JPS62229836A - Reflection type x-ray mask - Google Patents
Reflection type x-ray maskInfo
- Publication number
- JPS62229836A JPS62229836A JP61071970A JP7197086A JPS62229836A JP S62229836 A JPS62229836 A JP S62229836A JP 61071970 A JP61071970 A JP 61071970A JP 7197086 A JP7197086 A JP 7197086A JP S62229836 A JPS62229836 A JP S62229836A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- substrate
- mask
- crystal
- rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 abstract description 14
- 230000003287 optical effect Effects 0.000 description 14
- 238000003384 imaging method Methods 0.000 description 11
- 238000001015 X-ray lithography Methods 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は、X線リソグラフィー等の投影露光法に使用さ
れるX線反射型マスクに関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an X-ray reflective mask used in projection exposure methods such as X-ray lithography.
口、従来の技術
従来LSIの製造過程において、レジストパターンの形
成には一般に光転写方式が用いられてきた。しかし、光
転写方式では0.5μmが限界と言われており、又フレ
ネル回折の影響や焦点深度が小さい為に、1μm以下の
微細パターンを形成する為には、多層レジスト法やCE
L法等のプロセス技術を用いなくてはならない。その為
に工程として電子ビーム直接描画やX線リソグラフィー
が考えられている。しかし、電子ビーム直接描画方式で
はスループットやステージのつなぎ合わせ精度、更には
高アスペクト比を達成するために、多層レジストを使わ
ねばならないなどの難点がある。これに対して、X線リ
ソグラフィーは転写工程であるため大量生産に向いてい
ることから特に有望視されており、波長数入〜数十大の
X線を用いる為、実用上回折の影響は無視できる程度で
あり、0.1μm程度までの解像度が期待できる。2. Description of the Related Art In the conventional LSI manufacturing process, a phototransfer method has generally been used to form a resist pattern. However, the optical transfer method is said to have a limit of 0.5 μm, and due to the influence of Fresnel diffraction and the small depth of focus, in order to form fine patterns of 1 μm or less, multilayer resist methods and CE
A process technology such as the L method must be used. For this purpose, electron beam direct writing and X-ray lithography are being considered as processes. However, the electron beam direct writing method has drawbacks such as the need to use multilayer resist in order to achieve throughput, stage joint accuracy, and high aspect ratio. On the other hand, X-ray lithography is considered particularly promising because it is a transfer process and is suitable for mass production, and because it uses X-rays with wavelengths ranging from several to several tens of wavelengths, the effect of diffraction is ignored in practical use. It is possible to achieve a resolution of up to about 0.1 μm.
X線リソグラフィーは大別して2つの方法が考えられる
。一つは現在用いられている方法で、X線マスクとウェ
ハーの間隔を10μm前後に近接させてX線を照射し、
マスクのパターンを転写する、いわゆるプロキシミテイ
ー法であり、もう一つはX線結像素子を使ってマスクの
投影像を転写する投影露光法である。X-ray lithography can be roughly divided into two methods. One is the currently used method, in which X-rays are irradiated with the X-ray mask and wafer placed close to each other at a distance of about 10 μm.
One is the so-called proximity method, in which a pattern on a mask is transferred, and the other is a projection exposure method, in which a projected image of the mask is transferred using an X-ray imaging element.
本発明は後者の投影露光に必要なX線マスクに関するも
のであるが、従来のものは全て透過型マスクであり、又
、X線リソグラフィーで用いられるX線の波長は数久か
ら十数入のいわゆる軟X線と呼ばれる領域のX線である
が、この領域のX線は物質に吸収され易いので、X線マ
スクの基板としてBN(ボロンナイトライド)等のよう
なX線透過材料で作った数μm程度の極めて薄い膜を使
用し、同腹の上にAu等のX線吸収薄膜でパターニング
されている。その為に、機械的に非常にもろく極めて取
り扱い難く、強度の点や熱による歪み、平面度など、又
製作工程も複雑になるという多くの問題点があった。The present invention relates to an X-ray mask necessary for the latter projection exposure, but all conventional masks are transmission masks, and the wavelength of the X-rays used in X-ray lithography ranges from several decades to several dozen. X-rays in the so-called soft X-ray region are easily absorbed by substances, so the substrate of the X-ray mask is made of an X-ray transparent material such as BN (boron nitride). An extremely thin film of approximately several micrometers is used, and an X-ray absorbing thin film such as Au is patterned on the same layer. For this reason, it is mechanically very fragile and extremely difficult to handle, and it has many problems such as strength, distortion due to heat, flatness, etc., and the manufacturing process is complicated.
ハ9発明が解決しようとする問題点
本発明は、X線集光機能をもったX線反射基板上にパタ
ーニングした反射型X線マスクを提供することによって
、従来の透過型マスクのもつ問題点を解決するのを目的
とするものである。C9 Problems to be Solved by the Invention The present invention solves the problems of conventional transmission masks by providing a reflective X-ray mask patterned on an X-ray reflective substrate with an X-ray focusing function. The purpose is to solve the problem.
二1問題点解決のための手段
結晶内のX線回折に関与する格子面が回折X線に対して
集束fヤ用を持つように湾曲させた湾曲結晶から平板状
に切り出した基板面において、基板表面と上記結晶格子
面との傾きが、切り出された基板面の中心におけるブラ
ッグ反射(回折)X線と、同中心における基板の法線と
が一致するような傾きになるように製1ヤした結晶基板
上にX線吸収薄膜をパターニングしてX線反射型マスク
を設けた。21 Means for Solving Problems In a substrate surface cut into a flat plate from a curved crystal that is curved so that the lattice plane involved in X-ray diffraction in the crystal has a focusing function for diffracted X-rays, The first layer is manufactured so that the inclination between the substrate surface and the crystal lattice plane is such that the Bragg reflection (diffraction) X-ray at the center of the cut out substrate surface coincides with the normal line of the substrate at the same center. An X-ray reflective mask was provided by patterning an X-ray absorbing thin film on the crystal substrate.
ホ、作用
本発明は湾曲結晶によるX線回折を利用するもので、第
2図に示すように、X線源SからでたX線はX線マス2
Mに当たった後、マスク上にパターニングされたX線吸
収薄膜がない部分に照射されたX線だけが、マスク基板
の結晶格子によって回折され、X線結漂素子F上に集光
するようにされており、X線マスクの像はX線結像素子
FによってウェハーW上に結ばれる。E. Function The present invention utilizes X-ray diffraction using a curved crystal, and as shown in FIG. 2, the X-rays emitted from the X-ray source S are
After hitting M, only the X-rays irradiated onto the part of the mask where there is no patterned X-ray absorbing thin film are diffracted by the crystal lattice of the mask substrate and focused on the X-ray drifting element F. The image of the X-ray mask is formed on the wafer W by the X-ray imaging element F.
この時に、ウェハー上に結ばれる像が、X線マスクの縮
小になるためには、結像光学系の光軸Aに対してマスク
面が垂直でかつ、X線源Sは、この光軸A上にあっては
ならない。At this time, in order for the image formed on the wafer to be a reduction of the X-ray mask, the mask surface must be perpendicular to the optical axis A of the imaging optical system, and the X-ray source S must be It should not be on top.
これが本発明の重要な部分であるが、このような条件、
即ち、マスク中心における回折X線とX線結像素子Fの
光軸Aとを一致させることを可能にするために、第1図
に示すように湾曲結晶の格子面Cが基板にの法線と上記
の条件を満足させるような傾き即ち基板にの中心におけ
る回折X線の方向が基板中心の法線と一致するように製
作し、同結晶基板上にX線吸収薄膜Mをパターニングし
てX線反射型マスクを作成したのであり、従って、この
ようなX線マスクを使用することにより、結像光学系の
光軸に対して垂直に置くことが可能になった。Although this is an important part of the present invention, such conditions,
That is, in order to make it possible to match the diffracted X-rays at the center of the mask with the optical axis A of the X-ray imaging element F, the lattice plane C of the curved crystal is aligned with the normal to the substrate as shown in FIG. The X-ray absorbing thin film M is patterned on the same crystal substrate, and the X-ray absorbing thin film M is patterned on the same crystal substrate. A line-reflection mask was created, and therefore, by using such an X-ray mask, it became possible to place it perpendicular to the optical axis of the imaging optical system.
へ、実施例 第1図に本発明X線マスクの一実施例を示す。To, Example FIG. 1 shows an embodiment of the X-ray mask of the present invention.
第1図において、Kは格子定数dの湾曲結晶から切り出
した基板で、格子面CをRo点を曲率中心として湾曲さ
せた湾曲結晶から斜めに切り出した平板であって、表面
にX線吸収薄膜(Au等)をパターニングしてX線反射
型マスクMを作成したものである。Oは同マスクの中心
点、Cは湾曲結晶の格子面でRはその曲率半径、iはX
線の入射角で、SはX線光源、Fはフレネル・ゾーン・
プレートに対応する。波長λのX線を考える。Q。In FIG. 1, K is a substrate cut out from a curved crystal with a lattice constant d, which is a flat plate cut obliquely from a curved crystal in which the lattice plane C is curved with the center of curvature at the Ro point. An X-ray reflective mask M is created by patterning (Au, etc.). O is the center point of the mask, C is the lattice plane of the curved crystal, R is its radius of curvature, and i is X
The angle of incidence of the ray, S is the X-ray source, F is the Fresnel zone.
Corresponds to the plate. Consider an X-ray with wavelength λ. Q.
Uはマスクの−Lの点でブラッグの条件を満足するX線
が点0を通ってブラッグの条件を満足する中心X線と交
わる点、P、Tはマスクの←Lの点を通ってブラッグの
条件を満足するX線が点0を通ってブラッグの条件を満
足する中心X線(光軸A)と交わる点、R,は湾曲結晶
の曲率中心、J、Nは−Lの点から直線ORo、00に
下ろした垂線の足とすると、±L点および0点における
X線入射角、反射角は全て等しいから、点0.−L、U
、Ro、Qは同一円周r上にあり、又点り。U is the point where the X-ray that satisfies Bragg's condition at point -L of the mask passes through point 0 and intersects with the central X-ray that satisfies Bragg's condition; The point where an X-ray that satisfies the condition passes through point 0 and intersects with the central X-ray (optical axis A) that satisfies Bragg's condition, R is the center of curvature of the curved crystal, and J and N are straight lines from the point -L. Assuming that the foot of the perpendicular line is ORo, 00, the X-ray incident angle and reflection angle at the ±L point and the 0 point are all equal, so the point 0. -L, U
, Ro, and Q are on the same circumference r and are points.
0、T、Ro、Pも同一円周r′上にある。0, T, Ro, and P are also on the same circumference r'.
格子定数dの結晶格子面Cに、その法線OR。Normal OR to crystal lattice plane C with lattice constant d.
に対して角iで入射した波長^のX線はプラッグの式
2dcosi=λ(回折次数は1)・・・・・・■を満
たす入射角と等しい角iの方向で強め合い、池方向では
弱め合うので、反射角i方向のみに反射しているような
形となる。X-rays of wavelength ^ that are incident at an angle i to Since they weaken each other, the light appears to be reflected only in the direction of the reflection angle i.
に切り出した場合を考えると、切断平面(基板表面)の
中心における法線は格子面の法線とiの角度をなすから
、X縁線源Sを格子面の法!!OR。Considering the case where the cutting plane (substrate surface) is cut out, the normal line at the center of the cutting plane (substrate surface) makes an angle i with the normal line of the lattice plane, so the ! OR.
に対して切断平面の中心における法線と対称な線上に設
けると、基板平面の中心における法線は上記のブラッグ
の条件式■を満足する波長^のX線回折方向即ち結像光
学系の光軸Aと一致する。 、紙面上の線束において
、基板面の中心から距離w’r;aれた一Lの点におい
てブラッグの条1′4−を満足する回折X線と光軸との
角度をαとすると、αは−L点における格子Cの法線と
0点における格子Cの法線との角となるから、
tan cz=LJ/Rg J
=w−cos i/ (R−w−sin i>■O
Q=w/ Lana
= (R−w −sin i ) /cos i
■0U=UN+NO
= U L cos a+w−sin2i=QLco
s 2 i −cos a +w −sin
2 iところがQL=OQ/cos a
、’、0U=cos 2 i (R−w−sin
i ) /cos i+w Hsin 2 1
=(2Rcos”i+w−sin i −R)/co
st・・・・・・・・・・・・■同様にして
OP= (R+w −sin i ) / cos i
・・・・・・・・■0T=eos 2 L (R+w−
sin L ) /cos i )−w −sin 2
1
= (2Rcos”1−w−5in 1−R)/cos
t・・・・・・・・・・・・・・■となり、基板面の中
心0から±Lの点においてブラッグの条件を満足するX
線が、0点においてブラッグの条件を満足するX線と交
わる点の中間点を基準として収差を考えると、物点、像
点側とも同じ値で、
±w−tani・・・・・・・・・・・・・・・・・・
・・・・■になる。故に、X線結像素子を基板からR/
cost・・・・・・・・・・・・・・・・・・・・・
・・・■の距離の光軸上に、X線源Sを光軸と基板の中
心0の格子面の法線に関して対称な線上において、基板
の中心点から
(2acos’1−R)/cos i・・−−−−・・
■の距離に設置すれば良い。If it is placed on a line symmetrical to the normal line at the center of the cutting plane, the normal line at the center of the substrate plane will be in the X-ray diffraction direction of the wavelength ^ that satisfies the above Bragg's conditional expression (■), that is, the light of the imaging optical system. Coincides with axis A. , in the ray flux on the paper, if α is the angle between the diffracted X-ray that satisfies the Bragg stripe 1'4- at a point 1L at a distance w'r;a from the center of the substrate surface and the optical axis, then α is the angle between the normal to the lattice C at the -L point and the normal to the lattice C at the 0 point, so tan cz=LJ/Rg J=w-cos i/ (R-w-sin i>■O
Q=w/Lana=(R-w-sin i)/cos i
■0U=UN+NO=UL cos a+w-sin2i=QLco
s 2 i −cos a +w −sin
2 iHowever, QL=OQ/cos a,', 0U=cos 2 i (R-w-sin
i) /cos i+w Hsin 2 1 = (2Rcos”i+w-sin i −R)/co
st・・・・・・・・・■Similarly, OP= (R+w −sin i) / cos i
・・・・・・・・・■0T=eos 2 L (R+w-
sin L) /cos i)-w-sin 2
1 = (2Rcos”1-w-5in 1-R)/cos
t・・・・・・・・・・・・■, and X that satisfies Bragg's condition at points ±L from the center 0 of the board surface
Considering the aberration based on the midpoint between the point where the line intersects with the X-ray that satisfies Bragg's condition at the 0 point, the value is the same on both the object point and image point sides, ±w-tani...・・・・・・・・・・・・
...becomes ■. Therefore, the X-ray imaging element is separated from the substrate by R/
cost・・・・・・・・・・・・・・・・・・
... Place the X-ray source S on the optical axis at a distance of ■, on a line symmetrical with respect to the optical axis and the normal to the lattice plane at the center 0 of the substrate, and (2acos'1-R)/cos from the center point of the substrate. i・・---・・
It should be installed at a distance of ■.
一実施例としてX線波長λ=5.406A、湾曲結晶と
して、格子定数d=3.25A、1=33.76のGe
の(111)面を用い、結晶幕板は大きさ50mmX
50mm、w=±2弓an、基板表面中心から結像素子
Fまでの距離を600+i+sとした場合を考えてみる
。As an example, Ge with X-ray wavelength λ=5.406A, curved crystal, lattice constant d=3.25A, and 1=33.76
Using the (111) plane of
Consider the case where the distance from the center of the substrate surface to the imaging element F is 600+i+s.
湾曲結晶の曲率半径Rは上記の式■より、R/cos3
3.7°=600
、’、 R=600Xcos 33.7゜=499.
2 (mm)
となり、線源を縦方向収差の中間に設置するとすれば、
線源の位置Yは、上記の式■より、Y= (2Reos
’ 1−R) /cos 1=277.2 (m園)
最大収差2w−taoiは
2w−tan i =2X25Xtan 33.7=3
3.3 (+sm)
となるが、この程度の収差は実際上は問題ないので、こ
のような湾曲結晶を用いて、X線を集光させることは可
能であり、湾曲結晶の表面にX線板ハ上に投影すること
が可能である。The radius of curvature R of the curved crystal is R/cos3 from the above formula (■)
3.7°=600,', R=600Xcos 33.7°=499.
2 (mm), and if the source is placed in the middle of the longitudinal aberration, then
The position Y of the radiation source is calculated from the above formula (■) as follows: Y= (2Reos
'1-R) /cos 1=277.2 (m garden) Maximum aberration 2w-taoi is 2w-tan i =2X25Xtan 33.7=3
3.3 (+sm), but since this degree of aberration is not a problem in practice, it is possible to focus X-rays using such a curved crystal, and the X-rays can be focused on the surface of the curved crystal. It is possible to project onto a board.
第2図に本発明のX線反射マスクを使用した具体例の構
成図を示す、SはX線線源、KはX線反射マスク基板、
Mは基板に上にパターニングされたマスク、Cは格子面
、NはマスクMの中心点における格子面法線、FはX線
結億素子であるフレネル・ゾーンプレート、Wはマスク
の像を結像させるウェハーである。FIG. 2 shows a configuration diagram of a specific example using the X-ray reflective mask of the present invention, where S is an X-ray source, K is an X-ray reflective mask substrate,
M is a mask patterned on the substrate, C is a lattice plane, N is a normal to the lattice plane at the center point of the mask M, F is a Fresnel zone plate which is an X-ray coupling element, and W is a plane that forms an image of the mask. It is a wafer that can be imaged.
この構成において、X縁線源Sから照射されたX線はX
線マスクに当たった陵、マスク基板に上にバタンニング
されたマスクM即ちX線吸収薄膜がない部分に照射され
たX線だけが、マスク基板にの結晶格子によって回折さ
れ、X線結像素子F上に集光するようにされており、X
線マスクの像はX線結像素子FによってウェハーW上に
結ばれる。この時に、光軸がマスクMの表面に対して垂
直になるように設定されているので、X線結像光学系は
光軸に対して回転対称で、ウェハー上に結ばれる像は、
X線マスクの縮小になる。In this configuration, the X-rays irradiated from the X-edge source S are
Only the X-rays that hit the ridge of the ray mask, the part of the mask M that is battened on the mask substrate, that is, the part where there is no X-ray absorbing thin film, are diffracted by the crystal lattice of the mask substrate, and are transmitted to the X-ray imaging element. The light is focused on F, and
An image of the ray mask is formed onto the wafer W by an X-ray imaging element F. At this time, since the optical axis is set perpendicular to the surface of the mask M, the X-ray imaging optical system is rotationally symmetrical with respect to the optical axis, and the image formed on the wafer is
The size of the X-ray mask will be reduced.
ト、効果
本発明によれば、マスクはX線反射基板に保持されるこ
とになり、丈夫で壊れにくい反射型X線マスクを提供で
きることにより、投影露光によるマスクパターンの転写
が可能になった。G. Effects According to the present invention, the mask is held on an X-ray reflective substrate, and a durable and unbreakable reflective X-ray mask can be provided, thereby making it possible to transfer a mask pattern by projection exposure.
第1図は本発明の一実施例の断面図、第2図は本発明の
X線反射マスクを使用した具体例の構成図である。
第1図FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a configuration diagram of a specific example using the X-ray reflective mask of the present invention. Figure 1
Claims (1)
晶から平板状に切り出した基板面において、基板表面と
上記結晶格子面との傾きが、切り出された基板面の中心
におけるブラッグ反射(回折)X線と、同中心における
基板の法線とが一致するような傾きになるように製作し
た上記結晶基板上にX線吸収薄膜をパターニングしたこ
とを特徴とするX線反射型マスク。In a substrate surface cut out into a flat plate from a curved crystal in which the lattice plane involved in X-ray diffraction within the crystal is curved, the inclination of the substrate surface and the crystal lattice plane causes Bragg reflection ( An X-ray reflective mask characterized in that an X-ray absorbing thin film is patterned on the above-mentioned crystal substrate manufactured so that the inclination of the X-rays (diffraction) coincides with the normal line of the substrate at the same center.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61071970A JPS62229836A (en) | 1986-03-28 | 1986-03-28 | Reflection type x-ray mask |
DE19873790178 DE3790178T1 (en) | 1986-03-28 | 1987-03-24 | |
GB8727566A GB2200766B (en) | 1986-03-28 | 1987-03-24 | A system for x-ray projection using a reflective mask |
PCT/JP1987/000177 WO1987006028A2 (en) | 1986-03-28 | 1987-03-24 | X-ray reflective mask and system for image formation with use of the same |
US07/137,857 US4891830A (en) | 1986-03-28 | 1987-03-24 | X-ray reflective mask and system for image formation with use of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61071970A JPS62229836A (en) | 1986-03-28 | 1986-03-28 | Reflection type x-ray mask |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62229836A true JPS62229836A (en) | 1987-10-08 |
Family
ID=13475834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61071970A Pending JPS62229836A (en) | 1986-03-28 | 1986-03-28 | Reflection type x-ray mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62229836A (en) |
-
1986
- 1986-03-28 JP JP61071970A patent/JPS62229836A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7414787B2 (en) | Phase contrast microscope for short wavelength radiation and imaging method | |
TW200421047A (en) | Exposure apparatus and method | |
US4891830A (en) | X-ray reflective mask and system for image formation with use of the same | |
JP2979667B2 (en) | Reflective X-ray exposure mask | |
JPH05326370A (en) | Projection aligner | |
US4176281A (en) | Method for adjusting a semiconductor disk relative to a radiation mask in x-ray photolithography | |
JPS6221223A (en) | Projecting and image-forming device for soft x-rays | |
JPH07118438B2 (en) | Mask-wafer aligner using zone plate | |
JP3499592B2 (en) | Projection exposure apparatus and pattern transfer method | |
US7271950B1 (en) | Apparatus and method for optimizing a pellicle for off-axis transmission of light | |
JPS62229836A (en) | Reflection type x-ray mask | |
JP2614863B2 (en) | X-ray reduction projection exposure equipment | |
JP2555592B2 (en) | Illumination system for X-ray projection exposure | |
JP2889062B2 (en) | X-ray mask and manufacturing method thereof | |
JP2542652B2 (en) | Method of manufacturing mask for X-ray exposure | |
JP3371512B2 (en) | Illumination device and exposure device | |
JPS62230022A (en) | X-ray projection exposure device | |
JP2906585B2 (en) | Position detection method | |
JPH0359569B2 (en) | ||
JPS62231197A (en) | Crystal element for x-ray spectral imaging | |
JP2517638B2 (en) | Position detection device | |
JPS58162039A (en) | Projection type exposing apparatus | |
JPH0577286B2 (en) | ||
JP2615778B2 (en) | Positioning device | |
JP2836180B2 (en) | Position detection device |