JPS61258387A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS61258387A
JPS61258387A JP10096385A JP10096385A JPS61258387A JP S61258387 A JPS61258387 A JP S61258387A JP 10096385 A JP10096385 A JP 10096385A JP 10096385 A JP10096385 A JP 10096385A JP S61258387 A JPS61258387 A JP S61258387A
Authority
JP
Japan
Prior art keywords
recording medium
thin film
sbz
mny
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10096385A
Other languages
Japanese (ja)
Inventor
Kakuei Matsubara
松原 覚衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10096385A priority Critical patent/JPS61258387A/en
Publication of JPS61258387A publication Critical patent/JPS61258387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photomagnetic recording medium which is crystallo graphically stable in a thermal writing/temperature rising mode with a large Kerr revolving angle and also stable in a chemical mode like oxidation, etc. with reduced deterioration due to changes with time, by forming a thin film shown by PtxMnySbz (0<x<=0.30, y>=0.30 and z>=0.30). CONSTITUTION:A thin film shown by PtxMnySbz is formed on a substrate. These (x-z) are selected out of 0<<=0.30, y>=0.30 and z>=0.30 respectively. Furthermore, the (x) is selected preferably within a range of 0.20<=x<=0.27. Such a photoelectric recording medium is obtained by using an alloy target of Ptx'Mny'Sbz' or an alloy Mny'Sbz'. It is also available to distribute small Pt pieces on a sintered substance to secure a total target surface area ratio equal to Ptx'Mny'Sbz' (x'+y'+z'=1). The thickness of this thin film is set at 300-5,000Angstrom .

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光磁気記録媒体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a magneto-optical recording medium.

(従来の技術) 信号の検出法書き込みの一手段として磁性体際に同合金
の磁化の状態に対応しておこる偏光面の回転を検出する
或いは、望まれる偏光面の回転がおこるように磁化する
ことによってなされる。この方法は光磁気記録と呼ばれ
、またこのような磁気記録媒体は偏光面の変調にも利用
できる。光磁気記録においては、非晶質希土−遷移金属
系薄膜(Tb−Fe 、Gd−Co ) 、MnB1#
系知られている。
(Prior art) Signal detection method As a writing method, the rotation of the plane of polarization that occurs in a magnetic material in response to the state of magnetization of the same alloy is detected, or the rotation of the plane of polarization is magnetized so that the desired rotation of the plane of polarization occurs. done by This method is called magneto-optical recording, and such magnetic recording media can also be used to modulate the plane of polarization. In magneto-optical recording, amorphous rare earth-transition metal thin films (Tb-Fe, Gd-Co), MnB1#
The system is known.

非晶質希土−遷移金属系磁性体は、粒界ノイズがなく、
熱書きみ時に結晶学的に安定で、且つ物理的蒸着法(P
VD)で成膜可能であるが、反射光偏光面の入射光偏光
面に対する回転角であるKerr回転角が小さく、保護
膜なしでは酸化等による経時劣化が激しいという問題点
がある。また、MnB1  系は、Kerr回転角が大
きいものの、粒界ノイズが大きく、熱書きみ時に結晶学
的に不安定であるだめ、多数回書き込み硝化が非常に少
ないが、光吸収係数が小さく、厚膜(0,!μm程度〕
 にしないと媒体自身の昇温に必要な光吸収を生じない
。またPVD、C!VD法で垂直磁化膜が得られた報告
はなく、単結晶育成技術によっている。このため、大面
積化が困難で、生産性が低く、コストが高くなる難点が
ある。
Amorphous rare earth-transition metal magnetic materials have no grain boundary noise.
Crystallographically stable during hot writing and suitable for physical vapor deposition (P)
However, the problem is that the Kerr rotation angle, which is the rotation angle of the polarization plane of the reflected light with respect to the polarization plane of the incident light, is small, and without a protective film, deterioration over time due to oxidation or the like is severe. In addition, although the MnB1 system has a large Kerr rotation angle, it has large grain boundary noise and is crystallographically unstable during thermal writing, so there is very little nitrification due to multiple writing, but the light absorption coefficient is small and the thickness is Membrane (about 0,!μm)
Otherwise, the light absorption required to raise the temperature of the medium itself will not occur. Also PVD, C! There is no report that a perpendicularly magnetized film has been obtained by the VD method, but by a single crystal growth technique. Therefore, it is difficult to increase the area, the productivity is low, and the cost is high.

ド Mn:S)!:/:/:/)は、半金属的な特殊なバン
ド構造をとり、価電子帯内でのエネルギーレベルの分裂
に伴う選択的電気双極子遷移により、室温で異常Ker
r効来が観察される材料として、バルク結晶について報
告されている(  J、Appl、phys、、  j
!(6)、 21!7 (/りざu) 、J−MagM
ag  Mat、  31  /  (/り13)Ap
pl、Phys、Lett。
DoMn:S)! :/:/:/) has a special semimetal-like band structure and exhibits an abnormal Ker at room temperature due to selective electric dipole transition accompanying the splitting of energy levels within the valence band.
Bulk crystals have been reported as a material in which the r effect is observed (J, Appl, phys,, j
! (6), 21!7 (/Rizau), J-MagM
ag Mat, 31/(/ri13)Ap
pl, Phys, Lett.

≠2(2)、202./9♂3〕。≠2 (2), 202. /9♂3].

そこで、本発明者らは、安定でKerr回転角が大きく
、コストも低減しうるPt−Mn−13b系の光磁気記
録媒体を得るべく種々検討を行ない、本発明に到達した
Therefore, the present inventors conducted various studies in order to obtain a Pt-Mn-13b-based magneto-optical recording medium that is stable, has a large Kerr rotation angle, and can be reduced in cost, and has finally arrived at the present invention.

すなわち、本発明の要旨は、PtXMnySbZ(0<
1≦0.J O、31’≧0.30 、 IM≧0.3
0 )で表わされる薄膜を形成させてなる光磁気記録媒
体にある。
That is, the gist of the present invention is that PtXMnySbZ (0<
1≦0. J O, 31'≧0.30, IM≧0.3
A magneto-optical recording medium is formed by forming a thin film represented by 0).

(発明の構成) 以下、本発明の詳細な説明する。(Structure of the invention) The present invention will be explained in detail below.

本発明の光磁気記録媒体の製法には、公知のスパッタ法
、を主として他に蒸着法、イオンプL/−fイング法、
プラスタイオンビーム法等の所謂物理蒸着法(Phys
ical Vapor Deposition以下PV
D法と略)が用いられる。スパッタ法は、成膜すべき薄
膜材料に応じたターゲツト材にAr  等のイオンを衝
突させターゲツト材の原子をたたき出す(=スパッタ〕
事により基板上にスパッタされた原子が堆積することに
よシ膜形成を行う、Ar  等のイオンの生成は1o−
Lto”””Torrの分圧のガスをスパッタ真空容器
中に導入し、直流又は高周波交流電界をターゲット(T
arget)と対向電極(通常接地された基板支持体又
は真空容器)の間に印加し、公知のグロー放電を生じて
生成する。本発明のPtxMny8bz薄膜を形成する
場合ターゲットとしては、組成比に対応させた組成を有
するPtx′yiny’sbz’の面積比又は組成比を
もつターゲットが用いられる。
The method for manufacturing the magneto-optical recording medium of the present invention mainly includes the well-known sputtering method, vapor deposition method, ion plating L/-f method,
The so-called physical vapor deposition method (Physical vapor deposition method) such as plasty ion beam method
ical Vapor Deposition PV
D method) is used. In the sputtering method, ions such as Ar are bombarded with a target material corresponding to the thin film material to be deposited to knock out atoms of the target material (= sputtering).
The generation of ions such as Ar, which forms a film by depositing sputtered atoms on the substrate, is 1o-
A gas with a partial pressure of L to """ Torr is introduced into a sputtering vacuum chamber, and a direct current or high frequency alternating current electric field is applied to the target (T
arget) and a counter electrode (usually a grounded substrate support or vacuum vessel), producing a known glow discharge. When forming the PtxMny8bz thin film of the present invention, a target having an area ratio or composition ratio of Ptx'yiny'sbz' having a composition corresponding to the composition ratio is used.

各元素はスパッタに寄与するイオンの衝突によシ飛跳(
=スパッタ)する確率ミスバッタ率が異なるためこのス
パッタ率を考慮して所望する薄膜組成! + 7 + 
Zに対応しターゲット組成7、y、〆が定められる。こ
のX + 7 * zは、(7<X≦0.30 、 y
≧Q、30 、 z≧0.30から選択され、Xは好ま
しくはO≦X≦0.30 、さらに好ましくは0.20
≦X≦0.27の範囲から選ばれる。
Each element jumps (
= sputtering) Since the misbatter rate is different, consider this sputtering rate to determine the desired thin film composition! + 7 +
Target composition 7, y, and finish are determined corresponding to Z. This X + 7 * z is (7<X≦0.30, y
≧Q, 30, z≧0.30, X is preferably O≦X≦0.30, more preferably 0.20
Selected from the range of ≦X≦0.27.

本発明の光磁気記録媒体を得るには、 Pt鹿ny’S
bz’の合金ターゲットを用いてもよく、又、Mn7’
sb〆の合金又は焼結体の上にPt 小片を配置し全体
としてターゲット表面面積比が PtfMny’81b
Z’ (x!+7’+i=/ )となるべく調合しても
よい。その低回様の主旨でpt、Mn5b  0間で小
片又は合金の組合せによりターゲットを用いる事ができ
る。スパッタに用いるイオンは通常Ar等の不活性ガス
が用いられる。放電の為のパワーは、ガス圧(〜真空度
〕及びターゲットサイズ、基板面積に応じて異なるが数
十Wから数百にわたる。
To obtain the magneto-optical recording medium of the present invention, Pt ny'S
An alloy target of Mn7' may also be used.
Pt small pieces are placed on the sb alloy or sintered body, and the overall target surface area ratio is PtfMny'81b
Z'(x!+7'+i=/) may be blended as much as possible. For the purpose of low rotation, a target can be used with a combination of small pieces or alloys between PT and Mn5b0. The ions used for sputtering are usually inert gas such as Ar. The power for discharge varies depending on the gas pressure (degree of vacuum), target size, and substrate area, but ranges from several tens of W to several hundred.

本発明で薄膜が堆積する基板材料としては、ガラス、ポ
リカーボネート(PC)% ポリメチルメタアクリレー
トエポキシ、ポリイミド、ポリアミドイミド等の好まし
くは光学的複屈折の小さい透明樹脂基板を中心として光
磁気記録材料として公知の種々の材料が用い得る。光メ
モリ技術分野において公知の如くこれらの基板には光学
的複屈折(グループ〕が設けられていてよい。膜厚は、
通常!00〜s、o o o X程度から選ばれる。
In the present invention, substrate materials on which thin films are deposited include glass, polycarbonate (PC), polymethyl methacrylate epoxy, polyimide, polyamideimide, etc., preferably transparent resin substrates with low optical birefringence, etc., as magneto-optical recording materials. Various known materials can be used. These substrates may be provided with optical birefringence (groups) as is known in the optical memory technology field.
usually! Selected from approximately 00 to s, o o o x.

前述の如く本発明の光磁気記録媒体の製法は、上記スパ
ッタ法に限られるものではなく薄膜技術分野において公
知の成膜技術が用いられる。
As mentioned above, the method for manufacturing the magneto-optical recording medium of the present invention is not limited to the above-mentioned sputtering method, but any film forming technique known in the field of thin film technology may be used.

原料たるPt、Mn、Sbを蒸発源とし各々又はこれら
の合金を加熱るつぼ中に入れ電気抵抗性により加熱し九
)電子ビームにより加熱することにより該原料物質を真
空中(10Torr以下)で蒸発させ基板上に所望の合
金膜を作る事が可能である。基板上への膜堆積中に蒸発
原子(塊)をイオン化し電場にて加速しつつ基板へ到達
させる事も行いうる。スパッタと比べこれらの広義での
蒸着法は、成膜する膜組成の制御が難かしく、好ましく
は各成分を独立に(且つ同時に)蒸発させながら、各成
分の蒸着速度を膜厚モニター(通常水晶発掘子を用いた
市販品が用いられる)で検知しつつるつぼ温度等を調整
し、蒸発量の各成分比を調整する。
Using the raw materials Pt, Mn, and Sb as evaporation sources, each or an alloy of these is placed in a heating crucible and heated by electrical resistance.9) The raw materials are evaporated in vacuum (10 Torr or less) by heating with an electron beam. It is possible to create a desired alloy film on a substrate. It is also possible to ionize the evaporated atoms (clumps) during film deposition on the substrate and accelerate them using an electric field while they reach the substrate. Compared to sputtering, these evaporation methods in a broad sense are difficult to control the composition of the film to be formed, and it is preferable to evaporate each component independently (and simultaneously) while monitoring the evaporation rate of each component for film thickness (usually using a quartz crystal). The temperature of the crucible is adjusted while detecting the crucible (a commercially available product using an excavator is used), and the ratio of each component for the amount of evaporation is adjusted.

次にこのようにして得られた薄膜はその結晶性を制御す
るため熱アニールを行う事が出きる。
The thin film thus obtained can then be thermally annealed to control its crystallinity.

通常、成膜直後の薄膜は原子(塊〕 の堆積中、充分な
拡散時間をもたず凝固(固化)しておシ、結晶性が乱れ
又は多相の結晶からなり又は非晶質になる場合が多い。
Normally, a thin film immediately after deposition solidifies (solidifies) without sufficient diffusion time during the deposition of atoms (clumps), resulting in disordered crystallinity, multiphase crystals, or amorphous. There are many cases.

光磁気記録媒体としては、このように乱れた結晶性の膜
と、完全性の高い膜とでいずれが好ましいかは、−概に
は定められないがより結晶性の高い膜を得るには、本発
明の媒体の場合too〜700℃好ましくは4Lo。
As for magneto-optical recording media, it is not clear whether a film with such disordered crystallinity or a film with high integrity is preferable, but in order to obtain a film with higher crystallinity, In the case of the medium of the present invention, the temperature is too to 700°C, preferably 4Lo.

〜100℃で/−20時間、真空下で熱アニールを行う
Thermal annealing is performed under vacuum at ~100°C for /-20 hours.

上記の方法によって得られるPtxMny8bz薄膜は
、0 (x≦0.30 、 y≧0.30 、 z≧0
.30であることが必要であり、 Kerr回転角の太
きい(したがって、S/N 比が向上)優れた光磁気記
録媒体を提供する。本発明に係る媒体は、さらに他の磁
性体を積層して用いることもできる。たとえば、非晶質
希土遷移金属合金(TeFe系など)等の記録感度、抗
磁力が大きいかKerr回転角の小さい磁性体との積層
により、l) 非晶質希土遷移金属膜の保護膜として利
用でき、 コ) また、光入射側に本発明に係る媒体を置くことに
より非晶質希土遷移金属膜のKerr回転角を向上でき
る。
The PtxMny8bz thin film obtained by the above method is 0 (x≦0.30, y≧0.30, z≧0
.. 30, providing an excellent magneto-optical recording medium with a large Kerr rotation angle (therefore, an improved S/N ratio). The medium according to the present invention can also be used by further laminating other magnetic materials. For example, by stacking with a magnetic material such as an amorphous rare earth transition metal alloy (such as TeFe system) that has high recording sensitivity and coercive force or a small Kerr rotation angle, l) a protective film of an amorphous rare earth transition metal film can be formed. c) Furthermore, by placing the medium according to the present invention on the light incident side, the Kerr rotation angle of the amorphous rare earth transition metal film can be improved.

(実施例) 以下、実施例により本発明をさらに詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 Mnf3b 焼結体ターゲット上にptシート(!x 
j X O,1m)を配置し、真空Wlをl xto−
’Torr  まで排気後、コ極rf  スパッタ法に
より酸化S1  ウェハー基板上にPtMn13b薄膜
を作成した。スパッタリング条件はrf  電力、10
OW。
Example 1 PT sheet (!x
j X O, 1 m) and vacuum Wl is
After evacuation to 'Torr, a PtMn13b thin film was formed on the oxidized S1 wafer substrate by co-polar RF sputtering. Sputtering conditions were rf power, 10
OW.

雰囲気Ar (タタ、タタ%)、ガス圧j X / 0
”−”Torr 、基板温度100℃、ターゲットと基
板の距離弘、janである。作製した薄膜の膜厚はlり
0Q−2≦00Xであシ、これを夕oo℃、10時間、
真空中でアニールした。なお、この時閉したスパッタタ
ーゲットは、 MnSb  の焼結体とpt 小片の面
積比が/ : 0.012であった。
Atmosphere Ar (Tata, Tata%), gas pressure j X/0
"-" Torr, substrate temperature 100° C., distance between target and substrate, and jan. The thickness of the prepared thin film was 0Q-2≦00X, and it was heated at 00°C for 10 hours in the evening.
Annealed in vacuum. In addition, in the sputtering target that was closed at this time, the area ratio of the MnSb sintered body and the PT small pieces was /: 0.012.

得られた記録媒体PtXMnyS bz  におけるX
 + 7 +2の値を誘導高周波プラズマ発光分光分析
装置(工CP)により測定したところ、X二0.2 弘
X in the obtained recording medium PtXMnyS bz
When the value of +7 +2 was measured using an induced radio frequency plasma emission spectrometer (Engineering CP), it was found to be X20.2.

y=0.33.z=θ、lA 3であった。またこの記
録媒体の膜側から光束(波長6 j 3 nm )を入
射させた場合にKerr ヒステリシスカープヲ測定し
た結果を図1に示す。Kθrr回転角(H=p g−O
a)でのKerr回転角(θk)は0.2(deg)で
あった。
y=0.33. z=θ, lA 3. Further, FIG. 1 shows the results of measuring the Kerr hysteresis curve when a light beam (wavelength: 6 j 3 nm) was incident on the film side of this recording medium. Kθrr rotation angle (H=p g−O
The Kerr rotation angle (θk) in a) was 0.2 (deg).

(発明の効果〕 本発明に係る光磁気記録媒体は、熱書き込み昇温時に結
晶学的に安定であり、Kerr回転角が大きく、酸化な
ど化学時にも安定であるため経時劣化が少ない。
(Effects of the Invention) The magneto-optical recording medium according to the present invention is crystallographically stable during heating during thermal writing, has a large Kerr rotation angle, and is stable even during chemical reactions such as oxidation, so that it has little deterioration over time.

さらに、簡便容易に大面積薄膜が製造可能であり、安価
で生産性よく作製可能である。
Furthermore, a large-area thin film can be manufactured simply and easily, and can be manufactured at low cost and with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明に係る記録媒体のヒステリシスカーブの
一例を示す。 出 願 人 三菱化成工業株式会社 代 理 人  弁理士 長谷用   −ほか1名
FIG. 1 shows an example of a hysteresis curve of a recording medium according to the present invention. Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent attorney Yo Hase - and 1 other person

Claims (1)

【特許請求の範囲】[Claims] (1)基板上にPt_xMn_ySb_z(0<x≦0
.30、y≧0.30、z≧0.30)で表わされる薄
膜を形成させてなる光磁気記録媒体。
(1) Pt_xMn_ySb_z (0<x≦0
.. 30, y≧0.30, z≧0.30).
JP10096385A 1985-05-13 1985-05-13 Photomagnetic recording medium Pending JPS61258387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10096385A JPS61258387A (en) 1985-05-13 1985-05-13 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10096385A JPS61258387A (en) 1985-05-13 1985-05-13 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61258387A true JPS61258387A (en) 1986-11-15

Family

ID=14288007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10096385A Pending JPS61258387A (en) 1985-05-13 1985-05-13 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61258387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008008A1 (en) * 1994-09-06 1996-03-14 Migaku Takahashi Magnetooptic thin film, magnetooptic recording medium and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008008A1 (en) * 1994-09-06 1996-03-14 Migaku Takahashi Magnetooptic thin film, magnetooptic recording medium and production method thereof
US6190763B1 (en) * 1994-09-06 2001-02-20 Migaku Takahashi Magnetooptic thin film, magnetoopic record medium

Similar Documents

Publication Publication Date Title
EP1861924B1 (en) Piezoelectric thin film resonator and method for making same
US4202932A (en) Magnetic recording medium
JP2742631B2 (en) Manufacturing method of amorphous magnetic film
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
EP0410627A1 (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
US3303116A (en) Process for cathodically sputtering magnetic thin films
US4994320A (en) Thin magnetic film having long term stabilized uniaxial anisotropy
Matsuoka et al. Preparation of Ba-ferrite films for perpendicular magnetic recording by RF targets facing type of sputtering
EP0035870A1 (en) Method of producing a magnetic recording medium
JPS61258387A (en) Photomagnetic recording medium
US4925700A (en) Process for fabricating high density disc storage device
Duan et al. Laser deposited bismuth doped iron garnet films with perpendicular anisotropy
US3303117A (en) Process for cathodically sputtering a ferromagnetic thin film of a nickeliron-molybdenum alloy
EP0007755B1 (en) Method for producing a magnetic recording medium and magnetic recording medium so produced
US5863661A (en) Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby
JPH031810B2 (en)
JPH01118238A (en) Production of magneto-optical recording medium
JPH0418023B2 (en)
Li et al. Magnetic properties of DC magnetron sputtered CoCr thin films
JPS62231440A (en) Photomagnetic recording medium
Zhang et al. Annealing effects of Co/Ni multilayers
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
JPH01118239A (en) Magneto-optical recording medium
JPS62230010A (en) Magnetic thin film
US6190763B1 (en) Magnetooptic thin film, magnetoopic record medium