surface.

本構造体に関し、第6図の如(鉛直方向と水平方向に各
90aIh幅の帯状領域を設け、該帯状領域中の仕上材
各部のFp k求めたところ、ppが500HZ以上の
領域は約10優、400〜500 TL嘗の領域は約1
5%、300〜400Hg(D領域は約40%及び30
0 Hg未滴の領域は約35%であった。
Regarding this structure, as shown in Fig. 6 (we provided strip-like regions each having a width of 90aIh in the vertical and horizontal directions, and calculated the Fp k of each part of the finishing material in the strip-like regions, the region with pp of 500Hz or more was approximately 10 Excellent, 400-500 TL area is about 1
5%, 300-400Hg (D area is approximately 40% and 30%
The area where 0 Hg was not dropped was approximately 35%.

本構造体についても比較例1と同様にT、 L、の測定
を行った。結果金弟9図に示す0図に示す通り、仕上材
固定にボンドを用いている為、固体伝搬音が多(,50
0H!+付近で実施例1にはおよばないが、同じ接着剤
を用いた比JR例2に対しては大幅な改善が認められる
Regarding this structure, T and L were also measured in the same manner as in Comparative Example 1. As shown in Fig. 9 and Fig. 0 of the results, since bond is used to fix the finishing material, there is a lot of solid-borne sound (,50
0H! Although it is not as good as Example 1 near +, it is a significant improvement over Ratio JR Example 2 using the same adhesive.

比較例3 比較例2に対し、接着材(GLボンド)を第8図の如(
配置し全(同様に石こうボードを両面施工し、そのT、
 L、 f測定した0第6図に示した形状の領域の仕上
材の固有振動数ypの分布は、IFpが500H乞以上
の面積が約70チ、Fl>が300pm未満となる面積
は約30チで、この中間の値を示す面積はほとんどなか
った〇 本例についてもT、 L、の測定を行った0測定結果を
第10図に示すが固体音伝搬の悪影替が太き(、例えば
実施例に対し全般に遮音性が低下し、遮音欠損も改善さ
れていない。
Comparative Example 3 In contrast to Comparative Example 2, the adhesive (GL Bond) was used as shown in Figure 8 (
(Similarly, gypsum board is installed on both sides, and the T,
L, f The distribution of the natural frequency yp of the finished material in the area of the shape shown in Figure 6 measured is that the area where IFp is 500H or more is about 70cm, and the area where Fl> is less than 300pm is about 30mm. Figure 10 shows the measurement results of T and L for this example. For example, the sound insulation properties were generally lower compared to the examples, and the sound insulation defects were not improved.

比較914 次に、比較例2に対しくボンド)ピッチを約25〜30
(至)の範囲で接着材を配置し、石こうボードを両面施
工し、そのTLを測定し九〇第6図に示した形状の領域
の仕上材の固有振動数Fpの分布は、500 Hg以上
の面積が約5係、400〜500E[震の面積が約15
%、500〜400Ha f)K約6o %、 3o 
o Hg 以下、i>f約20 %テhつ九〇その測定
結果を第10図に示す。図に示す如く、比較例3より更
に遮音性が全般的に悪(、かつ遮音欠損も大きい。
Comparison 914 Next, the bond pitch for Comparative Example 2 was set to about 25 to 30.
Place the adhesive within the range of (to), install gypsum board on both sides, measure the TL, and find that the distribution of the natural frequency Fp of the finished material in the area of the shape shown in Figure 6 is 500 Hg or more. The area of the earthquake is about 5, 400-500E [the area of the earthquake is about 15
%, 500-400 Ha f) K approx. 6o %, 3o
o Hg Hereinafter, i>f about 20%.The measurement results are shown in FIG. As shown in the figure, the sound insulation properties are generally worse than Comparative Example 3 (and the sound insulation loss is also large).

(発明の効果) 以上説明した如(、本願発明は、従来困難とされていた
コインシデンス効果による音響透過損失の落込み、さら
に困難とされてい友低周波領域における共鳴透過による
透過損失の落込みを著しく改善したものであシ、殊にG
、L工法壁体に特有の前記問題点を改善したことに大き
な意義を有するものである。なお、本構造体は天井、床
等の多重壁は勿論、防音箱や防音べい等にも用いられ、
同様の効果が得られる。
(Effects of the Invention) As explained above, the present invention can reduce the drop in acoustic transmission loss due to the coincidence effect, which has been considered difficult in the past, and the drop in transmission loss due to resonance transmission in the low frequency region, which has been considered even more difficult. It is a marked improvement, especially in G.
, it has great significance in that it improves the above-mentioned problems specific to L construction method walls. In addition, this structure can be used not only for multiple walls such as ceilings and floors, but also for soundproof boxes and soundproof walls.
A similar effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は板の一次の固有振動の状態を示す状態図、第2
図はG、L工法壁体の一部破断断面図、第3図はボンド
接着剤の配置例を示す状態図、第4図は棧で仕上材を仕
切つ九例の状態図、第5図は間隔を棧によシネ均等に仕
切った状態を示す図、第6図は鉛直方向及び水平方向に
各帯状領域を設けた状態を示す図、第7図は実施例2で
用いたボンド接着剤の配置を示す図、第8図は比較例3
で用いたボンド接着剤の配置を示す図、第9図は比較例
1,2、実施例1,2のT、 L、測定結果を示す図、
第8図は比較例3及び4のT、 L、測定結果を示す図
である@ 特許出願人  日本ゼオン株式会社 第1図     第2図 第4図 第5図 第6図 第7図 第9図 1/3オクターブ中1(:Jm、7i! (HZ )第
10図 1/3オクターフ゛′中(シ+周兼逆禮(HZ)手続補
正書(方力 昭和60年11月1日
Figure 1 is a state diagram showing the state of the first-order natural vibration of the plate.
The figure is a partially cutaway cross-sectional view of a wall using the G and L construction methods, Figure 3 is a state diagram showing an example of bond adhesive placement, Figure 4 is a state diagram of nine examples in which finishing materials are partitioned with timber, and Figure 5 Figure 6 shows the state in which the intervals are equally partitioned by strips, Figure 6 shows the state in which each strip area is provided in the vertical and horizontal directions, and Figure 7 shows the bond adhesive used in Example 2. Figure 8 shows the arrangement of Comparative Example 3.
Figure 9 is a diagram showing the arrangement of the bond adhesive used in Comparative Examples 1 and 2 and Examples 1 and 2, and the measurement results.
Figure 8 is a diagram showing the T, L, and measurement results of Comparative Examples 3 and 4 @ Patent applicant Zeon Corporation Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 1/3 octave 1 (: Jm, 7i! (HZ) Figure 10 1/3 octave 1 (HZ)

Claims (1)

【特許請求の範囲】[Claims] 1、壁体の少なくとも片面に空隙部を設けて仕上材を所
定間隔で配した固定材により固着して構成された多重壁
体であつて、前記仕上材が該仕上材板面の図心を中心と
する直径60cmの円を内包する鉛直方向及び水平方向
の所定幅の帯状領域において基本固有振動数が500H
Z以上である面積を前記帯状領域の全面積に対し30%
以下、300HZ未満である面積を30%〜60%とし
て構成されることを特徴とする遮音構造体。
1. A multi-layered wall body in which a gap is provided on at least one side of the wall body and finishing materials are fixed by fixing materials arranged at predetermined intervals, and the finishing material is arranged so that the centroid of the surface of the finishing material plate is fixed. The basic natural frequency is 500H in a belt-shaped area of a predetermined width in the vertical and horizontal directions that includes a circle with a diameter of 60 cm at the center.
The area that is equal to or larger than Z is 30% of the total area of the strip area.
Hereinafter, a sound insulating structure characterized in that the area is less than 300 Hz in 30% to 60%.
JP60162540A 1985-07-23 1985-07-23 Sound insulation structure Expired - Lifetime JPH0664475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162540A JPH0664475B2 (en) 1985-07-23 1985-07-23 Sound insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162540A JPH0664475B2 (en) 1985-07-23 1985-07-23 Sound insulation structure

Publications (2)

Publication Number Publication Date
JPS6223095A true JPS6223095A (en) 1987-01-31
JPH0664475B2 JPH0664475B2 (en) 1994-08-22

Family

ID=15756548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162540A Expired - Lifetime JPH0664475B2 (en) 1985-07-23 1985-07-23 Sound insulation structure

Country Status (1)

Country Link
JP (1) JPH0664475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017759A (en) * 2005-07-08 2007-01-25 Kawai Musical Instr Mfg Co Ltd Soundproof panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356983A (en) * 2001-03-26 2002-12-13 Hazama Gumi Ltd Sound-insulating double floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017759A (en) * 2005-07-08 2007-01-25 Kawai Musical Instr Mfg Co Ltd Soundproof panel

Also Published As

Publication number Publication date
JPH0664475B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP2003522305A (en) Sound insulation sandwich element
JP2006316467A (en) Sound insulating double wall structure
RU2721615C1 (en) Sound-absorbing structure and soundproof room
JP2018537604A (en) Soundproof drywall panel
JP3072023B2 (en) Sound insulation device
JP6230207B1 (en) Soundproof structure of apartment house and apartment house
JPS6223095A (en) Sound insulation structural body
JP2021529272A (en) Monolithic sound system
JP2015163759A (en) Sound insulation structure of double floor and ceiling, and building having the same
JPH10292610A (en) Sound-proof floor structure
JP7512555B2 (en) Noise reduction structure and method
US20050066618A1 (en) Panel and related wall structure
KR102133435B1 (en) The Ceiling and wall panels for floor impact sound reduction and its construction method
JP2009030250A (en) Ceiling structure
Ferk et al. Sound. Wood. Austria-selected measurement results of building components for multi-storey timber construction in Austria
JP2007177408A (en) Double ceiling structure
JP2021011755A (en) Wall structure
JP4311960B2 (en) Low acoustic radiation type interior structure and interior panel material
RU2794682C2 (en) Monolithic acoustic system
CN212656375U (en) Double-layer floating-construction sound insulation suite structure
JP7207901B2 (en) Impact noise reduction structure and impact noise reduction method
Kim et al. Influence of Perforated Ceiling on Floor Impact Sound Insulation in Reinforced Concrete Buildings
JP3209625U (en) Underlaying materials for fixing interior building materials in acoustic facilities
JP4102210B2 (en) Stone floor
JP2005307437A (en) Sound insulating structure for building