JPS62230421A - Tool made of synthetic single crystal diamond - Google Patents
Tool made of synthetic single crystal diamondInfo
- Publication number
- JPS62230421A JPS62230421A JP7607986A JP7607986A JPS62230421A JP S62230421 A JPS62230421 A JP S62230421A JP 7607986 A JP7607986 A JP 7607986A JP 7607986 A JP7607986 A JP 7607986A JP S62230421 A JPS62230421 A JP S62230421A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- diamond
- single crystal
- parallel
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 85
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 76
- 239000013078 crystal Substances 0.000 title claims abstract description 70
- 238000005491 wire drawing Methods 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 8
- 238000005520 cutting process Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 230000035882 stress Effects 0.000 description 25
- 238000006073 displacement reaction Methods 0.000 description 22
- 238000009826 distribution Methods 0.000 description 11
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、金属線の伸線ダイス、高王水の噴出ノズル
など穴の中に物を通し、穴内面から面圧力を受けて加工
を行うダイヤモンド工具、特に合成ダイヤモンド単結晶
を用いた工具に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention is a metal wire drawing die, a high aqua regia spray nozzle, etc., in which an object is passed through a hole and processed by receiving surface pressure from the inner surface of the hole. This invention relates to diamond tools, especially tools using synthetic diamond single crystals.
ダイヤモンド単結晶は現存する物質の中で最高の硬さを
有し、耐摩耗性が優れているため、バイト、ダイス、ド
レッサーなど色々な用途に使われている。しかし、これ
迄は全て天然ダイヤモンドが使われていた。合成ダイヤ
モンドは市場から強く要望されていたが、1985年当
出願人が発売開始したのが世界で最初であり、現在のと
ころ唯一である。Single crystal diamond has the highest hardness of any existing material and has excellent wear resistance, so it is used in a variety of applications such as cutting tools, dies, and dressers. However, up until now, all natural diamonds had been used. Synthetic diamonds have been strongly requested by the market, and the applicant's commercial launch in 1985 was the first in the world, and is currently the only one in the world.
なお、当山願人の出願に係る特開昭59−229227
号公報においては、合成ダイヤモンド単結晶を用いた伸
線ダイスを提案し、結晶面(100)又は(111)に
垂直に穴をあけるものを開禾している。この場合は、合
成されたダイヤモンドに(これを分断加工することなく
)直接穴をあけるようにしたものである。In addition, Japanese Patent Application Laid-Open No. 59-229227, which was filed by applicant Toyama,
In the publication, a wire drawing die using a synthetic diamond single crystal is proposed, and a wire drawing die that makes holes perpendicular to the crystal plane (100) or (111) is developed. In this case, holes are directly drilled into the synthesized diamond (without cutting it).
天然ダイヤモンドを用いた場合の問題点を、代表的な用
途である伸線ダイスについて述べる。We will discuss the problems when using natural diamonds with respect to wire drawing dies, which are a typical application.
伸線ダイスは、第1図に示すように、貫通穴2を設けた
ダイヤモンド1をダイスケース3の中で焼結金属4によ
り固定支持される。この固定を確実なものとするために
、平行な上下2面5.5′が必要とされる。In the wire drawing die, as shown in FIG. 1, a diamond 1 having a through hole 2 is fixedly supported in a die case 3 by a sintered metal 4. To ensure this fixation, two parallel upper and lower surfaces 5.5' are required.
ところで、天然ダイヤモンドは産出過程で溶解作用を受
ける為に、平滑な結晶面であることは少く、一般に丸味
を帯びた曲面で、形状的に不揃いである。そのため上下
2面5.5′を作るに当っては、通常、熟練者がルーパ
などを用いて、表面に現われるスジの状態とか、概略の
外形形状を見て結晶面を判別している。しかし、形状的
に研摩のし易さ等に左右され、実情は結晶面が(110
)か(111)の何れになっているかを測定することが
むずかしく、上下2面5.5′を特定の結晶面に全て整
えることは困難であり、また品質的にバラツキの大きい
ものしか作れなかった。Incidentally, since natural diamonds are subjected to melting action during the production process, they rarely have smooth crystal faces, and generally have rounded, curved surfaces that are irregular in shape. Therefore, when making the two upper and lower surfaces 5.5', an expert usually uses a looper or the like to determine the crystal plane by looking at the condition of the streaks appearing on the surface and the general external shape. However, the shape depends on the ease of polishing, etc., and the actual situation is that the crystal plane is (110
) or (111), it is difficult to align all the upper and lower 5.5' surfaces to a specific crystal plane, and it is difficult to make products with large variations in quality. Ta.
天然ダイヤモンドダイスにおける耐摩耗性は、現在迄結
晶面(110)か(111)の何れかを上下2面5.5
′とし、これに垂直にダイス穴2を明けた場合が良いと
され、 (100)は劣るので避けられている。しかし
、(110)と(111)と何れが良いかはバラツキの
方が大きくて、十分に明らかではなかった。Until now, the wear resistance of natural diamond dies is 5.5 on either the (110) or (111) crystal plane on the upper and lower sides.
', and the die hole 2 is made perpendicular to this, which is considered to be good, and (100) is inferior and is therefore avoided. However, it has not been sufficiently clear which is better, (110) or (111), as there is greater variation.
次に、天然ダイヤモンドを焼結金属で固定支持する焼結
マウントでは、焼結温度から常温まで冷却収縮する間に
、ダイヤモンドと焼結金属との熱膨張係数等の差に相当
した熱応力の発生によって、焼結金属からダイヤモンド
部に締め伸圧(外圧)が作用し、ダイヤモンドに圧縮応
力が付与される。Next, in a sintered mount that securely supports a natural diamond with sintered metal, thermal stress corresponding to the difference in thermal expansion coefficient between the diamond and the sintered metal occurs during cooling and shrinkage from the sintering temperature to room temperature. As a result, tightening and elongation pressure (external pressure) acts on the diamond part from the sintered metal, and compressive stress is applied to the diamond.
この圧縮応力は、その後ダイス穴加工を経て、伸線ダイ
スとして用いられた場合、伸線加工でダイス穴内面に作
用する内圧(ダイス面圧力)によってダイヤモンド部に
発生する引張応力を減少させる補強効果がある。This compressive stress has a reinforcing effect that reduces the tensile stress generated in the diamond part due to the internal pressure (die surface pressure) that acts on the inner surface of the die hole during wire drawing when the die is used as a wire drawing die after processing the die hole. There is.
しかるに、天然ダイヤモンドは形状的に不揃いであるた
め、第2図に示す様にダイス穴中心軸(内接円の中心軸
)に対して対称的形状でなく、内接円に対して余肉面積
が多く、且つ分布が偏っている。そのため前述の外圧・
内圧が作用した場合、不均一な応力や変位が発生して、
伸線ダイスとして使用した際に偏摩耗や割れの要因とな
り、ダイス寿命の短命化やバラツキに影響する等の問題
がある。However, since natural diamonds are irregular in shape, they are not symmetrical with respect to the center axis of the die hole (center axis of the inscribed circle), as shown in Figure 2, and the extra wall area is small with respect to the inscribed circle. There are many, and the distribution is uneven. Therefore, the external pressure mentioned above
When internal pressure is applied, uneven stress and displacement occur,
When used as a wire drawing die, it causes uneven wear and cracking, leading to problems such as shortening and dispersion of die life.
また、合成ダイヤモンド単結晶を用いた伸線ダイスにつ
いての前掲の公開特許公報においては、合成されたダイ
ヤモンドに直接穴をあけるようにしたものであり、合成
ダイヤモンド1個につき1個のダイスを作るものである
から、価格が高くなる問題がある。Furthermore, in the above-mentioned patent publication regarding a wire drawing die using a synthetic diamond single crystal, a hole is directly drilled in the synthesized diamond, and one die is made for each synthetic diamond. Therefore, there is a problem that the price becomes high.
また、この場合は専ら結晶面(100)と(111)に
注目している。これは合成ダイヤモンド単結晶のもつ平
行な面をそのまま利用したためであり、他の結晶面にお
いてそれより優れた面が存在するかどうかまでの究明は
なされていない。Further, in this case, attention is focused exclusively on crystal planes (100) and (111). This is because the parallel planes of the synthetic diamond single crystal are used as they are, and it has not been investigated whether there are other crystal planes that are better than the parallel planes.
更に、余肉面積やその分布の偏りについての問題につい
ても究明されておらず、天然ダイヤモンドの場合と同様
の問題点がある。Furthermore, the problem of the excess area and the bias in its distribution has not been investigated, and there are problems similar to those of natural diamond.
この発明は天然ダイヤモンド又は合成ダイヤモンドを用
いた工具における上記の問題を解決するために、超高圧
高温下で合成されたダイヤモンドを分断することにより
、平行な2面がいずれも結晶面(110)である小単結
晶体を形成し、上記の平行な2面に垂直な穴を設けると
ともに、その各面の形状をその穴の中心軸に対して対称
形状に形成し、かつ側面を中心軸に対し平行に形成した
構成としたものである。In order to solve the above-mentioned problems in tools using natural diamond or synthetic diamond, this invention divides diamond synthesized under ultra-high pressure and high temperature, so that both parallel surfaces are aligned with the crystal plane (110). A certain small single crystal is formed, a hole is provided perpendicular to the above two parallel surfaces, the shape of each surface is formed symmetrically with respect to the central axis of the hole, and the side surface is formed with a shape symmetrical with respect to the central axis. The structure is such that they are formed in parallel.
以下、その内容を詳述する。The details are detailed below.
超高圧高温で合成ダイヤモンド単結晶体を造るには、0
.5鶴位の大きさの種結晶を成長させる方法が採られる
0種結晶より少し大きい位の単結晶を造っていてはコス
ト的に高くつき、反対に余り大き過ぎても、コスト的に
高くなり、最適な大きさは4龍位である。これを、レー
ザ又はブレードによる切断加工によって分割する方法が
コスト的に最も有利である。単結晶形状が揃っているの
で、加工の際に分割された小単結晶の平行な上下2面を
全て、特定の結晶面(110)に整えることができる。To create a synthetic diamond single crystal at ultra-high pressure and high temperature, 0
.. If a single crystal that is slightly larger than a 0-seed crystal is grown using a method of growing a seed crystal about the size of a crane, the cost will be high; on the other hand, if the single crystal is too large, the cost will be high. , the optimal size is 4 dragons. The method of dividing this by cutting with a laser or a blade is most advantageous in terms of cost. Since the single crystal shape is uniform, the two parallel upper and lower surfaces of the small single crystals divided during processing can all be arranged into a specific crystal plane (110).
今回、この出願の発明者らは、合成ダイヤモンド単結晶
の分割された小単結晶の上下2面を正方形とし、結晶面
として(110)、(111)、(100)の3通りを
製作し、これらに垂直にダイス穴を明けたダイスを製作
し、伸線ダイスとして耐摩耗性等のダイス寿命を比較し
た結果、(110)が最良で、次いで、 (III)、
(100)の順である事を見出した(実施例1参照)。This time, the inventors of this application made the upper and lower two faces of a small single crystal divided into synthetic diamond single crystals square, and produced three types of crystal faces: (110), (111), and (100). As a result of making dies with die holes perpendicular to these and comparing the die life such as wear resistance as wire drawing dies, (110) was the best, followed by (III),
(100) (see Example 1).
合成ダイヤモンド単結晶から分断された小単結晶の上下
2面に垂直な貫通穴の中心軸に対し対称となり、かつ側
面を中心軸に対して平行に形成した形状は種々考えられ
るが、第3図の(^)〜(C)に代表的形状を示す、ダ
イヤモンドの切断加工にレーザ等を使って行う現伏技術
では、正方形が加工技術的及びコスト的に好ましい。There are various possible shapes that are symmetrical to the central axis of the through hole perpendicular to the upper and lower two surfaces of a small single crystal separated from a synthetic diamond single crystal, and the side surfaces are parallel to the central axis. (^) to (C) show representative shapes. In the cutting process of diamond using a laser or the like, a square shape is preferable from the viewpoint of processing technology and cost.
今、対称的形状による効果を考えるに、1つはダイスの
焼結マウント時の締め圧(外圧)及び伸線ダイスでの加
工時の内圧によりダイヤモンド部に発生する応力(円周
方向応力)や変位(半径方向変位)の分布がある。特に
ダイス穴近傍で、応力や変位が最大になるが、この位置
での応力や変位が大きい程、ダイスの摩耗を促進し、割
れ等の強度面でも厳しくなる。Now, considering the effects of the symmetrical shape, one is the stress generated in the diamond part (circumferential stress) due to the clamping pressure (external pressure) during sintering mounting of the die and the internal pressure during processing with the wire drawing die. There is a distribution of displacement (radial displacement). In particular, stress and displacement are greatest near the die hole, and the greater the stress and displacement at this location, the more wear and tear the die will have, and the more severe it will be in terms of strength, such as cracking.
2つ目は形状的に内接円に対する余肉面積(全面積と内
接円面積との差)の大小と、余肉があっても均等に分布
しているか否かである。この両面を併せ考えることが必
要で、対称性による効果を比較する場合、応力や変位の
値やその変動幅が同しか小差でも、余肉面積やその分布
状態が違えばダイスの摩耗の均一性に影響して来ると考
えられる。The second consideration is the size of the extra thickness area (difference between the total area and the inscribed circle area) relative to the inscribed circle in terms of shape, and whether or not the extra thickness is evenly distributed. It is necessary to consider both of these aspects together, and when comparing the effects of symmetry, even if the stress and displacement values and their fluctuation widths are the same or have small differences, if the excess wall area and its distribution state are different, the wear of the die will be uniform. It is thought that it affects sexuality.
この出願の発明者らは合成ダイヤモンドの分割された小
単結晶の上下2面が正方形と正六角形の場合について、
天然ダイヤモンドと比較し上述の応力や変位並びに余肉
についての比較検討を行った。応力や変位の計算には軸
対称の有限要素法を用いるのが最も適当で、その為、合
成ダイヤモンドは第5〜8図のモデルを設定し、天然ダ
イヤモンドは不規則な形状では計算が複雑になるので第
4図の様に上下2面を楕円モデルとし側面の長軸側は球
面、短軸側は平面に設定した。尚、何れの上下2面の形
状も内接円は同一とした。The inventors of this application have investigated the case where the upper and lower surfaces of a small single crystal of synthetic diamond are square and regular hexagon.
A comparative study was conducted on the stress, displacement, and extra thickness mentioned above in comparison with natural diamond. It is most appropriate to use the axially symmetrical finite element method to calculate stress and displacement. Therefore, for synthetic diamonds, the models shown in Figures 5 to 8 are set, and for natural diamonds, calculations are complicated due to irregular shapes. Therefore, as shown in Fig. 4, the upper and lower surfaces were made into elliptical models, and the long axis side of the sides was set as a spherical surface, and the short axis side was set as a flat surface. Incidentally, the shapes of the two upper and lower surfaces had the same inscribed circle.
これらの計算検討の結果、この発明の正方形の場合の応
力や変位、その変動幅は天然ダイヤモンドの楕円モデル
のそれらの値と略同じであるが、余肉面積やその分布で
は全く相違する。即ちこの発明の正方形は比較的余肉面
積も少く、且つ正方形の4隅に均等に分布する故、ダイ
スの均一摩耗と強度の安定化で有利である。As a result of these calculation studies, the stress, displacement, and their fluctuation range in the square case of the present invention are approximately the same as those values in the elliptical model of natural diamond, but the extra wall area and its distribution are completely different. That is, since the square shape of the present invention has a relatively small area of excess wall thickness and is evenly distributed at the four corners of the square, it is advantageous in terms of uniform wear of the die and stabilization of strength.
また、正六角形の場合は応力や変位の変動幅は天然ダイ
ヤモンドの楕円モデルよりも小さく、余肉面積やその分
布では正方形の場合よりも更に有利となり、円形に近い
正多角形になる程その効果が高くなるものと考えられる
。In addition, in the case of a regular hexagon, the fluctuation range of stress and displacement is smaller than in the elliptical model of natural diamond, and it is even more advantageous than the case of a square in terms of extra wall area and its distribution. is expected to increase.
以下実施例により、本発明を具体的に述べる。The present invention will be specifically described below with reference to Examples.
〔実施例1〕
超高圧高温下で合成されたダイヤモンド単結晶の切断分
割された小単結晶体が六面体(第3図の(A)参照)で
あり、その上下2面が1.4mm X 1.4鶴の正方
形で、厚さが1.1mの寸法とし、上下2面の結晶面は
それぞれ(110)、(111)、及び(100)の3
通りのものを造った。[Example 1] The cut and divided small single crystal of a diamond single crystal synthesized under ultra-high pressure and high temperature is a hexahedron (see (A) in Figure 3), and its upper and lower two faces are 1.4 mm x 1. .4 It is a crane square with a thickness of 1.1 m, and the upper and lower crystal planes are (110), (111), and (100), respectively.
I built something on the street.
これらの六面体単結晶の上下2面に垂直にダイス穴を明
け、直径0.28mm、直径0.26龍のダイスを製作
した。これらのダイスで、ステンレス鋼線5US304
の湿式伸線を行ったところ、ダイス寿命に至る迄の伸線
量は第1表に示す結果であった。比較として用いた天然
ダイヤモンドダイスは合成ダイヤモンド単結晶ダイスと
同じ直径、条件で伸線された。結晶面(110)の本発
明品は天然ダイヤモンドの約2.0倍の性能を示した。Dice holes were perpendicularly drilled in the upper and lower surfaces of these hexahedral single crystals to produce dice with a diameter of 0.28 mm and a diameter of 0.26 mm. With these dies, stainless steel wire 5US304
When wet wire drawing was performed, the amount of wire drawn until the end of the die life was as shown in Table 1. The natural diamond die used for comparison had the same diameter and was drawn under the same conditions as the synthetic diamond single crystal die. The product of the present invention with the crystal plane (110) exhibited performance approximately 2.0 times that of natural diamond.
比較品の合成ダイヤモンド単結晶の結晶面(111)及
び(100)のダイスはそれぞれ天然ダイヤモンドの約
1.5及び1.1倍の性能であり、結晶面(110)を
用いた本発明品が最良の結果を示した。Comparison synthetic diamond single crystal dies with crystal faces (111) and (100) have performance approximately 1.5 and 1.1 times that of natural diamond, respectively, and the present invention product using crystal face (110) showed the best results.
□第 1 表 [ステンレスmsu僚での実囲※
ND・・・・・天然ダイヤモンド
〔実施例2〕
実施例1と同様の合成ダイヤモンド単結晶の切断分割さ
れた単結晶体が六面体(第3図(^)参照)であり、上
下2面か1.0+ux 1.Owの正方形で、厚さが0
.6鶴の寸法とし、上下2面の結晶面は夫々(110)
、 (111)及び(100)の3通りのものを造った
。□Table 1 [Actual surroundings for stainless steel msu units*
ND...Natural diamond [Example 2] The single crystal body obtained by cutting and dividing the synthetic diamond single crystal similar to that in Example 1 is a hexahedron (see Fig. 3 (^)), with either two upper and lower faces or one .0+ux 1. Ow square, thickness 0
.. The dimensions are 6 cranes, and the upper and lower two crystal planes are each (110).
, (111) and (100) were made.
これらの六面体単結晶の上下2面に垂直にダイス穴を明
けそれぞれにつき直径0.09Onのダイスを製作した
。Dice holes were perpendicularly made in the upper and lower two surfaces of these hexahedral single crystals, and dies with a diameter of 0.09 On were manufactured for each.
これらのダイスで銅極細線の湿式伸線を行なったところ
、ダイス寿命に至る迄の伸線量は第2表に示す結果であ
った。比較として用いた天然ダイヤモンドダイスは合成
ダイヤモンド単結晶ダイスと同じ直径、条件で伸線され
た。結晶面(110)の本発明品は天然ダイヤモンドの
約2.0倍の性能を示した。又、比較品の合成ダイヤモ
ンド単結晶の結晶面(111)及び(100)のダイス
は夫々、天然ダイヤモンドの約1.5倍及び0.9倍の
性能であり、結晶面(110)の本発明品が最良の結果
を示した。When ultra-fine copper wire was wet-drawn using these dies, the amount of wire drawn until the life of the die was reached was as shown in Table 2. The natural diamond die used for comparison had the same diameter and was drawn under the same conditions as the synthetic diamond single crystal die. The product of the present invention with the crystal plane (110) exhibited performance approximately 2.0 times that of natural diamond. In addition, the comparative synthetic diamond single crystal dies with crystal planes (111) and (100) have performance approximately 1.5 times and 0.9 times that of natural diamond, respectively, and the performance of the synthetic diamond single crystal dies of the present invention with crystal planes (110) is about 1.5 times and 0.9 times that of natural diamond, respectively. product showed the best results.
第 2 表 1閥綱線での実囲
超高圧高温下で合成されたダイヤモンド単結晶から分割
された小単結晶の上下2面が第3図に示す正方形及び正
六角形の対称的形状の効果を、非対称形状の天然ダイヤ
モンドの場合と、計算によって比較し、伸線ダイスとし
て用いられた時の耐摩耗性や強度への影響を推定した。Table 2 The effect of the symmetrical shapes of the square and regular hexagonal shapes shown in Fig. 3 on the upper and lower surfaces of the small single crystals split from the diamond single crystal synthesized under ultra-high pressure and high temperature on the 1-wire wire. We calculated and compared the results with those of asymmetrically shaped natural diamonds to estimate the effects on wear resistance and strength when used as wire drawing dies.
ダイスの焼結マウントの際のダイヤモンド部への締め伸
圧力(外圧)が作用する場合と、伸線ダイスでダイヤモ
ンド部への内圧作用の場合について、夫々発生する応力
と変位を軸対称の有限要素法に依って計算した。また上
下2面の内接円に対する余肉の面積と分布について計算
比較をした。An axially symmetrical finite element is used to calculate the stress and displacement generated when tightening and stretching force (external pressure) acts on the diamond part during sinter mounting of the die, and when internal pressure acts on the diamond part of a wire drawing die. Calculated according to the law. We also calculated and compared the area and distribution of extra thickness with respect to the inscribed circles on the upper and lower surfaces.
先ず、有限要素法での応力と変位の解析、及び余肉の比
較のために第3図、第4図より、それぞれ下記の形状モ
デルを設定した。First, in order to analyze the stress and displacement using the finite element method and to compare the excess thickness, the following shape models were set up from Figures 3 and 4, respectively.
第5図、第6図はそれぞれ合成ダイヤモンドの正方形、
正六角形に関する焼結マウント時と、伸線ダイスでのモ
デルを示す、第7図、第8図はそれぞれ天然ダイヤモン
ドの計算を考慮して、上下2面を楕円形にし、側面は長
軸側か球面、短軸側か平面とした場合の焼結マウント時
と、伸線ダイスでのモデルを示す、これらの図において
、6は合成ダイヤモンド、6′は天然ダイヤモンド、7
は焼結金属を示す。Figures 5 and 6 are synthetic diamond squares,
Figures 7 and 8 show the model of a regular hexagon when mounted by sintering and with a wire drawing die, respectively, taking into account the calculations for natural diamonds, the upper and lower two sides are oval, and the side is on the long axis side. The model is shown when sintered and mounted with a spherical surface, short axis side or flat surface, and a model with a wire drawing die. In these figures, 6 is a synthetic diamond, 6' is a natural diamond, and 7 is a synthetic diamond.
indicates sintered metal.
軸対称のを限要素法計算では、焼結マウント時の外圧Q
= 110kg/an”とし、伸線ダイスでの内圧P
= 220kg/as”とし、ダイス穴径o、so@
−にて、厚みZ=0.35mでの円周方向応力σkg/
sn”と半径方向変位Ur[mlを解析した。その結果
を第9図と第1O図に示す、なお、各図のOラインより
下方は、マウント時の圧縮応力(第9図)および変位(
第10図)を示す。In the axially symmetrical limited element method calculation, the external pressure Q at the time of sintering mounting is
= 110 kg/an", and the internal pressure P at the wire drawing die
= 220kg/as”, die hole diameter o, so@
-, circumferential stress σkg/at thickness Z=0.35m
sn" and the radial displacement Ur [ml. The results are shown in Fig. 9 and Fig. 1O. Note that below the O line in each figure, the compressive stress at the time of mounting (Fig. 9) and the displacement (
Figure 10) is shown.
先づ、焼結マウント時ではダイヤモンド半径が小さくな
ると、圧縮応力や変位は減少傾向であるがその差は余り
大きくない。First, during sinter mounting, as the diamond radius becomes smaller, the compressive stress and displacement tend to decrease, but the difference is not very large.
伸線ダイスの際ではダイヤモンド半径が小さくなると、
応力や変位は増加傾向である。何れもダイス穴近傍で最
大の値を示す、第3表にダイス穴近傍での応力及び変位
について比較した。合成ダイヤモンドの正方形、正六角
形及び天然ダイヤモンドの楕円形の何れの場合も最小径
(内接円半径)と、最大径(外接円半径)での応力及び
変位の値、即ち変動幅を比較した結果、正方形と楕円形
では大差なく、正六角形と楕円形と比較では正六角形の
方が応力と変位の変動幅は小さく、均一性がある。When using wire drawing dies, when the diamond radius becomes smaller,
Stress and displacement tend to increase. Table 3 shows a comparison of stress and displacement near the die hole, where the maximum values are shown near the die hole. Results of comparing the stress and displacement values, that is, the fluctuation range, at the minimum diameter (radius of the inscribed circle) and the maximum diameter (radius of the circumscribed circle) for synthetic diamond squares, regular hexagons, and natural diamond ellipses. , there is not much difference between a square and an ellipse, and when comparing a regular hexagon and an ellipse, the regular hexagon has smaller fluctuation ranges of stress and displacement, and is more uniform.
第4表には第3表と同様、余肉面積と分布を比較した0
本発明品は天然ダイヤモンド楕円モデルに較べて余肉面
積及び余肉面積比は小さく正方形から正六角形、更に円
形に近い正多角形になる程、小さくなることがわかる。Similar to Table 3, Table 4 shows a comparison of the area and distribution of excess meat.
It can be seen that in the product of the present invention, the extra wall area and the extra wall area ratio are smaller as compared to the natural diamond ellipse model and become smaller as the shape changes from a square to a regular hexagon and further to a regular polygon closer to a circle.
余肉の分布については、正方形では四隅に均一に分布し
、正六角形では内隅に均等分布しているので、天然ダイ
ヤモンドの様な不規則形状や、楕円モデルの様な余肉の
不均一分布に較べて、応力や変位も均一化される。その
結果、ダイスの偏摩耗を防止する効果がある。Regarding the distribution of extra thickness, in a square, it is evenly distributed in the four corners, and in a regular hexagon, it is evenly distributed in the inner corners, so it is difficult to create an irregular shape like a natural diamond or an uneven distribution of extra thickness like in an ellipse model. Stress and displacement are also made more uniform. As a result, there is an effect of preventing uneven wear of the die.
第 3 表 し′イス穴近傍での応力及び変位の
変車−記第 4 表 [余肉の分布と面a]〔効
果〕
以上のように、この発明の工具は、分断された合成ダイ
ヤモンドの小単結晶体を用いることにより、穴をあける
平行2面の結晶面として(110)を使用できるように
したものであり、これにより、他の結晶面(100)又
は(111)を用いるものに比べ耐摩耗性を一層向上さ
せる効果がある。Table 3: Changes in stress and displacement near the chair hole Table 4: [Distribution of extra metal and surface a] [Effects] As described above, the tool of the present invention can be By using a small single crystal, it is possible to use (110) as the two parallel crystal planes for drilling holes, which makes it possible to use other crystal planes (100) or (111). This has the effect of further improving wear resistance.
また、上記2面の形状を中心軸に対して対称かつ側面を
中心軸に対し平行に形成したことにより、穴の偏摩耗を
防止する効果がある。Furthermore, by forming the two surfaces symmetrically with respect to the central axis and with the side surfaces parallel to the central axis, uneven wear of the hole can be prevented.
更に、合成ダイヤモンドを分断して小単結晶体とするも
のであるから、1個あたりの価格を低減することができ
る。Furthermore, since the synthetic diamond is divided into small single crystals, the price per piece can be reduced.
第1図は天然ダイヤモンドを用いたダイスの断面図、第
2図は天然ダイヤモンドを示し、(a)は平面図、(b
)は正面図、第3図の(A)〜(C)は合成ダイヤモン
ドの単結晶体を示し、(a)は平面図、(b)は正面図
、第4図は天然ダイヤモンドのモデルを示し、(a)は
平面図、(b)は正面図、第5図は合成ダイヤモンドの
焼結マウントのモデルの断面図、第6図は合成ダイヤモ
ンドの伸線ダイスのモデルの断面図、第7図は天然ダイ
ヤモンドの焼結マウントのモデルの断面図、第8図は天
然ダイヤモンドの伸線ダイスのモデルの断面図、第9図
は円周方向応力の解析結果のグラフ、第10図は半径方
向変位の解析結果のグラフである。
1・・・・・・天然ダイヤモンド、2・・・・・・穴、
3・・・・・・ダイスケース、4・・・・・・焼結金属
、5.5′・・・・・・面、6・・・・・・合成ダイヤ
モンド、6′・・・・・・天然ダイヤモンド、7・・・
・・・焼結金属。
特許出願人 住友電気工業株式会社
同 代理人 鎌 1) 文 二
第9図
第10図Fig. 1 is a cross-sectional view of a die using natural diamond, Fig. 2 shows a natural diamond, (a) is a plan view, (b)
) shows a front view, Figures 3 (A) to (C) show a single crystal of synthetic diamond, (a) shows a top view, (b) shows a front view, and Figure 4 shows a model of a natural diamond. , (a) is a plan view, (b) is a front view, FIG. 5 is a cross-sectional view of a model of a sintered synthetic diamond mount, FIG. 6 is a cross-sectional view of a model of a synthetic diamond wire drawing die, and FIG. 7 is a cross-sectional view of a model of a synthetic diamond wire drawing die. is a cross-sectional view of a model of a natural diamond sintered mount, Fig. 8 is a cross-sectional view of a model of a natural diamond wire drawing die, Fig. 9 is a graph of the analysis results of circumferential stress, and Fig. 10 is a radial displacement. This is a graph of the analysis results. 1... Natural diamond, 2... Hole,
3...Dice case, 4...Sintered metal, 5.5'...Face, 6...Synthetic diamond, 6'...・Natural diamond, 7...
...Sintered metal. Patent applicant Sumitomo Electric Industries, Ltd. Agent Kama 1) Text 2 Figure 9 Figure 10
Claims (2)
、平行な2端面がいずれも結晶面(110)である小単
結晶体を形成し、上記の平行な2端面に垂直な穴を設け
るとともに、その各面の形状をその穴の中心軸に対して
対称形状に形成し、かつ側面を中心軸に対し平行に形成
したことを特徴とする合成ダイヤモンド単結晶を用いた
工具。(1) By dividing a single crystal of synthetic diamond, a small single crystal whose two parallel end faces are both crystal planes (110) is formed, and a hole perpendicular to the two parallel end faces is provided, A tool using a synthetic diamond single crystal, characterized in that each surface is formed symmetrically with respect to the central axis of the hole, and the side surfaces are formed parallel to the central axis.
であることを特徴とする特許請求の範囲第1項に記載の
合成ダイヤモンド単結晶を用いた工具。(2) A tool using a synthetic diamond single crystal according to claim 1, wherein the end face shape of the small single crystal body is a regular polygon or a circle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7607986A JPS62230421A (en) | 1986-03-31 | 1986-03-31 | Tool made of synthetic single crystal diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7607986A JPS62230421A (en) | 1986-03-31 | 1986-03-31 | Tool made of synthetic single crystal diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62230421A true JPS62230421A (en) | 1987-10-09 |
Family
ID=13594806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7607986A Pending JPS62230421A (en) | 1986-03-31 | 1986-03-31 | Tool made of synthetic single crystal diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62230421A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0642852A1 (en) * | 1993-09-14 | 1995-03-15 | General Electric Company | Diamond wire-drawing die |
-
1986
- 1986-03-31 JP JP7607986A patent/JPS62230421A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0642852A1 (en) * | 1993-09-14 | 1995-03-15 | General Electric Company | Diamond wire-drawing die |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6957935B2 (en) | Cutting insert with curved cutting edge | |
US5924826A (en) | Cutting insert mounted on holder by rib-and-groove coupling | |
US4556345A (en) | Multi-cornered reversible cutting-plate | |
RU2007132991A (en) | TOOL FOR Friction welding with stirring, METHOD FOR ITS MANUFACTURE, METHOD FOR WELDING AND METHOD FOR PRODUCING DETAILS | |
EP4043170A1 (en) | Stone cutting device | |
Ding et al. | Finite element investigation on the evolution of wear and stresses in brazed CBN grits during grinding | |
JPS62230421A (en) | Tool made of synthetic single crystal diamond | |
US6810712B2 (en) | Split die and die nib defined by the same | |
JPS6352710A (en) | Tool using synthetic diamond monocrystal | |
JP2957571B1 (en) | Wire for saw wire | |
JPS61172629A (en) | Tool for punching | |
JPH07214138A (en) | Diamond crossing die with opening part arranged in predetermined position | |
JPS59229227A (en) | Die using single crystal of synthetic diamond | |
CN209439542U (en) | Vehicle needle | |
JPH11156607A (en) | Cutting tool | |
CN203822165U (en) | Diamond compact substrate | |
JPH07328815A (en) | Throw away chip | |
CN205869496U (en) | 90 degree V type lathe tool structure | |
CN105916620A (en) | Cutting inserts with cross-holes and green bodies and methods for making such cutting inserts and green bodies | |
CN219540236U (en) | Hard alloy top hammer | |
CN209867001U (en) | Aluminum profile extrusion and flow distribution die | |
CN207888936U (en) | A kind of sintered diamond saw blade | |
JP2000140972A (en) | Mounting structure of die for form rolling | |
CN213915742U (en) | Automobile rear longitudinal beam reinforcing plate die | |
CN213969326U (en) | Improved forming cutter for U-shaped groove |