JPS62230057A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPS62230057A
JPS62230057A JP61074890A JP7489086A JPS62230057A JP S62230057 A JPS62230057 A JP S62230057A JP 61074890 A JP61074890 A JP 61074890A JP 7489086 A JP7489086 A JP 7489086A JP S62230057 A JPS62230057 A JP S62230057A
Authority
JP
Japan
Prior art keywords
oxide film
breakdown resistance
effect transistor
vertical field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61074890A
Other languages
Japanese (ja)
Inventor
Yoshitomo Takahashi
美朝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61074890A priority Critical patent/JPS62230057A/en
Publication of JPS62230057A publication Critical patent/JPS62230057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the electrostatic breakdown resistance of a vertical field effect transistor by using as a gate insulating film a nitride film having equal insulation breakdown resistance to an oxide film and large specific permittivity to increase an input capacity without decreasing the insulation breakdown resistance. CONSTITUTION:A source 4 and a gate electrode 7 are provided on one main surface, and a drain electrode 10 is provided on a back surface. The gate insulating film of such a transistor has a 2-layer structure of an oxide film 5 of 300Angstrom thick and a nitride film 6 of 200Angstrom thick including equal insulation breakdown resistance to the oxide film and larger specific permittivity. Thcs, an element heretofore having uniform oxide film of 500Angstrom and an input capacity of 500pF has an input capacity of approx. l.2 tines of 600pF to improve by approx. 17% its electrostatic resistance. Thus, the input capacity can be increased without decreasing the insulation breakdown resistance, thereby resultantly increasing the electrostatic breakdown resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型電界効果トランジスタに関し、特に高い静
電破壊耐量が得られる縦型電界効果トランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vertical field effect transistor, and particularly to a vertical field effect transistor that can provide high electrostatic breakdown resistance.

〔従来の技術〕[Conventional technology]

従来、縦型電界効果l・ランジスタは、ゲート絶縁膜と
して酸化膜を用いていた。
Conventionally, vertical field effect transistors have used an oxide film as a gate insulating film.

すなわち第2図に示すように、ドレイン高濃度基板1の
一主面にドレインのエピタキシャル層2が形成され、そ
の主面にチャネル形成領域3及びソース4が形成され、
その表面にゲート酸化膜5゜デー1〜電極7及び層間絶
縁膜8.ソース電極9゜トレイン電極10が形成されて
構成されていた。
That is, as shown in FIG. 2, a drain epitaxial layer 2 is formed on one main surface of a high drain concentration substrate 1, a channel forming region 3 and a source 4 are formed on the main surface,
A gate oxide film 5° 1 to electrode 7 and an interlayer insulating film 8 are formed on the surface thereof. A source electrode 9° and a train electrode 10 were formed.

し発明が解決しようとする問題点l 1述した従来技術の縦型電界効果トランジスタでは、酸
化膜の比誘電率が比較的低いため、第3図に示すように
、静電破壊耐量は人力容量に比例するため、静電破壊耐
量の向Fに効果のある入力容¥の増大を行うためには酸
化膜の膜厚を薄くしなければならないが、酸1ヒ膜の膜
厚を薄くすると酸1ヒ膜部での電界強度が大きくなり、
絶縁破壊耐量が低下し、静電破壊耐量かあまり向−ヒし
ないという欠点があった。
Problems to be Solved by the Invention 1 In the conventional vertical field effect transistor described above, the dielectric constant of the oxide film is relatively low, so as shown in Therefore, in order to increase the input capacitance, which is effective in increasing the electrostatic breakdown resistance, the thickness of the oxide film must be made thinner. The electric field strength at the 1st membrane increases,
It has the disadvantage that dielectric breakdown strength is reduced and electrostatic breakdown strength is not very strong.

本発明の目的は、単層デーl−絶縁膜の欠点を除去し、
絶縁破壊耐量を低下させずに入力容斌を増大させ、静電
破壊耐量の向、ヒされた縦型電界効果トランジスタを提
供することにある。
The purpose of the present invention is to eliminate the drawbacks of a single layer dielectric film,
It is an object of the present invention to provide a vertical field effect transistor which increases input capacity without reducing dielectric breakdown strength and has improved electrostatic breakdown strength.

r問題点を解決するための手段1 本発明の縦型電界効果I・う〉ジスタは、−主面にソー
ス及びゲートを有し、裏面にドレインを有する縦型電界
効果トランジスタにおいて、ゲート絶縁膜として酸化膜
と酸化膜に比較し比誘電率及び絶縁破壊耐量が約1.5
倍大きい窒化膜よりなる2層の絶縁膜を有している。
Means for Solving Problem 1 The vertical field effect transistor of the present invention is a vertical field effect transistor having a source and a gate on the main surface and a drain on the back surface. As compared to oxide film, relative permittivity and dielectric breakdown strength are approximately 1.5.
It has a two-layer insulating film made of a nitride film that is twice as large.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例の縦型電界効果型トランジ
スタの断面図である。第1図に於て1はドレインの高濃
度基板、2はトレインのエピタキシャル層、3はチャネ
ルを形成するドレインとは反対導電影領域、4はドレイ
ンと同導電形のソース領域、5は約300人の酸化膜、
6は約200人の窒化膜である。すなわちゲーI・絶縁
膜は300人の酸化ryA5と酸化膜に比較して絶縁破
壊耐量が同等で比誘電率の大きい窒化膜の2層構造とな
っている。この様にすることで従来均一酸化膜500人
で500pF程度の入力容量を持っていた素子が約1.
2倍600ρFの入力容量となり、それにつれて静電耐
量も約17%の向上を達成している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a vertical field effect transistor according to an embodiment of the present invention. In FIG. 1, 1 is the highly doped substrate of the drain, 2 is the epitaxial layer of the train, 3 is the conductive shadow region opposite to the drain forming the channel, 4 is the source region of the same conductivity type as the drain, and 5 is about 300 human oxide film,
6 is a nitride film of about 200 people. That is, the GaI insulating film has a two-layer structure of 300 oxide ryA5 and a nitride film which has the same dielectric breakdown strength and a higher dielectric constant than the oxide film. By doing this, a device that conventionally had an input capacitance of about 500 pF with a uniform oxide film of 500 people can be reduced to about 1.
The input capacitance is doubled to 600 ρF, and the electrostatic withstand capacity is also improved by about 17%.

また、7はゲート電極、8は層間絶縁膜であり、9はソ
ース電極である。
Further, 7 is a gate electrode, 8 is an interlayer insulating film, and 9 is a source electrode.

[発明の効果j 以ト説明した様に本発明はゲート絶縁膜を酸化膜と絶縁
破壊耐量が同等で比誘電率の大きい窒化膜を用いること
により絶縁破壊耐量を低下させずに入力容量を増大させ
、その結果として静電破壊耐量を向上させることが出来
るという効果が得られる。
[Effects of the Invention j As explained above, the present invention increases the input capacitance without reducing the dielectric breakdown strength by using a nitride film, which has the same dielectric breakdown strength as an oxide film and a high dielectric constant, as the gate insulating film. As a result, the electrostatic breakdown resistance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦型電界効果トランジスタ
の断面図、第2図は従来の縦型電界効果トランジスタの
断面図、第3図は静電破壊耐量と入力容量の関係を示す
図である。 l・・・ドレイン高濃度基板、2・・・トレインのエピ
タキシャル層、3・・・チャネル形成領域、4・・・ソ
ース、5・・・酸化膜、6・・・窒化膜、7・・・ゲー
ト電極、S・・・層間絶縁膜、9・・・ソース電極、1
0・・・ドレイン電極。
Fig. 1 is a cross-sectional view of a vertical field effect transistor according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional vertical field effect transistor, and Fig. 3 shows the relationship between electrostatic breakdown resistance and input capacitance. It is a diagram. l...Drain high concentration substrate, 2...Epitaxial layer of train, 3...Channel formation region, 4...Source, 5...Oxide film, 6...Nitride film, 7... Gate electrode, S... interlayer insulating film, 9... source electrode, 1
0...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 一主面にソース及びゲートを有し、裏面にドレインを有
する縦型電界効果トランジスタにおいて、ゲート絶縁膜
が酸化膜と窒化膜の2層よりなる事を特徴とする縦型電
界効果トランジスタ。
A vertical field effect transistor having a source and a gate on one main surface and a drain on the back surface, wherein the gate insulating film is made of two layers: an oxide film and a nitride film.
JP61074890A 1986-03-31 1986-03-31 Vertical field-effect transistor Pending JPS62230057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074890A JPS62230057A (en) 1986-03-31 1986-03-31 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074890A JPS62230057A (en) 1986-03-31 1986-03-31 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62230057A true JPS62230057A (en) 1987-10-08

Family

ID=13560417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074890A Pending JPS62230057A (en) 1986-03-31 1986-03-31 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62230057A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617074A (en) * 1979-07-10 1981-02-18 Thomson Csf Field effect transistor and method of manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617074A (en) * 1979-07-10 1981-02-18 Thomson Csf Field effect transistor and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP2024036322A5 (en) Display device
JP2024012439A5 (en)
JPH0334466A (en) Vertical-type double diffused mosfet
JPH0194664A (en) Field-effect transistor
KR910008844A (en) Semiconductor devices
JPS62230057A (en) Vertical field-effect transistor
JPH02216871A (en) Power mosfet
JP3137840B2 (en) Semiconductor device
JPH0349266A (en) Mos-type semiconductor device
JP3385835B2 (en) Dielectric separated type semiconductor device
JP2001077218A5 (en)
JP3364541B2 (en) Insulated gate field effect transistor
JPH0618251B2 (en) Semiconductor device
JPS6218056Y2 (en)
JPS6358973A (en) Semiconductor device
JPS6190455A (en) Capacitor
KR910007137A (en) Capacitance structure for field effect transistor semiconductor memory
JPH02102575A (en) Semiconductor device
JPS6459864A (en) Mos transistor
JPS61279176A (en) Mos field effect transistor
JPH05198803A (en) Double diffused type field effect semiconductor device
JPH0234970A (en) Field-effect thin film transistor
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JPS60206173A (en) Semiconductor device and manufacture thereof
JPS6123671B2 (en)