JPS62230022A - X-ray projection exposure device - Google Patents
X-ray projection exposure deviceInfo
- Publication number
- JPS62230022A JPS62230022A JP61074695A JP7469586A JPS62230022A JP S62230022 A JPS62230022 A JP S62230022A JP 61074695 A JP61074695 A JP 61074695A JP 7469586 A JP7469586 A JP 7469586A JP S62230022 A JPS62230022 A JP S62230022A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- mask
- board
- imaging element
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 14
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000001015 X-ray lithography Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は、X線リソグラフィー等のX線投影露光装置に
関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an X-ray projection exposure apparatus for X-ray lithography and the like.
口、b℃末の技11・i
従来LSIの製造過程において、レジストパターンの形
成には一般に光転写方式が用いられてきた。しかし、光
転写方式では0.5μmが限界と言われており、又フレ
ネル回折の影響や焦点深度が小さい為に、1μm以下の
微細パターンを形成するイへには、5Mレジスト法やC
EL法等のプロセス技術を用いなくてはならない、その
へに工程が浅雑になり歩gまりの低下の原因となり、通
い将−礼限界に迂すると、tQ、 jノミする。こjt
lこ変わる丁一段として電子ビーム直接描画やX線リソ
グラフィーか、′;−えられている。しかし、“七テヒ
ーノ、直接描画力式て′はスルーフ゛ツトやステージの
つな;;′訃わ古T:j fi、更には高アスペクト比
f::iヱ成するために。Technique 11.i at the end of the conventional LSI manufacturing process has generally used a phototransfer method to form a resist pattern. However, the optical transfer method is said to have a limit of 0.5 μm, and due to the influence of Fresnel diffraction and the small depth of focus, the 5M resist method and C
Processing techniques such as the EL method must be used, but the process becomes sloppy, causing a drop in yield, and if it goes beyond the limits of regularity, tQ and j will be reduced. This is it
Electron beam direct writing and X-ray lithography are being considered as alternatives. However, in order to create a direct drawing force type, it is necessary to connect through projects and stages.
多フレシ゛ストを1吏わねばならないなどの圧点が、ち
る。これに対して、X線リソグラフィーは転写工程°ζ
′あるため大呈生産に向いていることから:)、7に有
望況されており、波几数久−数IAの光線用いる為、実
用上回折の影ζは無mてさる程度であり、0.1μ!n
程度までのJ!1僅度が期待でさる。There are many pressure points, such as having to perform multiple facials at once. In contrast, X-ray lithography is a transfer process
7 is promising because it is suitable for large-scale production, and since it uses light beams with a wavelength of several IA, the effect of breakage in practical use is negligible. 0.1μ! n
J to the extent! 1 degree is expected.
X線リングラフイーは大別して2つの方法が考えられる
。一つは現在用いられている方法で、X線マスクとウェ
ハーの間隔をICμ!口前後(こ)丘接さ佑てX線を照
射し、マスクのパターンを転写する、いわゆる10キシ
ミテイー法であり、乙う一つ:まX線結像素子を使って
マスクの投壽僅含転写する投9露光法°ζ°ある。There are two main methods of X-ray phosphorography. One is the currently used method, in which the distance between the X-ray mask and the wafer is set to ICμ! This is the so-called 10 ximity method, which irradiates the front and back of the mouth with X-rays and transfers the mask pattern. There are 9 exposure methods for transferring.
本発明は後者の投影露光法に関するものであるが、従来
のものは全てグロキシミテイー法で使用される透過型マ
スクであり、又、X線リソグラフィーで用いられるX線
の波長は放入から十数Aのいわゆる軟X線と呼ばれる領
域のX線であるが、この領域のX線は物質に吸収され易
いので、X線マスクの基板としてBN(ボロンナイトラ
イl〜)等のようなX線通過材t1で削った数μm程度
の臣めでユい膜を使用し、間膜の上にAu等のX線吸収
コ、膜て゛バクーンニングされている。その為に、透過
型マスク自体が機械的に非常にもろく陛めで取り扱い難
く、強度の点や熱による歪み、平面度など、又製1ヤニ
程も複雑になるという多くの問題点を有しており、従っ
て透過型マスクを使用したプロキシミティー装置が高価
で扱いにくくなる間圧点があった。また、機能面におい
ても従来の透過マスクを1吏用した10キシミテイー法
は近接投影法であり、縮小投影ではないので透過マスク
と同等の分解能でしかパターンを転写することができな
かった。The present invention relates to the latter projection exposure method, but all conventional methods are transmission masks used in the gloximity method, and the wavelength of the X-rays used in X-rays in the so-called soft X-ray region are easily absorbed by substances, so X-ray transmitting materials such as BN (boron nitride) are used as the substrate for the X-ray mask. A thin film with a diameter of several micrometers that has been shaved off by t1 is used, and an X-ray absorbing film such as Au is coated on top of the interstitial membrane. For this reason, the transmission mask itself is mechanically very fragile and difficult to handle, and it has many problems such as strength, distortion due to heat, flatness, etc., and it is also as complicated as one resin. Therefore, there was a pressure point where proximity devices using transmission masks became expensive and cumbersome. In addition, in terms of function, the conventional 10 ximity method using one transmission mask is a close-up projection method and is not a reduction projection method, so a pattern can only be transferred with the same resolution as that of a transmission mask.
ハ0発明が解決しようとする問題点
本発明は、X!!集光機能をもったXvA反射基板上に
パターニングした反射型X線マスクを提供することによ
って、従来の透過型マスクのもつ問題点を解決すると共
に縮小投影を可能にして、簡単に高精密なパターンが入
手できるようにすることのを目的とするものである。Problems to be Solved by the Invention The present invention solves the problems of X! ! By providing a reflective X-ray mask patterned on an XvA reflective substrate with a light focusing function, we solve the problems of conventional transmissive masks and enable reduced projection, making it easy to create high-precision patterns. The purpose is to make it available.
二1問題点解決のための手段
所定の傾きをもった入射X線に対し、表面の中心を通る
法線上の点に集光能力を有する回折基板と、同基板上に
形成したXj!吸収マスクと、上記回折基板の集光点に
配置されたX線結像素子によってX線投影露光装置を構
成した。21 Means for Solving Problems A diffractive substrate is used which has the ability to focus incident X-rays with a predetermined inclination to a point on the normal line passing through the center of the surface, and Xj! is formed on the same substrate. An X-ray projection exposure apparatus was constructed by an absorption mask and an X-ray imaging element placed at the focal point of the diffraction substrate.
ホ、fv用
本発明はX線マス2Mの中心点における回折X線とマス
ク面の法線とが一致する集光機能を持つ結晶基板に上に
X線吸収薄11 MをパターンニングしたX線反射型マ
スクMによるX線回折を利用するもので、図に示すよう
に、X線はX線光源SからX線マスクに放射された時、
基板に上にバタンニングされたX線吸収3膜Mがない部
分に放射されたX線だけが、マスク基板にの結晶格子C
によって回折され、X線結像素子F上に集光するように
されており、回折X線束の中心X線が回折基板面の法線
方向、つまりマスク面がX線束に対して垂直になってお
り、透過マスクをコンデンサーで背後から照明して透過
マスクの代を結像させるのと同じで、X線マス2Mの縮
小像がX線結像素子FによってウェハーW上に結ばれ、
高精密なパターンを入手することが可能になった。E, for fv The present invention is based on an X-ray beam patterned with an X-ray absorbing thin layer 11M on a crystal substrate having a light focusing function in which the diffracted X-ray at the center point of the X-ray mass 2M matches the normal line of the mask surface. It utilizes X-ray diffraction using a reflective mask M, and as shown in the figure, when X-rays are emitted from an X-ray light source S to an X-ray mask,
Only the X-rays emitted to the part of the substrate where there is no X-ray absorbing 3 film M that has been battened on the substrate are absorbed by the crystal lattice C on the mask substrate.
The central X-ray of the diffracted X-ray flux is directed in the normal direction of the diffraction substrate surface, that is, the mask surface is perpendicular to the X-ray flux. In this way, a reduced image of the X-ray mass 2M is formed on the wafer W by the X-ray imaging element F, just as the transmission mask is illuminated from behind with a condenser to form an image of the area of the transmission mask.
It has become possible to obtain highly precise patterns.
へ、実施例
図に本発明の一実施例を示す。図において、Kは格子定
数dの湾曲結晶から斜めに切り出したX線回折用基板で
表面にX線吸収1膜(Au等)をパターンニングしてX
線反射型マスクMを(t=成したものである。0は同マ
スクの中心点、Cはもとの湾曲結晶の0点を通る格子面
でRはその曲率中心、SはX線線源、Nはマスクの中心
点と格子面Cの曲率中心を結ぶ線(13T面法線)、F
は回折用基板中心の法線」−に配置されたX線結像素子
であるフレネル・ゾーンプレート、Wはマスクの俺を結
像させるウェハーである。An embodiment of the present invention is shown in FIG. In the figure, K is an X-ray diffraction substrate cut obliquely from a curved crystal with a lattice constant d, and an X-ray absorbing film (Au, etc.) is patterned on the surface.
0 is the center point of the mask, C is the lattice plane passing through the 0 point of the original curved crystal, R is the center of curvature, and S is the X-ray source. , N is a line connecting the center point of the mask and the center of curvature of lattice plane C (13T plane normal), F
is a Fresnel zone plate which is an X-ray imaging element placed on the normal line to the center of the diffraction substrate, and W is a wafer that forms an image of the mask.
一実施例として5分の1の縮小投y露光X線光学系を構
成する。湾曲結晶の材料としてGe単結晶を用い、その
(111)面を回折格子面とする、X線波長λ=5.4
06A、t3子定数d=3゜25A、基板表面の中心点
0における結晶格子面の曲率半径を499.2a+a、
基板面と格子面との傾きを33.7°とすると、基板面
中心の法線はGeの(111)面に対しブラッグの条件
を満足する。湾曲結晶は大きさ50m+ax50mm、
結晶表面から結【9.素子(FZP)までの距離を60
0北、マスク面の中心点から光源までの距離を277.
2+++a+とじた場合を考えてみる。As an example, a 1/5 reduction projection y exposure X-ray optical system is constructed. Ge single crystal is used as the material of the curved crystal, and its (111) plane is the diffraction grating plane, X-ray wavelength λ = 5.4
06A, t3 constant d=3°25A, radius of curvature of crystal lattice plane at center point 0 of substrate surface is 499.2a+a,
When the inclination between the substrate surface and the lattice plane is 33.7°, the normal to the center of the substrate surface satisfies Bragg's condition with respect to the (111) plane of Ge. The curved crystal size is 50m + ax50mm,
Formation of crystals from the surface of the crystal [9. The distance to the element (FZP) is 60
0 north, the distance from the center point of the mask surface to the light source is 277.
Let us consider the case of binding 2+++a+.
この構成において、XvA線源Sから放射されたXrA
は基板に入射した後、マスク基板に上にバタンニングさ
れたマスクM即ちX線吸収薄膜がない部分に照射された
X線だけが、マスク基板にの結晶格子によって回折され
、結晶格子が湾曲させであるので、X線結像素子F上に
集光する。従ってマスク面における各点の回折X線は全
て有効に結作素子を通ることになる。X線マスクの像は
X線結作素子FによってウェハーW上に結ばれる。この
時に、光軸がマスクMの表面に対して垂直になるように
設定されているので、ウェハー上に結ばれる像は、X線
マスクの縮小になる。In this configuration, XrA emitted from the XvA source S
After being incident on the substrate, only the X-rays irradiated onto the mask M that is battened on the mask substrate, that is, the part where there is no X-ray absorbing thin film, are diffracted by the crystal lattice of the mask substrate, causing the crystal lattice to curve. Therefore, the light is focused on the X-ray imaging element F. Therefore, all the diffracted X-rays at each point on the mask surface effectively pass through the coupling element. The image of the X-ray mask is focused onto the wafer W by the X-ray coupling element F. At this time, since the optical axis is set perpendicular to the surface of the mask M, the image formed on the wafer is a reduction of the X-ray mask.
ト、効果
本発明によれば、丈夫で壊れにくいX線回折基板を支持
体とした反射型X線マスクを1吏用したX線投影露光装
置により、マスクパターンの縮小転写が可能になったの
で、容易に高t?I密なパターンを製作することが可能
になった。G. Effects According to the present invention, it is possible to reduce and transfer a mask pattern using an X-ray projection exposure apparatus that uses a reflective X-ray mask with a strong and unbreakable X-ray diffraction substrate as a support. , easily high t? It became possible to produce dense patterns.
図は本イd明の一実強例の構成図である。 The figure is a configuration diagram of a practical example of the present invention.
Claims (1)
法線上の点に集光能力を有する回折基板と、同基板上に
形成したX線吸収マスクと、上記回折基板の集光点に配
置されたX線結像素子から成ることを特徴とするX線投
影露光装置。A diffractive substrate that has the ability to focus incident X-rays with a predetermined inclination to a point on a normal line passing through the center of the surface, an X-ray absorption mask formed on the substrate, and a focusing point of the diffractive substrate. 1. An X-ray projection exposure apparatus comprising an X-ray imaging element arranged in an X-ray projection exposure apparatus.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074695A JPS62230022A (en) | 1986-03-31 | 1986-03-31 | X-ray projection exposure device |
DE19873790178 DE3790178T1 (en) | 1986-03-28 | 1987-03-24 | |
GB8727566A GB2200766B (en) | 1986-03-28 | 1987-03-24 | A system for x-ray projection using a reflective mask |
PCT/JP1987/000177 WO1987006028A2 (en) | 1986-03-28 | 1987-03-24 | X-ray reflective mask and system for image formation with use of the same |
US07/137,857 US4891830A (en) | 1986-03-28 | 1987-03-24 | X-ray reflective mask and system for image formation with use of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074695A JPS62230022A (en) | 1986-03-31 | 1986-03-31 | X-ray projection exposure device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62230022A true JPS62230022A (en) | 1987-10-08 |
Family
ID=13554620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61074695A Pending JPS62230022A (en) | 1986-03-28 | 1986-03-31 | X-ray projection exposure device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62230022A (en) |
-
1986
- 1986-03-31 JP JP61074695A patent/JPS62230022A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7414787B2 (en) | Phase contrast microscope for short wavelength radiation and imaging method | |
US7084960B2 (en) | Lithography using controlled polarization | |
US4411013A (en) | System for transferring a fine pattern onto a target | |
JP2979667B2 (en) | Reflective X-ray exposure mask | |
US4176281A (en) | Method for adjusting a semiconductor disk relative to a radiation mask in x-ray photolithography | |
US3584948A (en) | Apparatus and method for producing multiple images | |
JPS6221223A (en) | Projecting and image-forming device for soft x-rays | |
US4444456A (en) | Holographic method and apparatus for transformation of a light beam into a line source of required curvature and finite numerical aperture | |
JPS62230022A (en) | X-ray projection exposure device | |
JPH0588355A (en) | Reflection type mask and exposure device using the same | |
JP2542652B2 (en) | Method of manufacturing mask for X-ray exposure | |
JPS60173551A (en) | Pattern transferring method by reflecting projection of light such as x rays or the like | |
JP5164176B2 (en) | Light projection exposure apparatus and light projection exposure method using stereoscopic projection | |
JP2555592B2 (en) | Illumination system for X-ray projection exposure | |
JPS62229836A (en) | Reflection type x-ray mask | |
JPH0359569B2 (en) | ||
KR100896875B1 (en) | Exposure apparatus and method thereof | |
CN100373204C (en) | adjustable phase type pupil filter and manufacturing method thereof | |
JPH0943851A (en) | Projection aligner | |
JPH04206709A (en) | Alignment mask and x-ray aligner | |
JPH0529200A (en) | Manufacture of fresnel zone plate for focusing x-ray | |
JPS62223657A (en) | X-ray condensing concave crystal diffraction element | |
JPH01302723A (en) | Mask for x-ray exposure and manufacture thereof | |
JPS62283301A (en) | Optical waveguide device and its manufacture | |
JPS62231197A (en) | Crystal element for x-ray spectral imaging |