JPS62230010A - Magnetic thin film - Google Patents

Magnetic thin film

Info

Publication number
JPS62230010A
JPS62230010A JP7394186A JP7394186A JPS62230010A JP S62230010 A JPS62230010 A JP S62230010A JP 7394186 A JP7394186 A JP 7394186A JP 7394186 A JP7394186 A JP 7394186A JP S62230010 A JPS62230010 A JP S62230010A
Authority
JP
Japan
Prior art keywords
thin film
target
mnz
niy
ptx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7394186A
Other languages
Japanese (ja)
Inventor
Kakuei Matsubara
松原 覚衛
Takeshi Koyanagi
剛 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP7394186A priority Critical patent/JPS62230010A/en
Publication of JPS62230010A publication Critical patent/JPS62230010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a sufficient Kerr rotation angle even by a practical semiconductor wavelength by specifying a composition ratio of Ptx Niy Mnz Sbt to be formed on a substrate. CONSTITUTION:As a target for forming a Ptx Niy Mnz Sbt thin film by spattering, a target having an areal ratio or a composition ratio as Ptx' Niy' Mnz' Sbt' which is corresponding to a desired composition ratio is used. The elements Pt, Ni, Mn, and Sb are different in probability of bound due to ion bombardment distributing to the spattering, so that target compositions x', y', Z', and t' are determined corresponding to x, y, z, and t of a desired thin film composition Ptx Niy Mnz Sbt in consideration of the above spattering probabilities. These x,y,z, and t are selected out of 0.05<=x<=0.33, 0.005<=y<=0.10, 0.10<=z, t<=0.70, more preferably, 0.1<=x<=0.28, 0.01<=y<=0.06, 0.30<=z<=0.60, 0.20<=t<=0.50. Thus, a photomagnetic recording medium having a big Kerr rotation angle to a light of 780-830 nm and accordingly having a good S/N ratio can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光磁気記録媒体、偏光ビームに対する磁気光
学ミラーに好適な磁性薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic thin film suitable for magneto-optical recording media and magneto-optic mirrors for polarized beams.

(従来の技術) 光磁気記録などへの応用に注目して各種の磁性薄膜が検
討されている。たとえば、TbFe、などの食上鉄族合
金、MnB L、MnouBi、オルソフェライト、P
tMnSb、lPdMn8b%NiMn8b等が知られ
ている。ここで信号の質を高くするためにはカー回転角
が高いことが必要であり、ptMnsbは常温でのカー
回転角がきわめて高い物質として注目されている。
(Prior Art) Various magnetic thin films are being studied with a focus on applications such as magneto-optical recording. For example, edible iron group alloys such as TbFe, MnBL, MnouBi, orthoferrite, P
tMnSb, lPdMn8b%NiMn8b, etc. are known. Here, in order to improve the quality of the signal, it is necessary to have a high Kerr rotation angle, and ptMnsb is attracting attention as a material that has an extremely high Kerr rotation angle at room temperature.

(発明が解決しようとする問題点) しかしながらptMnsbが最も高いカー回転角を示す
のは? j Onm付近であり、実用的な半導体波長で
あるtr o o nm付近ではカー回転角が低下して
しまう難点がある。
(Problem to be solved by the invention) However, when does ptMnsb exhibit the highest Kerr rotation angle? There is a problem that the Kerr rotation angle decreases near tr o nm, which is a practical semiconductor wavelength.

そこで本発明者は、この実用半導体波長で十分なカー回
転角を有する磁性薄膜を得るべ(検討し本発明に到達し
た。
Therefore, the present inventor conducted research to obtain a magnetic thin film having a sufficient Kerr rotation angle at this practical semiconductor wavelength, and arrived at the present invention.

すなわち、本発明の要旨は、基板上に形成され、 Pt
XNiyMnz日bt(o、o 、r≦X≦0.33、
o、oos−≦y≦0.10,0.10≦Z、1t≦0
.70)で表わされる磁性薄膜にある。
That is, the gist of the present invention is to form Pt on a substrate.
XNiyMnzdaybt(o, o, r≦X≦0.33,
o, oos-≦y≦0.10, 0.10≦Z, 1t≦0
.. 70).

(問題点を解決す、るための手段) 以下、本発明の詳細な説明する。(Means for solving problems) The present invention will be explained in detail below.

本発明の磁性薄膜の製法には、公知のスパッタ法、を主
として他に蒸着法、イオンブレーティング法、クラスタ
イオンビーム法等の所謂物理蒸着法(Physical
 Vapor Deposizion以下pVD法と略
)が用いられる。スパッタ法は、成膜すべき薄膜材料に
応じたターゲツト材にAr等のイオンを衝突させターゲ
ツト材の原子をたたき出す(=スパッタ)事により基板
上にスパッタされた原子が堆積することにより膜形成を
行う。Ar等のイオンの生成は10−4〜70″″I 
TOrr の分圧のガスをスパッタ真空容器中に導入し
、直流又は高周波交流′4界をターゲラ) (Targ
et )と対向電極(通常接地された基板支持体又は真
空容器)の間に印加し、公知のグロー放tv生じて生成
する。
The method for producing the magnetic thin film of the present invention mainly includes the well-known sputtering method, as well as so-called physical vapor deposition methods such as evaporation method, ion blating method, and cluster ion beam method.
Vapor Deposition (hereinafter abbreviated as pVD method) is used. In the sputtering method, ions such as Ar are bombarded with a target material corresponding to the thin film material to be formed, and atoms of the target material are ejected (=sputtering), and the sputtered atoms are deposited on the substrate to form a film. conduct. Generation of ions such as Ar is 10-4~70''I
A gas with a partial pressure of TOrr is introduced into a sputtering vacuum chamber, and a direct current or high-frequency alternating current field is applied to the sputtering vacuum chamber.
et) and a counter electrode (usually a grounded substrate support or vacuum vessel), producing a known glow emission.

本発明のPtxNiyMnz8bt薄膜を形成する場合
ターゲットとしては、所望の組成比に対応させた組成を
有するPtx’N iy’Mnz’s ’bt’面積比
又は組成比をもつターゲットが用いられる。各元素はス
パッタに寄与するイオンの衝突により飛跳(=スパッタ
)スるi*=スパッタ率カ異するためこのスパッタ率を
考慮して所望する薄膜組成PtxNiyMnz8btの
”+ 7. z、 tに対応しターゲット組成z′、y
/、 zl、 −C/が定められる。
When forming the PtxNiyMnz8bt thin film of the present invention, a target having a Ptx'Niy'Mnz's 'bt' area ratio or composition ratio having a composition corresponding to a desired composition ratio is used. Since each element has a different sputtering rate due to the collision of ions contributing to sputtering, i*= sputtering rate, the desired thin film composition PtxNiyMnz8bt corresponds to "+7.z, t" in consideration of this sputtering rate. target composition z′, y
/, zl, -C/ are defined.

この”* 79 ”t tは、o、ozくx≦0.JJ
This "*79"t t is o, ozkux≦0. J.J.
.

o、ooz≦y≦O,10、o、io≦z、t≦0.7
0から選択され、Xは好ましくは0. /≦X≦0・コ
ざ、0.0/≦y≦0.06.0..10≦2≦o、b
θ、θ、−〇≦t≦0.30の範囲から選ばれる。
o, ooz≦y≦O, 10, o, io≦z, t≦0.7
0, and X is preferably 0. /≦X≦0・Koz, 0.0/≦y≦0.06.0. .. 10≦2≦o, b
θ, θ, selected from the range of −〇≦t≦0.30.

本発明の光磁気記録媒体を得るには、 P tx’N iy’Mnz’8 bt’の合金ターゲ
ットを用いてもよく、又、Niy’Mnz’Sbt’ 
ノ合金又ハ焼結体の上にPt/js片を配置し全体とし
てターゲット表面面積比がPtx’Niy’Mnz’8
 bt’ (x’ −1−y’ 十z’+t′=l)と
なるべ(調合してもよい。その他同様の主旨でPtNi
、 MnSbの間で小片又は合金の組合せによりターゲ
ットを用いる事ができる。
In order to obtain the magneto-optical recording medium of the present invention, an alloy target of Ptx'Niy'Mnz'8bt' may be used, or an alloy target of Niy'Mnz'Sbt'
A Pt/js piece is placed on the sintered body of the alloy or the sintered body, and the target surface area ratio as a whole is Ptx'Niy'Mnz'8.
bt'(x' - 1 - y' 1 z' + t' = l) (may also be mixed. PtNi
, MnSb can be used as a target by a combination of small pieces or alloys.

スパッタに用いるイオンは通常Ar等の不活性ガスが用
いられる。放電の為のパワーは、ガス圧(〜真空度)及
びターゲットサイズ、基板面積に応じて異なるが数十W
から数KWにわたる。
The ions used for sputtering are usually inert gas such as Ar. The power for discharge varies depending on the gas pressure (~degree of vacuum), target size, and substrate area, but is several tens of W.
It ranges from several kilowatts.

本発明で薄膜が堆積する基板材料としては、ガラス、ポ
リカーボネー)(PC)、ポリメチルメタアクリレート
、エポキシ、ポリイミド、ポリアミドイミド等の好まし
くは光学的複屈折の小さい基板を中心として元磁気記碌
材料として公知のガラス、樹脂、金属等槽々の材料が用
い得る。光メモリ技術分野において公知の如くこれらの
基板には光学的案内槽(グループ)が設けられていてよ
い。膜厚は、通常go−s、oo。
In the present invention, substrate materials on which thin films are deposited include glass, polycarbonate (PC), polymethyl methacrylate, epoxy, polyimide, polyamideimide, etc., preferably substrates with low optical birefringence, etc. As the material, well-known materials such as glass, resin, metal, etc. can be used. These substrates may be provided with optical guide troughs (groups) as is known in the optical memory art. The film thickness is usually go-s, oo.

λ程度から選ばれる。Selected from around λ.

前述の如く本発明の磁性薄膜の製法は、上記スパッタ法
に限られるものではなく薄膜技術分野において公知の成
膜技術が用いられる。原料たるPt、 Ni、 Mn、
 sbを蒸発源とし各々又はこれらの合金を加熱るつぼ
中に入れ電気抵抗性により加熱したり電子ビームにより
力ロ熱することにより該原料物質を真空中(10″″4
 TOrr以下)で蒸発させ基板上に所望の合金膜を作
る事が可能である。基板上への膜堆積中に蒸発原子(棟
)をイオン化しt場にて加速しつつ基板へ到達させる事
も行いうる。スパッタと比べこれらの広義での蒸着法は
、成膜する膜組成の制御が燻かしく、好ましくは各成分
を独立に(且つ同時1c)蒸発させながら、各成分の蒸
着速度を膜厚モ二、ター(通常水晶発振子を用いた市販
品が用いられる)で検知しつつるつぼ温度等を調整し、
蒸発量の各成分比を調整する。
As mentioned above, the method for manufacturing the magnetic thin film of the present invention is not limited to the above-mentioned sputtering method, and any film forming technique known in the field of thin film technology may be used. Raw materials Pt, Ni, Mn,
Using sb as an evaporation source, each or these alloys are placed in a heating crucible and heated by electrical resistance or force-heated by an electron beam to melt the raw materials in a vacuum (10''4
It is possible to form a desired alloy film on the substrate by evaporating the alloy at a temperature of less than TOrr). It is also possible to ionize the evaporated atoms (ridges) during film deposition on the substrate and accelerate them in a t-field while making them reach the substrate. Compared to sputtering, these evaporation methods in a broad sense are more difficult to control the composition of the film to be formed.It is preferable to evaporate each component independently (and at the same time) while adjusting the evaporation rate of each component to the thickness of the film. The temperature of the crucible is adjusted while detecting it with a commercially available product using a crystal oscillator.
Adjust the ratio of each component for evaporation amount.

次にこのようにして得られた薄膜はその結晶性を制御す
るため熱アニールを行う事ができる。
The thin film thus obtained can then be thermally annealed to control its crystallinity.

通常、成膜直後の薄膜は原子((2)の堆積中、充分な
拡散時間をもたず凝固(固化)しており、結晶性が乱れ
又は多相の結晶からなり又は非晶質になる場合が多い。
Normally, a thin film immediately after deposition solidifies (solidifies) without sufficient diffusion time during the deposition of atoms ((2), resulting in disordered crystallinity, multiphase crystals, or amorphous There are many cases.

元磁気記憬媒体としては、このように乱れた結晶性の膜
と、完全性の高い膜とでいずれが好ましいかは、−概に
は定められないがより結晶性の高い膜を得るには1本発
明の媒体の場合ioo〜り00℃好ましくは1Ioo〜
100℃で7〜20時間、真空下で熱アニールを行う。
As a former magnetic recording medium, it is not possible to determine which is preferable, a film with such disordered crystallinity or a film with high integrity, but it is possible to obtain a film with higher crystallinity. 1 In the case of the medium of the present invention, the temperature is 00°C, preferably 110°C.
Thermal annealing is performed under vacuum at 100°C for 7-20 hours.

また、上記アニールにかえて、成膜中に基板を一〇θ℃
程度以上に加熱することもできる。
Also, instead of the above annealing, the substrate may be heated to 10θ℃ during film formation.
It can also be heated to a certain degree or higher.

上記の方法によって得られる磁性薄膜は、710−r3
0nmの光に対するカー回転角の大きい(したがって、
87N比が向上)優れた光磁気記録媒体を提供する。得
られる媒体は、さらに他の磁性体を積層して用いること
もできる。たとえば、非晶實食上遷移金属合金(TeF
e系など)等の記録感度、抗磁力が大きいかカー回転角
の小さい磁性体との積層により、/)非晶質宿生遷移金
属膜の保わ膜として利用でき、 コ)また、光入射li′lijに本発明に係る媒体を置
(ことにより非晶質食上M#金属膜のカー回転角を向上
できる。
The magnetic thin film obtained by the above method is 710-r3
The Kerr rotation angle for 0 nm light is large (therefore,
87N ratio is improved) to provide an excellent magneto-optical recording medium. The obtained medium can also be used by further laminating other magnetic materials. For example, amorphous transition metal alloys (TeF
By stacking with a magnetic material with high recording sensitivity, coercive force, or small Kerr rotation angle, such as e-type), /) it can be used as a protective film for an amorphous host transition metal film; By placing the medium according to the present invention in the li'lij, the Kerr rotation angle of the M# metal film on the amorphous layer can be improved.

(実施例) 以下、実施例によりさらに本発明の詳細な説明する。(Example) Hereinafter, the present invention will be further explained in detail with reference to Examples.

実施例/ (2極スパツター法による磁性薄膜の作製。)まず、タ
ーゲットとしてN1粉末とMn8t)粉末をまぜて円形
容器内(SO詣56)におさめ、NixMn8b (x
 = 0.0.Oj、0.7θ)ターゲットとし、その
上にPtシート(/θB×10龍、厚みlu)を配置し
て、Pt量とN1量を調整した。
Example/ (Preparation of magnetic thin film by two-pole sputtering method.) First, N1 powder and Mn8t) powder as a target were mixed and placed in a circular container (SO 56), and NixMn8b (x
= 0.0. Oj, 0.7θ) as a target, a Pt sheet (/θB×10×10, thickness lu) was placed on the target, and the amount of Pt and the amount of N1 were adjusted.

このようにターゲットをm(j2した後に、真空槽を/
 X / 0−6TOrr以下に排気した後、hr(q
q、qq%)圧を!; X / 04 Torrとして
RFパワー10OWで成膜した。
In this way, after moving the target m(j2), move the vacuum chamber to /
After exhausting to below X/0-6 TOrr, hr(q
q, qq%) pressure! The film was formed at RF power of 10 OW at X/04 Torr.

この詩基板としては熱酸化したS1ウエハーを用い、基
板とターゲットの距離を4’、 !r cmとして、基
板温度100℃であった。
A thermally oxidized S1 wafer is used as the substrate, and the distance between the substrate and the target is 4'! r cm, the substrate temperature was 100°C.

膜厚は5000〜7000λである。The film thickness is 5000 to 7000λ.

次に作製した薄膜の結晶性を改善するため真空中200
℃で3〜3時間の熱処理を行な次に磁気光学効果の計上
として外部磁界を印刀りして膜側から光束を入射させて
カーヒステリンスを測定したところ、どの薄膜も外部磁
界z KOeでカー回転角の飽和値にほぼ等しい値を得
た。
Next, in order to improve the crystallinity of the thin film produced,
After heat treatment at ℃ for 3 to 3 hours, an external magnetic field was applied to account for the magneto-optic effect, and a light beam was incident from the film side to measure the Kerr hysterins. We obtained a value almost equal to the saturation value of the Kerr rotation angle.

よって、外部磁界を3Koθに固定してカー効果の測定
波長依存性を調べた。
Therefore, the dependence of the Kerr effect on the measurement wavelength was investigated with the external magnetic field fixed at 3 Koθ.

その結果を図/に示す。The results are shown in Figure/.

図中の3つの曲線はNixMn8bターゲットとしく、
/ MnB b 、−I  N i(165Mn8 b
The three curves in the figure are NixMn8b targets,
/ MnB b , -I N i (165Mn8 b
.

J NiO,oMns’b を使用して得た薄膜に対応
しており誘導高周波プラズマ発元分元分析装置(IOP
)による分析結果を表1に示す。
It is compatible with thin films obtained using JNiO, oMns'b, and is compatible with induced high frequency plasma oscillator spectrometer (IOP).
) are shown in Table 1.

図中の曲線λ及び3では長波長でのカー回転角が増加し
ている。
In curves λ and 3 in the figure, the Kerr rotation angle increases at longer wavelengths.

表1 工ap分析結果 (発明の効果) 本発明に係る磁性薄膜は、g 00 nm付近でのカー
回転角が大きいので、実用的な光磁気記録媒体を提供す
る。
Table 1 Results of engineering ap analysis (effects of the invention) Since the magnetic thin film according to the present invention has a large Kerr rotation angle near g 00 nm, it provides a practical magneto-optical recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

図/は、本発明に係る磁性薄膜のjKOeにおけるカー
回転角の波長依存性を示す。
Figure / shows the wavelength dependence of the Kerr rotation angle at jKOe of the magnetic thin film according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に形成され、Pt_xNi_yMn_zS
bt(0.05≦x≦0.33、0.005≦y≦0、
10、0、10≦z、t≦0、70)で表わされる磁性
薄膜。
(1) Formed on a substrate, Pt_xNi_yMn_zS
bt(0.05≦x≦0.33, 0.005≦y≦0,
10, 0, 10≦z, t≦0, 70).
JP7394186A 1986-03-31 1986-03-31 Magnetic thin film Pending JPS62230010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7394186A JPS62230010A (en) 1986-03-31 1986-03-31 Magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7394186A JPS62230010A (en) 1986-03-31 1986-03-31 Magnetic thin film

Publications (1)

Publication Number Publication Date
JPS62230010A true JPS62230010A (en) 1987-10-08

Family

ID=13532637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7394186A Pending JPS62230010A (en) 1986-03-31 1986-03-31 Magnetic thin film

Country Status (1)

Country Link
JP (1) JPS62230010A (en)

Similar Documents

Publication Publication Date Title
Sonnenberg et al. Preparation of biaxially aligned cubic zirconia films on pyrex glass substrates using ion‐beam assisted deposition
JP2742631B2 (en) Manufacturing method of amorphous magnetic film
USRE36517E (en) Thin film magnet, cylindrical ferromagnetic thin film and production method thereof
JPS62230010A (en) Magnetic thin film
JPH0582723B2 (en)
JPS6124213A (en) Method of forming bismuth substituted ferry magnetic garnet film
JPH02129361A (en) Forming of thin film
JPH01118238A (en) Production of magneto-optical recording medium
JPH079714B2 (en) Magneto-optical recording medium
JPH01118239A (en) Magneto-optical recording medium
JPS61280927A (en) Multilayer article containing crystallization preventive layer and manufacture thereof
WO2002099156A1 (en) Sputtering target for forming phase change optical disc protective film and optical recording medium having phase change optical disc protective film formed using that target
JPH0254757A (en) Formation of thin polycrystalline film
JPS61258387A (en) Photomagnetic recording medium
JP2543056B2 (en) Method for manufacturing optical information recording member
JPH04116160A (en) Film forming device
JPS61201772A (en) Method and device for forming thin film
JPS59175037A (en) Production of magnetic recording medium
JPS58100672A (en) Method and device for formation of thin film
JP2636577B2 (en) Method of forming titanium nitride film
JPS63452A (en) Manufacture of magnetic thin film
JPS6246449A (en) Production of photomagnetic recording medium
JPH11199377A (en) Formation of crystalline thin membrane
JPS59121629A (en) Production of alloy film with high magnetic permeability
JPH025255A (en) Production of magneto-optical recording medium