JPS62229230A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS62229230A
JPS62229230A JP61073243A JP7324386A JPS62229230A JP S62229230 A JPS62229230 A JP S62229230A JP 61073243 A JP61073243 A JP 61073243A JP 7324386 A JP7324386 A JP 7324386A JP S62229230 A JPS62229230 A JP S62229230A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
electrode
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61073243A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Hara
光義 原
Shuhei Yamamoto
修平 山本
Naoki Kato
直樹 加藤
Hiroaki Odai
尾台 弘章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61073243A priority Critical patent/JPS62229230A/en
Publication of JPS62229230A publication Critical patent/JPS62229230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To relax the rise sharpness of liquid crystal molecules for an impressed voltage to facilitate control of the light transmissivity by specifying the thickness of an oriented film layer in a liquid crystal display device having a semiconductor substrate of thin film transistors (TFT). CONSTITUTION:A gate electrode 11a, an insulating layer 12a, a semiconductor layer 13a, a source electrode 14a, and a drain electrode 15a are provided on a transparent substrate 10b to form a TFT. This TFT is provided for each surface picture element to constitute an electrode and a counter transparent electrode 18 is provided. Oriented films 16a and 16b, a liquid crystal layer 17, etc., are provided between TFTs and electrodes 18 to constitute the liquid crystal display device. The thickness of oriented films 16a and 16b is set to 0.2-1mum. Oriented films 16a and 16b are made thicker to increase a ratio Vsat/ Vth of an applied voltage Vsat corresponding to 10% transmissivity to an impressed voltage Vth corresponding to 90% transmissivity. Since oriented films are made thicker, the light transmissivity is easily controlled to improve the gradation display.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜トランジスタ(T P T )を右する液
晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid crystal display device using a thin film transistor (T P T ).

(発明の概要) 本発明はTFTアレイを有する液晶表示装置において、
配向膜層の厚さを0.2趨以上1趨以下とし、印加駆動
電圧に対する液晶分子の立上り特性の急峻性をゆるやか
にし、光の透過率の制御を容易にし、階調表示を行ない
やすくしたものである。
(Summary of the Invention) The present invention provides a liquid crystal display device having a TFT array.
The thickness of the alignment film layer is set to 0.2 or more and 1 or less, and the steepness of the rise characteristics of liquid crystal molecules in response to the applied driving voltage is made gentler, making it easier to control light transmittance and display gradation. It is something.

(従来の技術) 半導体基板と、対向電極を有する対向基板の2枚の基板
により液晶をはさみ込んだ液晶表示装置すなわちアクテ
ィブマトリクスパネルは近年、そのコントラスト比の高
さ、視覚範囲の広さ、応答の速さから表示装置として脚
光をあびている。2枚の基板のうち一方には、その全面
に電fflが形成され、他方の半導体基板面には、小さ
なブロックパターンの画i電穫が複数個形成される。各
画素−電極にはスイッチング素子として、薄膜1〜ラン
ジスタ(T P T )を付けることが行なわれる。
(Prior Art) In recent years, liquid crystal display devices (active matrix panels) in which a liquid crystal is sandwiched between two substrates, a semiconductor substrate and a counter substrate having counter electrodes, have been developed due to their high contrast ratio, wide visual range, and response. It is attracting attention as a display device because of its speed. An electric field ffl is formed on the entire surface of one of the two substrates, and a plurality of small block pattern electric currents are formed on the surface of the other semiconductor substrate. Each pixel-electrode is provided with a thin film 1 to a transistor (T PT ) as a switching element.

第4図はこの様なTFTアレイを有する液晶表水装置の
断面概略図であり、40a、40bはガラス等の透明基
板であり、418及び41bはゲート電極、42a、4
2bは絶縁層、43a。
FIG. 4 is a schematic cross-sectional view of a liquid crystal surface water device having such a TFT array, in which 40a and 40b are transparent substrates such as glass, 418 and 41b are gate electrodes, 42a and 4
2b is an insulating layer, 43a.

43bは半導体層、448.44bはソース電極、45
a、45bはドレイン電極、46a、46bは厚さ0.
1伽程度の配向層(絶縁層)、47は液晶、48は透明
電極である。
43b is a semiconductor layer, 448.44b is a source electrode, 45
a and 45b are drain electrodes, and 46a and 46b are drain electrodes with a thickness of 0.
There is an alignment layer (insulating layer) of about one size, 47 is a liquid crystal, and 48 is a transparent electrode.

ここで第4図で説明した液晶表示装置により階調表示を
行なう原理について説明する。第5図は液晶表示装置の
液晶に印加さ゛れる電圧の大きさで液晶分子の角度を制
御し、液晶表示装置を透過する光の強度を変化させた時
の印加される電圧の大きさと、透過光強度の関係を示す
ものである。
The principle of gradation display using the liquid crystal display device explained in FIG. 4 will now be explained. Figure 5 shows the magnitude of the applied voltage and the transmission when the angle of the liquid crystal molecules is controlled by the magnitude of the voltage applied to the liquid crystal of the liquid crystal display device, and the intensity of light transmitted through the liquid crystal display device is changed. This shows the relationship between light intensity.

図中符号51は、透過光強度の大きさを示す方向である
。符号52は、印加される電圧の大きさを示す方向であ
る。符号57は、印加される電圧の大ぎさと、透過光強
度の関係を示す曲線である。
Reference numeral 51 in the figure indicates a direction indicating the intensity of transmitted light. Reference numeral 52 indicates a direction indicating the magnitude of the applied voltage. Reference numeral 57 is a curve showing the relationship between the magnitude of the applied voltage and the intensity of transmitted light.

すなわち、電圧が大きくなると、透過光強度が減少し、
電圧が十分大きくなると、透過光強度は飽和づる。
In other words, as the voltage increases, the transmitted light intensity decreases,
When the voltage becomes sufficiently large, the transmitted light intensity reaches saturation.

透過光強度5A、5B、5G、5G、5Eは、それぞれ
電圧の大きさ5a、5b、5c、5d。
The transmitted light intensities 5A, 5B, 5G, 5G, and 5E are voltage magnitudes 5a, 5b, 5c, and 5d, respectively.

5eに対応している。5Aは電圧の大ぎさがOの場合に
対応づ゛る透過光強度で、5Eは電圧の大きさが十分大
きい場合に対応する透過光強度である。
Compatible with 5e. 5A is the transmitted light intensity corresponding to the case where the voltage magnitude is O, and 5E is the transmitted light intensity corresponding to the case where the voltage magnitude is sufficiently large.

透過率の相対強度が符号5Aを100%、5Eを0%と
した場合、5B、5C,5Dは、90%。
When the relative intensity of transmittance is 100% for code 5A and 0% for code 5E, 5B, 5C, and 5D are 90%.

50%、10%に対応する。Corresponds to 50% and 10%.

この様に、電圧の大きさを5aから50の範囲で変化さ
せると、透過光強度を5Aから5日の範囲で変化させる
ことができる。
In this way, by changing the magnitude of the voltage in the range of 5a to 50, the transmitted light intensity can be changed in the range of 5A to 5days.

(発明が解決しようとする問題点) 第 図における透過率10%、90%に対応する印加電
圧をV   、Vt、とすると、透過光強度at を電圧の大きさで制御し易くするためには、Vthを小
さくし、■  を大きくし、■/■thのsat   
            sat比が大きい方が良い。
(Problems to be Solved by the Invention) If the applied voltages corresponding to transmittances of 10% and 90% in FIG. , decrease Vth, increase ■, sat of ■/■th
The higher the sat ratio, the better.

しかし第4図に示した従来の液晶表示装置では、ネマチ
ック液晶において、v/■thの比を大Sa【 きくすることは困難である。
However, in the conventional liquid crystal display device shown in FIG. 4, it is difficult to increase the v/th ratio to a large value in the nematic liquid crystal.

またネマチック液晶に色素を添加する、いわゆるゲスト
・ホストタイプの液晶では、Vsat/■thの比を大
きくすることは可能であったが、消費電流が大きいこと
、耐光性等の信頼性上の問題があった。
In addition, with so-called guest-host type liquid crystals in which dyes are added to nematic liquid crystals, it is possible to increase the ratio of Vsat/■th, but there are problems with reliability such as large current consumption and light resistance. was there.

表1にV  /Vthの比較値を示す。Table 1 shows comparative values of V/Vth.

sat 表  1 (問題点を解決するための手段) 上記問題点を解決するためにこの発明は、配向膜層の厚
さを0.2趨以上11IIR以下としたことを特徴とす
る。
sat Table 1 (Means for solving the problems) In order to solve the above problems, the present invention is characterized in that the thickness of the alignment film layer is set to 0.2 to 11IIR.

(作用) 上記の様に配向膜層を厚くすると、第6図に示すように
光の透過率曲線は61から62へシフトする。すなわち
表1で示した液晶の急峻性のパラメーターは大きくなる
。そのため駆す」電圧の変化値に対する光透過率の値の
変化率が小さくなるため、階調表示容易となるのである
(Function) When the alignment film layer is made thicker as described above, the light transmittance curve shifts from 61 to 62 as shown in FIG. That is, the steepness parameter of the liquid crystal shown in Table 1 increases. Therefore, the rate of change in the light transmittance value with respect to the change value in the driving voltage becomes small, which facilitates gradation display.

(実施例) 以下に本発明の詳細を図示した実施例に基づいて説明す
る。
(Example) The details of the present invention will be explained below based on the illustrated example.

第1図は本発明に係る液晶表示装置の断面概略図であり
、1a及び1bはゲート電極、12a。
FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to the present invention, in which 1a and 1b are gate electrodes, and 12a.

12bは絶縁層、13a、13bは半導体層、14a、
14bはソース電極、15a、15bはドレイン電極、
16a、16bは配向層(絶縁層)、17は液晶、18
は透明電極である。10a、iQbはガラス等の透明基
板である。
12b is an insulating layer, 13a and 13b are semiconductor layers, 14a,
14b is a source electrode, 15a and 15b are drain electrodes,
16a and 16b are alignment layers (insulating layers), 17 is a liquid crystal, and 18
is a transparent electrode. 10a and iQb are transparent substrates such as glass.

前記配向膜層は厚さが0.21iIR以下では効果がな
く、1趨以上になると基板と配向膜層の密着度が悪くな
るため、0.2趨以上1趨以下が良い。
If the thickness of the alignment film layer is less than 0.21 iIR, it will not be effective, and if it is more than 1 IR, the degree of adhesion between the substrate and the alignment film layer will deteriorate, so it is preferable to have a thickness of 0.2 or more and 1 or less.

上述した配向膜層は、テフロン等を蒸着したり、ポリイ
ミド、ポリアミド、ポリアミドイミド、PVA等の高分
子膜をコーティングした後、ラビング法により配向処理
をするか、310等の斜方蒸着により形成できる。
The above-mentioned alignment film layer can be formed by vapor depositing Teflon or the like, coating with a polymer film such as polyimide, polyamide, polyamideimide, PVA, etc., and then subjecting it to alignment treatment by a rubbing method, or by oblique vapor deposition such as 310. .

この配向膜は、上記各種の配向膜層を積層しても同様の
効果が得られる。
With this alignment film, the same effect can be obtained even if the various alignment film layers described above are laminated.

また封入する液晶は、ツイスト角度がOoから360°
までのずべての電界効果型のツイストネマヂック液晶で
もよい。
In addition, the liquid crystal to be sealed has a twist angle of 360° from Oo.
Any field effect type twisted nematic liquid crystal may be used.

(効果) 以上説明した様に本考案によれば、配向膜層の厚ざを0
.2tutr以hls+以下とし、印加駆動電圧に対す
る液晶分子の立上り特性をゆるやかにし、光の透過率の
制御を容易にし、階調表示を行ないやすくすることがで
きる。
(Effect) As explained above, according to the present invention, the thickness distribution of the alignment film layer can be reduced to 0.
.. 2 tutr or more and hls+ or less, the rise characteristics of the liquid crystal molecules with respect to the applied driving voltage are made gentler, the light transmittance can be easily controlled, and gradation display can be easily performed.

また配向膜層が厚くなると、TPTの凹凸が配向膜中に
吸収されるため、ラビング法により配向処理した場合、
配向不良、TPTの破壊を防止することができる。
In addition, when the alignment film layer becomes thick, the unevenness of TPT is absorbed into the alignment film, so when alignment treatment is performed by rubbing method,
Poor alignment and destruction of TPT can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶表示装置の断面図、第2図はTF
Tアレイを有する液晶表示装置の断面図、第3図は印加
される電圧の大きさと透過光強度の関係を示した図、第
4図は配向膜層を厚くした場合の液晶の立上り特性を示
した図である。 10a、10b・・・ガラス等の透明基板11a、11
b・・・ゲート電極 12a、12b・・”絶縁層 13a、13b・・・半導体層 14a、14b・・・ソース電極 15a、15b・・・ドレイン電極 16a、16b・・・配向層(絶縁層)17・・・液晶 18・・・透明電極 出願人  セイコー電子工業株式会社 オ(碕日月の泉晶表示賽装置の護が1力図第1図 TPTアしイ1肩てろ歳晶禾ホ采置酢面図第2図 第3図 第4図
FIG. 1 is a cross-sectional view of the liquid crystal display device of the present invention, and FIG. 2 is a TF
A cross-sectional view of a liquid crystal display device having a T array. Figure 3 shows the relationship between the magnitude of the applied voltage and the intensity of transmitted light. Figure 4 shows the rise characteristics of the liquid crystal when the alignment film layer is made thicker. This is a diagram. 10a, 10b...Transparent substrates 11a, 11 such as glass
b...Gate electrodes 12a, 12b..."Insulating layers 13a, 13b...Semiconductor layers 14a, 14b...Source electrodes 15a, 15b...Drain electrodes 16a, 16b...Orientation layer (insulating layer) 17...Liquid crystal 18...Transparent electrode Applicant Seiko Electronics Co., Ltd. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 複数個の薄膜トランジスタが表示画素毎に形成された半
導体基板と、対向基板の電極の上に配向膜層を設けた2
枚の基板を、配向膜相側を相対向させ、基板間に正の誘
電率異方性と旋光性添加物を有したネマチック液晶を封
入し、その厚さ方向にねじれたら旋構造を持ち、かつ2
枚の基板の外側に一対の偏光板を設けた液晶表示装置に
おいて、前記配向膜層の厚さが、0.2μm以上1μm
以下とすることを特徴とする液晶表示装置。
A semiconductor substrate on which a plurality of thin film transistors are formed for each display pixel, and an alignment film layer provided on an electrode of a counter substrate.
A nematic liquid crystal having a positive dielectric constant anisotropy and an optically active additive is sealed between the substrates, with the alignment film phase sides facing each other, and has a spiral structure twisted in the thickness direction. Katsu 2
In a liquid crystal display device in which a pair of polarizing plates is provided on the outside of a single substrate, the thickness of the alignment film layer is 0.2 μm or more and 1 μm.
A liquid crystal display device characterized by the following.
JP61073243A 1986-03-31 1986-03-31 Liquid crystal display device Pending JPS62229230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073243A JPS62229230A (en) 1986-03-31 1986-03-31 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073243A JPS62229230A (en) 1986-03-31 1986-03-31 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS62229230A true JPS62229230A (en) 1987-10-08

Family

ID=13512544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073243A Pending JPS62229230A (en) 1986-03-31 1986-03-31 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS62229230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210320A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210320A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display element

Similar Documents

Publication Publication Date Title
JP3900859B2 (en) Liquid crystal device, projection display device, and electronic device
KR100257369B1 (en) In plane switching mode liquid crystal display device
JP2701698B2 (en) Liquid crystal display
JP2007178979A (en) Liquid crystal display device and method for manufacturing the same
JPS62159124A (en) Liquid crystal device
KR19980037086A (en) LCD
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
JP3819561B2 (en) Liquid crystal display
JP2011107376A (en) Liquid crystal element and liquid crystal display device
KR20010065169A (en) Liquid crystal display device
JPH0815714A (en) Liquid crystal display element
JPH052209B2 (en)
JPS62229230A (en) Liquid crystal display device
JPS62229231A (en) Liquid crystal display device
US5726729A (en) Liquid crystal display device
JPS62131225A (en) Liquid crystal device
JPS62229234A (en) Liquid crystal display device
JP3097498B2 (en) Liquid crystal display device using liquid crystal having ferroelectric phase
KR101960834B1 (en) Liquid crystal element, liquid crystal display
US10288916B2 (en) Liquid crystal display device
EP1821138A1 (en) Liquid crystal display
KR20040104202A (en) In plane switching mode liquid crystal display device and fabrication method thereof
JPH04264524A (en) Display device
KR20040100338A (en) In plane switching mode liquid crystal display device and fabrication method thereof
JPH08136915A (en) Ferroelectric liquid crystal display element