JPH01302723A - Mask for x-ray exposure and manufacture thereof - Google Patents

Mask for x-ray exposure and manufacture thereof

Info

Publication number
JPH01302723A
JPH01302723A JP63131422A JP13142288A JPH01302723A JP H01302723 A JPH01302723 A JP H01302723A JP 63131422 A JP63131422 A JP 63131422A JP 13142288 A JP13142288 A JP 13142288A JP H01302723 A JPH01302723 A JP H01302723A
Authority
JP
Japan
Prior art keywords
multilayer film
mask
reflecting mirror
film reflecting
ray exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63131422A
Other languages
Japanese (ja)
Inventor
Masamitsu Ito
正光 伊藤
Sachiko Kikuchi
幸子 菊池
Masaru Hori
勝 堀
Ichiro Mori
一朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63131422A priority Critical patent/JPH01302723A/en
Publication of JPH01302723A publication Critical patent/JPH01302723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To form a pattern in a good shape without decreasing a reflectance of a multilayer film reflecting mirror by making an X-ray exposure mask by a method wherein multilayer film reflecting mirror is formed on a substrate and then a reflection prevention film is formed according to a desired pattern on the multilayer film reflecting mirror. CONSTITUTION:A multilayer film reflecting mirror 2 is formed on a mask substrate 1 and then a reflection prevention film 4 is formed on the multilayer film reflecting mirror 2 according to a desired pattern 3, to make an X-ray exposure mask. For formation of the reflection prevention film 4 on the multilayer film reflecting mirror 2 according to a desired pattern, a resist coating process, a development process and a peeling process are required. However, the multilayer film reflecting mirror gets less damage in these processes compared with an etching process. What's more, a processing accuracy and a reliability can be remarkably increased since a circuit can be written by an EB lithographic equipment.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、x m tv光用マスク及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a mask for x m tv light and a method for manufacturing the same.

(従来の技術) 現在、光を露光媒体とするフォトリソグラフィ技術が斌
産ラインで使用されているが、この技術には使用する波
長によって決まる解像度の限界があり、これに代わる新
しいりソグラフィ技術として、光よりも波長の短いX線
を用いるX線露光技術の研究開発が急速な進展を見せて
いる。
(Conventional technology) Currently, photolithography technology that uses light as an exposure medium is used on production lines, but this technology has a resolution limit determined by the wavelength used. Research and development of X-ray exposure technology that uses X-rays, which have shorter wavelengths than light, is making rapid progress.

従来よく知られたX線露光技術は、透過型マスクを用い
、このマスクと試料とを10μsオーダーの間隔で平行
に保持し、マスク背面よりX線を照射し、マスク基板を
透過したX線で試料上の感光剤を感光するというもので
あった。しかしながらこのような透過型マスクには実用
上困難な点が多い。
Conventionally well-known X-ray exposure technology uses a transmission mask, holds the mask and sample in parallel with an interval of the order of 10 μs, irradiates X-rays from the back of the mask, and uses the X-rays that have passed through the mask substrate. The method was to expose the photosensitizer on the sample to light. However, such a transmission type mask has many practical difficulties.

1つは、透過X線の強度を保つために、マスク基板の厚
さが1〜2μsと非常に薄くなり、機械的強度が弱く取
り扱いが雅しいこと。また、基板上に重金属パターンが
存在することにより、基板に生じる応力でマスクパター
ンに歪が生じやすい。
First, in order to maintain the intensity of transmitted X-rays, the mask substrate has a very thin thickness of 1 to 2 μs, and its mechanical strength is weak, making it easy to handle. Furthermore, due to the presence of a heavy metal pattern on the substrate, stress generated on the substrate tends to cause distortion in the mask pattern.

その他に、X、W波長の問題がある6X線の物質透過率
は波長が長くなる程、低下するため透過型マスクでも、
マスク基板を透過することのできるX線の波長は10Å
以下である。しかし、通常の感光剤の感度は、もっと長
い波長の領域でピークを示す。また、X線源も含めたX
線光学系も、10Å以下の短い波長より100人前後の
長い波長のものの方が容易に得られる。
In addition, the material transmittance of 6 X-rays, which has problems with X and W wavelengths, decreases as the wavelength becomes longer, so even with a transmission mask,
The wavelength of X-rays that can pass through the mask substrate is 10 Å
It is as follows. However, the sensitivity of conventional photosensitizers peaks at longer wavelengths. In addition,
As for the line optical system, it is easier to obtain a long wavelength of around 100 Å than a short wavelength of 10 Å or less.

一方、X線の反射率は、これまで斜入射以外では実質上
はとんどゼロであった。しかしヌ膜形成技術等の進歩に
より、直入射でも高反射率が得られる多層1漠反射鏡の
形成が可能になりつつある。
On the other hand, until now, the reflectance of X-rays has been virtually zero except at oblique incidence. However, with advances in technology for forming thin films, it is becoming possible to form multi-layer single-distance reflecting mirrors that can obtain high reflectance even when directly incident on the light.

多層1漠反射鏡は、反射するX線の波長や帯域幅は設計
によって比較的自由に選択することができる。
The wavelength and bandwidth of the reflected X-rays can be selected relatively freely depending on the design of the multi-layer single reflector.

また、現在実験レベルで、50%に近い直入射反射率が
得られたという報告がある(Applied 0pti
cs。
In addition, there is a report that a direct incidence reflectance close to 50% has been obtained at the experimental level (Applied 0pti
cs.

vol、24.NO,6,P2S5) 、そこで多層膜
反射鏡を用いた反射型のX線マスクが検討されはじめて
いる。
vol, 24. No. 6, P2S5) Therefore, a reflection type X-ray mask using a multilayer film reflecting mirror has begun to be considered.

この多層膜反射鏡によll形成された反射型マスクは、
反射の有無によりパターンを構成する。反射の有無を第
3図に示すごとく多層膜の表面を集束イオンビームによ
り加工することによって得ようという提案がなされてい
る。しかし、この方法では、イオンビーム照射により発
生する熱による周辺多層膜の受けるダメージや、エツチ
ング物質の再付着などが予想される。さらに、ビーム径
の大きさから生じる加工精度の問題や、描画するのに時
間がかかる等の数々の問題があり、集束イオンビームに
よるマスクパターン描画を実際の生産ラインで用いるこ
とは非常に困難である。
The reflective mask formed by this multilayer reflective mirror is
A pattern is constructed depending on the presence or absence of reflection. A proposal has been made to determine the presence or absence of reflection by processing the surface of a multilayer film with a focused ion beam, as shown in FIG. However, with this method, damage to the peripheral multilayer film due to heat generated by ion beam irradiation and redeposition of etching substances are expected. Furthermore, there are many problems such as processing accuracy caused by the large beam diameter and the time it takes to write, making it extremely difficult to use mask pattern writing using a focused ion beam on an actual production line. be.

(発明が解決しようとする課題) このようにX線反射型マスクは、従来のX線透過型マス
クの欠点であるjマスク強度の問題、マスク歪みの問題
、長波長カットの問題を解決するものであるが1反射型
マスクを形成する多層膜反射鏡の構造は非常に微細であ
るため、パターンニング等の工程で多層膜の受けろダメ
ージを極力小さくする必要がある。しかしながら、現在
提案されている集束イオンビームによるパターン描画は
、発生する熱による周辺多層膜が受けるダメージ。
(Problems to be Solved by the Invention) In this way, the X-ray reflective mask solves the drawbacks of conventional X-ray transmissive masks: the problem of mask strength, the problem of mask distortion, and the problem of long wavelength cut. However, since the structure of the multilayer film reflecting mirror forming the single-reflection mask is very fine, it is necessary to minimize damage to the multilayer film during processes such as patterning. However, the currently proposed pattern drawing using focused ion beams causes damage to the surrounding multilayer film due to the heat generated.

エツチングされた物質の再付着、加工精度、描画に要す
る時間等、多くの問題があり、実質上マスタの製造には
用いることができない。
There are many problems such as reattachment of etched materials, processing accuracy, and time required for drawing, so that it cannot be practically used for manufacturing masters.

本発明は上述した問題を改善するためになされたもので
、多層膜構造が良好に保たれ、高反射率で良好なパター
ンを有する反射型X線マスク及びその製造方法を提供す
ることを目的とする。
The present invention was made in order to improve the above-mentioned problems, and an object of the present invention is to provide a reflective X-ray mask in which a multilayer film structure is well maintained, a high reflectance, and a good pattern, and a method for manufacturing the same. do.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の問題点を解決するために本発明は、マスク基板」
−に多層膜反射鏡を形成し、その上に所望のパターンに
従い反射防Iト膜を形成してなるX線露光用マスクを提
供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a mask substrate.
- Provided is an X-ray exposure mask comprising a multilayer reflective mirror formed on the surface of the mirror, and an anti-reflection film formed thereon according to a desired pattern.

また本発明は、マスク基板上に多層膜反射鏡を形成する
工程と、この工程により形成された前記多層膜反射鏡上
にレジストを塗布し、所望パターンで描画したのち現像
する工程と、少くとも前記現像工程により露出した前記
多層膜反射鏡上に反射防止膜を形成する工程と、こ′の
工程の後前記レジストを剥離する工程とを有するX線露
光用マスクの製造方法を提供する。
The present invention also includes at least a step of forming a multilayer film reflecting mirror on a mask substrate, a step of applying a resist on the multilayer film reflecting mirror formed by this step, drawing a desired pattern, and then developing it. A method for manufacturing an X-ray exposure mask is provided, which includes a step of forming an antireflection film on the multilayer film reflector exposed by the developing step, and a step of peeling off the resist after this step.

(作 用) 本発明によれば、多層膜反射鏡のトに所望のパターンに
従い反射防止膜を形成するには、レジストの塗布、現像
、剥離という工程を経るが、この工程はイオンビーム照
射等のエツチングと比較して多層膜反射鏡の受けるダメ
ージはわずかなものである。
(Function) According to the present invention, in order to form an antireflection film according to a desired pattern on the surface of a multilayer reflective mirror, the steps of resist application, development, and peeling are performed, and this step includes ion beam irradiation, etc. Compared to etching, the multilayer reflector suffers only a small amount of damage.

また、EB描画装置により描画できるので加工精度の問
題や、信頼性など大きく向上させることができる。さら
に、レジストを用いてパターンニングするので、マスク
が1つできれば、X線転写によりマスクをつくることが
可能であり、時間的問題も解決される。これにより、多
層膜反射鏡の反射率を低下させることなく、良好なパタ
ーン形状を有する反射型X線マスクが実際の生産ライン
でも製造可能となる。
Furthermore, since drawing can be performed using an EB drawing device, problems with processing accuracy and reliability can be greatly improved. Furthermore, since patterning is performed using a resist, once one mask is made, another mask can be made by X-ray transfer, which also solves the time problem. As a result, a reflective X-ray mask having a good pattern shape can be manufactured on an actual production line without reducing the reflectance of the multilayer mirror.

(実施例) 第1図は、本発明の一実施例に係わるX線露光用マスク
の製造工程を示す断面図である。
(Example) FIG. 1 is a sectional view showing the manufacturing process of an X-ray exposure mask according to an example of the present invention.

まず、第1図(a)に示す如く、3′φ、厚さ400μ
sのシリコン基板1の表面に、反射鏡としてタンゲステ
ン(W)と炭素(C)の多層11便2を、EB蒸着装置
にてそれぞれ20人、40人の厚さで交互に30層蒸着
した。これにより44.7人のCKαの波長のX線につ
いて斜入射角23′ をピークに15%の反射率が得ら
れた。
First, as shown in Fig. 1(a), the diameter is 3'φ and the thickness is 400μ.
On the surface of the silicon substrate 1 of s, 30 layers of tungsten (W) and carbon (C) multilayers 2 were alternately deposited using an EB evaporation apparatus to a thickness of 20 and 40 layers, respectively, as a reflecting mirror. As a result, a reflectance of 15% was obtained for X-rays having a wavelength of CKα of 44.7 people with a peak at an oblique incidence angle of 23'.

次に第1図(b)に示す如く、多層膜2の表面にレジス
ト3を塗布し、EB描画装置にて描画した後、現像処理
を行い0 、5 lnnのL&Sパターンを形成した。
Next, as shown in FIG. 1(b), a resist 3 was coated on the surface of the multilayer film 2, drawn with an EB drawing device, and then developed to form an L&S pattern of 0.5 lnn.

その後、第1図(c)に示す如く反射防止膜4としてC
を100人、Wを60人蒸着した。WとCの多層膜は一
般にその膜厚が薄い場合反射鏡として作用し、膜厚が厚
い場合反射防止膜として作用するが、その具体的膜厚に
ついてはX線の波長と入射角を考慮して決定される。
Thereafter, as shown in FIG. 1(c), C
100 people and 60 people deposited W. In general, a multilayer film of W and C acts as a reflective mirror when the film is thin, and as an anti-reflection film when the film is thick, but the specific film thickness should be determined by considering the wavelength and incidence angle of the X-rays. Determined by

次に第1図(d)に示す如く、レジスト3を剥離し、反
射防止膜4によるL&Sパターンを形成した。パターン
形成後の多層膜反射tet2の反射率は15%でパター
ニングの工程でのダメージによる反射率の減少は見られ
なかった。また、パターンの断面をSEMで観察したと
ころテーパーのない理想的なパターン形状になっている
のが確認できた。このマスクを用い、第2図に示すよう
にSOR支5を用いて円筒面鏡6にて1対1の転写を行
った。試料7は、マスク基板上に多層膜を形成し、その
上にレジストを塗布したものである。転写後、試料7の
レジストを現像し1反射防止膜を蒸着し、レジストを剥
離した結果、寸法差0.1ρ以内のL&Sパターンが形
成された反射型マスクが製作できた。
Next, as shown in FIG. 1(d), the resist 3 was peeled off, and an L&S pattern of an antireflection film 4 was formed. The reflectance of the multilayer reflective tet2 after patterning was 15%, and no decrease in reflectance due to damage during the patterning process was observed. Furthermore, when the cross section of the pattern was observed using an SEM, it was confirmed that the pattern had an ideal shape with no taper. Using this mask, one-to-one transfer was performed with a cylindrical mirror 6 using an SOR support 5 as shown in FIG. Sample 7 is one in which a multilayer film is formed on a mask substrate, and a resist is applied thereon. After the transfer, the resist of sample 7 was developed, an anti-reflection film 1 was deposited, and the resist was peeled off. As a result, a reflective mask in which an L&S pattern with a dimensional difference of 0.1 ρ or less was formed was manufactured.

本実施例によれば、イオンビーム照射によるエツチング
等、多層膜9反射鏡やパターン形状にダメージの大きい
方法を避け、レジストの塗布、剥離というダメージのな
い方法でパターニングすることによりX線反射率が高く
、かつ良好なパターン形状を有する反射型X線マスクを
製作することができた。また、1つのマスクから同様の
パターンを有するマスクをX線転写により製作すること
が可能であることを示すことができた。
According to this example, the X-ray reflectance can be improved by avoiding methods that cause large damage to the multilayer film 9 reflecting mirror and pattern shape, such as etching with ion beam irradiation, and by patterning using a method that does not cause damage, such as resist coating and peeling. A reflective X-ray mask with a high height and a good pattern shape could be manufactured. Furthermore, we were able to demonstrate that it is possible to manufacture masks with similar patterns from one mask by X-ray transfer.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、多層膜反射鏡および反射防止膜はWとCの
多層膜に限られず、MOとC,Moと81等を用いるこ
とができる。また重金属薄膜に限らず、レジストなども
考えられる。また、基板もSiに限らず、石英、SiC
,BN等が考えられる。その他、本発明の要旨を逸脱し
ない範囲で種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the multilayer film reflecting mirror and antireflection film are not limited to a multilayer film of W and C, but may also be made of MO and C, Mo and 81, or the like. In addition to heavy metal thin films, resists and the like can also be considered. In addition, the substrate is not limited to Si, but also quartz, SiC
, BN, etc. are possible. In addition, various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、多層膜反射鏡の
反射率を低下させることなく、また良好なパターン形状
を有する反射型X線マスクの製造が可能である。さらに
、X線露光によるマスクの製作も可能となる。
As described in detail above, according to the present invention, it is possible to manufacture a reflective X-ray mask having a good pattern shape without reducing the reflectance of the multilayer mirror. Furthermore, it becomes possible to manufacture masks by X-ray exposure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係わるX線露光用反射型
マスクの製造工程を示す断面図、第2図は本発明による
反射型マスクを用いて0.5μmのL&Sを試料上に1
:1で転写する方法を示す図、第3図は従来の反射型マ
スクの製造方法を示す断面図である。 1・・シリコン基板   2・・・多層膜反射鏡3・・
・レジスト     4・・・反射防止膜5・・・SO
R光     6・・・円筒面鏡7・・・試料 代理人 弁理士 則 近 憲 佑 同  松山光之
Fig. 1 is a cross-sectional view showing the manufacturing process of a reflective mask for X-ray exposure according to an embodiment of the present invention, and Fig. 2 is a sectional view showing the manufacturing process of a reflective mask for X-ray exposure according to an embodiment of the present invention. 1
FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a reflective mask. 1...Silicon substrate 2...Multilayer film reflecting mirror 3...
・Resist 4...Anti-reflection film 5...SO
R light 6...Cylindrical mirror 7...Sample representative Patent attorney Noriyuki Chika Yudo Mitsuyuki Matsuyama

Claims (2)

【特許請求の範囲】[Claims] (1)マスク基板上に多層膜反射鏡が形成され、その上
に所望のパターンに従い反射防止膜が形成されてなるこ
とを特徴とするX線露光用マスク。
(1) An X-ray exposure mask characterized in that a multilayer film reflecting mirror is formed on a mask substrate, and an antireflection film is formed thereon according to a desired pattern.
(2)マスク基板上に多層膜反射鏡を形成する工程と、
この工程により形成された前記多層膜反射鏡上にレジス
トを塗布し、所望のパターンで描画したのを現像する工
程と、少くとも前記現像工程により露出した前記多層膜
反射鏡上に反射防止膜を形成する工程と、この工程の後
前記レジストを剥離する工程とを有することを特徴とす
るX線露光用マスクの製造方法。
(2) forming a multilayer film reflector on the mask substrate;
A step of applying a resist on the multilayer film reflector formed in this step and developing the drawn pattern in a desired pattern, and applying an antireflection film on at least the multilayer film reflector exposed by the development step. 1. A method for manufacturing an X-ray exposure mask, comprising the steps of forming the resist, and peeling off the resist after this step.
JP63131422A 1988-05-31 1988-05-31 Mask for x-ray exposure and manufacture thereof Pending JPH01302723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131422A JPH01302723A (en) 1988-05-31 1988-05-31 Mask for x-ray exposure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131422A JPH01302723A (en) 1988-05-31 1988-05-31 Mask for x-ray exposure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01302723A true JPH01302723A (en) 1989-12-06

Family

ID=15057592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131422A Pending JPH01302723A (en) 1988-05-31 1988-05-31 Mask for x-ray exposure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01302723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233542A (en) * 1990-06-25 1992-08-21 Internatl Business Mach Corp <Ibm> Aberrasion mask and use thereof
JP2010102337A (en) * 2008-10-24 2010-05-06 Asml Holding Nv Anti-reflection coating for optical element
US8421995B2 (en) 2008-10-24 2013-04-16 Asml Holding N.V. Anti-reflective coating for optical elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233542A (en) * 1990-06-25 1992-08-21 Internatl Business Mach Corp <Ibm> Aberrasion mask and use thereof
JP2010102337A (en) * 2008-10-24 2010-05-06 Asml Holding Nv Anti-reflection coating for optical element
US8421995B2 (en) 2008-10-24 2013-04-16 Asml Holding N.V. Anti-reflective coating for optical elements

Similar Documents

Publication Publication Date Title
US6007963A (en) Method for extreme ultraviolet lithography
JP3047541B2 (en) Reflective mask and defect repair method
US5356662A (en) Method for repairing an optical element which includes a multilayer coating
JP2000514933A (en) Grayscale mask and depth pattern transfer technology using inorganic chalcogenide glass
JPH06138638A (en) Mask and manufacture thereof
US5902493A (en) Method for forming micro patterns of semiconductor devices
JP2979667B2 (en) Reflective X-ray exposure mask
US4329410A (en) Production of X-ray lithograph masks
US20090269678A1 (en) Method for making a reflection lithographic mask and mask obtained by said method
JPH01302723A (en) Mask for x-ray exposure and manufacture thereof
JP2704938B2 (en) Method of manufacturing mask for pattern formation of semiconductor element
JPS63237523A (en) X-ray mask and manufacture thereof
JPS63170917A (en) Formation of fine pattern
JPH0588355A (en) Reflection type mask and exposure device using the same
JPH05144710A (en) Optical element and fabrication thereof
JPS60173551A (en) Pattern transferring method by reflecting projection of light such as x rays or the like
JP3266994B2 (en) Reflective mask
JP2542652B2 (en) Method of manufacturing mask for X-ray exposure
JPH02177532A (en) Mild x-ray reflection type exposure mask and manufacture thereof
JPH03116147A (en) Photomask blank
JPH07120607A (en) Optical element and manufacture thereof
JP2001015406A (en) Exposing method for manufacturing semiconductor device and aligner
JP3192533B2 (en) Optical element manufacturing method
JPH06250007A (en) Production of blazed type diffraction grating
JPH06333804A (en) X-ray exposure method and manufacture of x-ray mask