JPS62228431A - Manufacture of wire rod for long-sized high tension steel wire - Google Patents

Manufacture of wire rod for long-sized high tension steel wire

Info

Publication number
JPS62228431A
JPS62228431A JP24404885A JP24404885A JPS62228431A JP S62228431 A JPS62228431 A JP S62228431A JP 24404885 A JP24404885 A JP 24404885A JP 24404885 A JP24404885 A JP 24404885A JP S62228431 A JPS62228431 A JP S62228431A
Authority
JP
Japan
Prior art keywords
wire
wire rod
strength
long
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24404885A
Other languages
Japanese (ja)
Other versions
JPH0454728B2 (en
Inventor
Toshihiko Takahashi
高橋 稔彦
Yoshiyuki Asano
浅野 巌之
Rokuro Kono
河野 六郎
Takashi Ninomiya
二ノ宮 敬
Hideo Chiba
千葉 英夫
Yoshiyuki Sasaki
佐々木 佳行
Masatsugu Murao
雅嗣 村尾
Kazuhiko Murao
和彦 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
NANIWA SEITEI KK
Original Assignee
Nippon Steel Corp
NANIWA SEITEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NANIWA SEITEI KK filed Critical Nippon Steel Corp
Priority to JP24404885A priority Critical patent/JPS62228431A/en
Publication of JPS62228431A publication Critical patent/JPS62228431A/en
Publication of JPH0454728B2 publication Critical patent/JPH0454728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To easily manufacture a wire rod suitable for a deformed wire for a submarine cable by welding wire rods formed by the hot rolling of steel ingots having a specified and by heat treating the weld zone of the resulting long-sized wire rod under specified conditions to form a fine ferrite-pearlite structure. CONSTITUTION:Steel ingots having a composition consisting of, by weight, 0.30-0.65% C, >=1.0% Si, 0.3-1.5% Mn, <=1.2% Cr (Mn+Cr=0.3-1.5%), 0.0005-0.3% in total of or more among 0.002-0.1% Al, 0.002-0.1% Ti, 0.0005-0.3% Nb, 0.001-0.3% V and 0.0005-0.1% B and the balance Fe with inevitable impurities and having >=0.75% Ceq [Ceq=C+1/5(Mn+Cr)] are hot rolled to form wire rods. The wire rods are welded and the weld zone of the resulting long-sized wire rod is heated, held at a temp. in the austenite range and cooled at 3-20 deg.C/sec cooling rate to form a ferrite-pearlite structure. Thus, a wire rod for a long-sized high tension steel wire having superior weldability and cold workability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は長尺高張力ms用用材材製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a long high-tensile strength MS material.

(従来の技術) 光ファイバーは、その低損失、細径、大容量、経済性な
どの優れた特性を活して、海底ケーブルに導入すること
が試みられているが、例えば特公昭59−7361号公
報では、光フアイバーケーブルとして第1図に示すよう
に、断面の形状が互いに等しく扇形の3本の金属材料異
形線(以下異形線という)が組合わされて、中心部に少
くとも1本の光ファイバーを収容する耐圧パイプが提案
されている。
(Prior Art) Optical fibers have been attempted to be introduced into submarine cables by taking advantage of their excellent characteristics such as low loss, small diameter, large capacity, and economic efficiency. In the publication, as shown in Fig. 1, an optical fiber cable is constructed by combining three irregularly shaped metal wires (hereinafter referred to as irregular wires) with equal fan-shaped cross-sections, and at least one optical fiber in the center. A pressure-resistant pipe has been proposed that accommodates.

この構造では、光フアイバー心線10を中心に置き、回
りから断面扇形の異形線20を連続的に合わせながら、
一本の円筒状の耐圧層を形成するものである。この耐圧
層材料は深海の海水圧(例えば8000mの深海ではS
OO気圧)に耐え得る。
In this structure, an optical fiber core wire 10 is placed at the center, and irregular wires 20 having a fan-shaped cross section are continuously aligned from the surroundings.
It forms a single cylindrical pressure-resistant layer. This pressure-resistant layer material is made of seawater pressure in the deep sea (for example, S
Can withstand 00 atmospheric pressure).

一方、海底ケーブルは障害を考慮して接続函の最適設置
間隔が定められているか、現在約50〜100 Km毎
に接続函を設置するのが経済的とされている。しかしな
がら異形線用素材である線材の製造について検討してみ
ると、現用鋳造設備及び加熱炉の能力の制約から、大単
重化を図ってみても線材の単長は30,000mに限定
される。
On the other hand, for submarine cables, the optimum installation interval for connecting boxes is determined in consideration of failures, and it is currently considered economical to install connecting boxes every 50 to 100 km. However, when we consider the production of wire rods, which are materials for irregularly shaped wires, we find that even if we try to increase the unit weight, the single length of the wire rods is limited to 30,000 m due to the limitations of the current casting equipment and heating furnace capacity. .

従って、長距離の海底ケーブルの耐圧パイプ用素材とし
ての線材には、前記の扇形の異形線をうる冷間加工性と
、長尺化のための溶接性とを同時に満足させることが望
まれる。
Therefore, it is desired that wire rods used as materials for pressure-resistant pipes of long-distance submarine cables simultaneously satisfy the above-mentioned cold workability for producing fan-shaped deformed wires and weldability for lengthening the wires.

そこでこのような加工性と溶接性とを同時に満足させ得
るような鋼材としては、例えば特公昭59−22774
号公報ではTi、B  を含有し、CeqO155%以
下の鋼を制御圧延して、55 Kyf/mj以上の引張
強さを有する溶接性及び加工性の優れた線材が提案され
ている。又特公昭59−29648号公報では溶接性の
すぐれた高強度鉄筋材が提案されている。
Therefore, as a steel material that can satisfy such workability and weldability at the same time, for example, Japanese Patent Publication No. 59-22774
The publication proposes a wire rod with excellent weldability and workability, which has a tensile strength of 55 Kyf/mj or more and has a tensile strength of 55 Kyf/mj or more, which is produced by controlled rolling of steel containing Ti and B 2 and CeqO of 155% or less. Furthermore, Japanese Patent Publication No. 59-29648 proposes a high-strength reinforcing bar material with excellent weldability.

しかしながらこれらの鋼材は、それらを冷間加工して得
られる鋼線の強度が低く、海底ケーブルの耐圧パイプ用
の異形線には供し得ない。
However, the strength of the steel wire obtained by cold working these steel materials is low, and it cannot be used as a deformed wire for pressure-resistant pipes of submarine cables.

(元側が解決しようとする問題点) 本発明は、溶接性及び冷間加工性に優れた長尺高張力鋼
線用の線材の製造方法を提供するものである。
(Problems to be Solved by Original Party) The present invention provides a method for manufacturing a wire rod for a long high-tensile steel wire that has excellent weldability and cold workability.

(問題点を解決するための手段作用) 重量係でC0,30〜o、65%、Si1.0%以下、
Mn 0.3〜1.5%、Cr1.2%以下でMn十C
r0.3〜1.5 %、及びI O,002〜0.1%
、Ti0.002〜0.1%、Nb O,001−0,
3%、VO,OO1〜0.3%、Bo、0005〜0.
1%の1種または2種以上を合計0.0005〜0.3
%、残部Fe及び不可避不純物から成ると共に、Ceq
 =−(Mn+Cr)≧0.57%を満足する鋼塊を熱
間圧延し、続いて該線材を溶接して長尺線材とし、該溶
接部をオーステナイト域に加熱保持し、続いて3〜20
 ℃/seaで冷却して、微細なフェライト・パーライ
ト組織とすることを特徴とする長尺高張力鋼線用線材の
製造方法である。
(Means and actions to solve the problem) Weight: C0, 30~0, 65%, Si: 1.0% or less,
Mn 0.3 to 1.5%, Cr 1.2% or less
r0.3-1.5%, and IO,002-0.1%
, Ti0.002-0.1%, NbO,001-0,
3%, VO, OO1-0.3%, Bo, 0005-0.
1% of one or more types in total 0.0005 to 0.3
%, the balance consists of Fe and unavoidable impurities, and Ceq
A steel ingot that satisfies =-(Mn+Cr)≧0.57% is hot-rolled, then the wire rod is welded to form a long wire rod, the welded part is heated and maintained in the austenite region, and then
This is a method for producing a long high-tensile steel wire rod, which is characterized by cooling at a temperature of .degree. C./sea to form a fine ferrite-pearlite structure.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

海底光フアイバー用ケーブルの耐圧パイプは、引張強さ
126KB/−以上、好ましくは130Kyf/−以上
を要求される。鋼線の強度は、素材の強度と冷間加工量
によって決るが、本発明者らの検討によると、例えば第
1図に示した幾形線2゜を製造するには、冷間加工率を
85%以下に抑えることが、加工割れの発生を抑制する
上で必要である。製品強度126 K5+f/−を85
%以下の冷間加工率で得るためには、素材の線材には7
oKpf/mj以上の引張強さが必要である。
A pressure-resistant pipe for a submarine optical fiber cable is required to have a tensile strength of 126 KB/- or more, preferably 130 Kyf/- or more. The strength of steel wire is determined by the strength of the material and the amount of cold working, but according to the studies of the present inventors, for example, in order to manufacture the 2° geometric wire shown in Figure 1, the cold working rate must be increased. It is necessary to suppress the occurrence of processing cracks to 85% or less. Product strength 126 K5+f/-85
In order to obtain a cold working rate of less than 7%, the wire material must be
A tensile strength of oKpf/mj or more is required.

父上記素材は溶接部の強度、靭性に優れることが求めら
れている。一般に溶接性はC量に比例して悪化の傾向に
あるが、引張強さ7oKyt/−以上を満たすために適
量のCと可能な範囲で、MnあるいはMnの一部をCr
に置換して添加することが望ましい。
The above materials are required to have excellent strength and toughness in the welded area. In general, weldability tends to deteriorate in proportion to the amount of C, but in order to satisfy the tensile strength of 7 oKyt/- or more, Mn or a part of Mn must be replaced with Cr in an appropriate amount of C and within the possible range.
It is desirable to add it by replacing it with .

このように本発明においては、強度、溶接性及び加工性
を満足するために、特定の成分元素を添加するものであ
るが、以下に成分元素の添加範囲を上記のように限定し
た理由を説明する。
In this way, in the present invention, specific component elements are added in order to satisfy strength, weldability, and workability.The reason for limiting the range of addition of component elements as described above will be explained below. do.

Cは溶接性の点から低い方が望ましいが、0.3係未満
ではtoKyt/−以上の強度は得られない。
From the viewpoint of weldability, it is desirable that C be lower, but if it is less than 0.3, a strength of toKyt/- or more cannot be obtained.

一方、0□65チ超では溶接部の靭性、加工性が劣化す
るので、0.30%〜0.65%とする。
On the other hand, if it exceeds 0□65 inches, the toughness and workability of the welded part will deteriorate, so it should be set at 0.30% to 0.65%.

Sl  はその固溶体硬化作用によって線材を強化する
ために添加されるが、1%を超えると靭性を劣化させる
ので1%を上限とした。
Sl is added to strengthen the wire through its solid solution hardening effect, but if it exceeds 1%, the toughness deteriorates, so the upper limit was set at 1%.

Mn  は溶接性への影響が少なく、強度を増加させる
元素であり、可能な範囲で添加することが望ましい。M
n 0.3%未満ではSを硫化物として固定することが
出来ず、また7 0 KB/−以上の線材の強度を得る
こともできない。一方1.5チ超では線材の焼入性が高
くなりすぎて、溶接部に熱処理後マルテンサイトが発生
し、加工性を著しく劣化させることがあるので、0.3
%〜1.5係に添加範囲を限定した。
Mn is an element that has little effect on weldability and increases strength, and is preferably added to the extent possible. M
If n is less than 0.3%, S cannot be fixed as a sulfide, and a wire strength of 70 KB/- or more cannot be obtained. On the other hand, if it exceeds 1.5 inch, the hardenability of the wire becomes too high, and martensite may occur in the welded part after heat treatment, which may significantly deteriorate workability.
The addition range was limited to 1.5% to 1.5%.

CrはMnと全く同じ作用を持つ元素で、Mnの一部と
置換して添刀口することが出来るが、MnとCrの合計
量が1.5係を超えると、溶接部に熱処理後マルテンサ
イトが発生するので、Cr1.2%以下、Mn −1−
Cr 1.5係以下に添加量を限定した。
Cr is an element that has exactly the same effect as Mn, and can be added by substituting a part of Mn, but if the total amount of Mn and Cr exceeds 1.5, martensite will form in the weld after heat treatment. is generated, so Cr is 1.2% or less, Mn -1-
The amount added was limited to 1.5 parts or less of Cr.

AA、 Ti 、 Nb、 V、 Bはいずれもオース
テナイト粒変の調整のだめに1種または2種以上添加さ
れるが、AI!o、oo2%未満、Ti0.002チ未
満、NbO,0011未満、VO,0011未満、BO
,0005係未満で且つ1種または2種以上の合計が0
.0005%未満では細粒化されないし、MO81係超
、Ti0.1%超、Nb0.3%超、v 0.3 %超
、B 0.1 %超で且つ1種または2種以上の合計が
0.3係超では、細粒化効果が飽和するばかりでなく、
これらの元素の窒化物による脆化作用が顕著になるので
、A10.002〜0.1%、Tie、002〜0.1
%、NbO,OO1〜0.3%、Vo、001〜0,3
多、80.0005〜0.1%で且つこれらの1種また
は2種以上の合計を0.0005〜0.3%に限定した
One or more of AA, Ti, Nb, V, and B are added to adjust austenite grain deformation, but AI! o, oo less than 2%, Ti less than 0.002, NbO, less than 0011, VO, less than 0011, BO
, less than 0005 and the total of one or more types is 0
.. If the content is less than 0.0005%, the particles will not be refined, and if the content is more than MO81, Ti0.1%, Nb0.3%, V0.3%, B0.1% or more, and the total of one or more of them is When the coefficient exceeds 0.3, not only the grain refining effect is saturated, but also
Since the embrittlement effect due to nitrides of these elements becomes significant, A10.002~0.1%, Tie, 002~0.1%
%, NbO, OO1-0.3%, Vo, 001-0,3
The total content of one or more of these was limited to 0.0005 to 0.3%.

p、sはいずれも不純物としてみられるが、靭性の点か
らそれぞれ0.03%以下にすることが望ましい。また
Nは時効脆化を抑制するために0,01チ以下に抑える
ことが望ましい。
Both p and s are seen as impurities, but from the viewpoint of toughness, it is desirable to limit each to 0.03% or less. Further, in order to suppress aging embrittlement, it is desirable to suppress N to 0.01 inch or less.

線材の強度はCeq = C+ g (Mn十Cr )
と、線材のオーステナイト域からの冷却速度によって決
り、Ceqが高いほど、また冷却速度が高いほど強度は
増加するが、本発明者らの検討によると、Ceqが0.
57%以上ないと、いかに高速で冷却しても70Kpf
/−以上の強度を有するフェライト・パーライト鋼線材
は得られないことが明らかになった。これはCeqがo
、57%より低い線材を強度を上げるために高速冷却す
ると、加工性に致命的なマルテンサイトが現われるため
である。
The strength of the wire is Ceq = C + g (Mn + Cr)
This is determined by the cooling rate from the austenite region of the wire rod, and the higher the Ceq and the higher the cooling rate, the higher the strength, but according to the studies of the present inventors, when Ceq is 0.
If it is not 57% or more, no matter how fast you cool it, it will be 70Kpf.
It has become clear that a ferrite-pearlite steel wire rod having a strength of /- or more cannot be obtained. This means Ceq is o
, 57%. If the wire rod is cooled at high speed in order to increase its strength, martensite will appear, which is fatal to the workability.

本発明の異形線用線材は、常法により線材圧延されて調
整冷却された後、溶接されて長尺線材とされ、更に溶接
部を熱処理して整粒された微細なフェライト・パーライ
ト組織とされ、更に冷間伸線または冷間圧延により所要
サイズとされる。
The wire rod for deformed wires of the present invention is rolled by a conventional method, adjusted and cooled, and then welded into a long wire rod, and the welded part is further heat-treated to form a fine ferrite-pearlite structure. , and further formed into the required size by cold wire drawing or cold rolling.

線材の溶接は強加圧アップセット方式、TIG方式ある
いはレーザ一方式等を用い、格別限定されないが、例え
ば強加圧アップセット方式は、最初比較的低電流密度(
ん75 A/mj )で通電を開始する。継手が軟化し
、初期加圧力にて変形を受けだすと同時に通電を停止し
、いわゆる強加圧力(〜50 Kf/rtuj )  
を加える。あとは加圧力と軟化部が追出されていった後
の抗力とのバランスで停止すると良い。
Wire rod welding uses a strong pressure upset method, a TIG method, a single laser method, etc., and is not particularly limited. For example, the strong pressure upset method uses a relatively low current density (
75 A/mj). As soon as the joint softens and begins to deform under the initial pressure, the current supply is stopped and the so-called strong pressure (~50 Kf/rtuj) is applied.
Add. After that, it is best to stop with a balance between the pressurizing force and the drag force after the softened part is expelled.

ここで溶接部は衝合部とその近傍の熱影響部はA1点以
上に加熱された後急冷される。従って溶接ままでは、溶
接部はビッカース硬度が600以上のマルテンサイト組
織となるので、著しく延性に欠ける。そこで線材から異
形線への加工性を向上させるために、溶接部をオーステ
ナイト域に加熱冷却する熱処理によって、母材と同等の
強度を有するフェライト・パーライト組織にすることが
必要となる。
Here, in the welded part, the abutting part and the heat affected zone in the vicinity thereof are heated to a point above A1 and then rapidly cooled. Therefore, in the as-welded state, the welded part becomes a martensitic structure with a Vickers hardness of 600 or more, and is extremely lacking in ductility. Therefore, in order to improve the workability of wire rods into deformed wires, it is necessary to heat-treat the welded part to heat and cool it to an austenite region to create a ferrite-pearlite structure that has the same strength as the base metal.

即ち、本発明者らは、溶接部を母材と同等の70Kyf
/−以上の強度を有するフェライト・パーライト組織に
するための熱処理条件を検討した。その結果、溶接部を
オーステナイト域に加熱後、冷却するときの冷却速度の
選定が重要で、70Kpf/mA以上の強度を有するフ
ェライト・パーライト組織にするためには、3〜b 却する必要があることが明らかになった。
That is, the present inventors applied a welding temperature of 70 Kyf, which is equivalent to that of the base metal.
The heat treatment conditions for creating a ferrite/pearlite structure with a strength of /- or more were investigated. As a result, it is important to select the cooling rate when cooling the welded part after heating it to the austenite region.In order to create a ferrite-pearlite structure with a strength of 70 Kpf/mA or more, it is necessary to It became clear.

こ肚は冷却速度が3℃/sec未満では7oKpf/m
j以上の強度を得ることが出来ないためであり、一方2
0℃/secを超えると、再びマルテンサイト組織が現
われ加工性を劣化させるためである。冷却速度をこのよ
うな範囲に制御する手段は特に限定しないが、通電加熱
あるいは高周波加熱によって、電流量を制御しながら低
減させる手段、衝風冷却する手段などが良い。
When the cooling rate is less than 3℃/sec, the cooling rate is 7oKpf/m.
This is because it is not possible to obtain a strength greater than j; on the other hand, 2
This is because when the temperature exceeds 0° C./sec, a martensitic structure appears again, degrading workability. The means for controlling the cooling rate within this range is not particularly limited, but suitable means include means for reducing the amount of current while controlling it by electrical heating or high-frequency heating, means for blast cooling, and the like.

後熱処理後の組織はほぼ母材と同じになり、硬度の差も
あまりない。溶接会合部ではわずかにフェライト量が多
いが、異形線に成形後はほとんど母材部との差異はない
The structure after post-heat treatment is almost the same as that of the base material, and there is not much difference in hardness. The amount of ferrite is slightly higher in the weld joint, but after forming into a deformed wire, there is almost no difference from the base metal.

本発明の線材は最終りダクションが80多以上に及ぶダ
イス引抜と、ロール乎圧延とを受けて異形線とする場合
が多いので、冷間加工性が要求される。このため本発明
の線材の組織は、全長にわたり整粒されたフェライト・
パーライト組織でなければならない。
Since the wire rod of the present invention is often subjected to die drawing with a final reduction of 80 or more and roll rolling to form a deformed wire, cold workability is required. For this reason, the structure of the wire rod of the present invention is composed of ferrite grains that are grained throughout the entire length.
Must be perlite texture.

光フアイバー異形線は例えば7■φ線材をダイス引抜し
て4.3Uとし、ロールで平圧延して2.3朋厚の断面
矩形状線材とする。ついで扇形にするためダイス引抜を
行い、第1図に示すように内径a = 3. Og、外
径b = 6.0123、厚みt、=1゜5朋の異形線
20をうろことができる。
The optical fiber deformed wire is, for example, a 7 dia. wire drawn through a die to form a wire rod of 4.3 U, and rolled flat with rolls to form a wire rod having a rectangular cross section with a thickness of 2.3 mm. Next, the die is drawn to form a fan shape, and as shown in FIG. 1, the inner diameter a = 3. Og, outer diameter b = 6.0123, thickness t, = 1° 5 mm.

なお、本発明はホースの外装などの長尺の高張力鋼線用
の線材の製造にも有効である。
Note that the present invention is also effective in manufacturing wire rods for long high-tensile steel wires such as hose exteriors.

次に実施例をあげて本発明の効果を更に具体的に説明す
る。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

(実施例) 第1表に線材の組成、Ceq、寸法、線材を溶接した手
段、溶接後その溶接部に加えた熱処理条件、線材を、第
1図に示した形状の内径313、外径6、0 藺、厚み
1.5Uの異形線20に加工したときの加工性及び異形
線の強度を併記した。この内磁1、3.4.5.7.8
.9.10  が本発明例であり、他は比較例である。
(Example) Table 1 shows the wire rod composition, Ceq, dimensions, the means by which the wire was welded, the heat treatment conditions applied to the welded part after welding, and the wire rod in the shape shown in Fig. 1 with an inner diameter of 313 and an outer diameter of 6. , 0. The workability and strength of the irregular wire when processed into the irregular wire 20 with a thickness of 1.5 U are also shown. This inner magnet 1, 3.4.5.7.8
.. 9.10 is an example of the present invention, and the others are comparative examples.

1mlは本発明組成を満足し、Ceq O,59%、7
、5113の径で、強度81 KB/mjの線材をTr
G溶接し、更に溶接部を870℃に40秒高岡波方式で
加熱後8℃/secの速度で冷却し、引続き異形線に加
工した場合の結果で、加工中継線トラブルもなく、また
異形線は132 Kpf/−の強度を示した。
1ml satisfies the composition of the present invention, Ceq O, 59%, 7
, a wire rod with a diameter of 5113 and a strength of 81 KB/mj is Tr
G welding, the welded part was further heated to 870℃ for 40 seconds using the Takaoka wave method, and then cooled at a rate of 8℃/sec, and then processed into an irregularly shaped wire.There was no problem with the processing relay wire, and the irregularly shaped wire was showed an intensity of 132 Kpf/-.

一方間2は、組成、線径、強度及び線材の溶接方法はN
a ]、と同じであるが、溶接部の熱処理において加熱
後の冷却速度が2℃/secと小さかったために、溶接
部の強度が不足し、従って異形線強度が126Kyr:
/−に達していない。
On the other hand, for 2, the composition, wire diameter, strength, and wire welding method are N.
a], but because the cooling rate after heating during the heat treatment of the weld was as low as 2°C/sec, the strength of the weld was insufficient, and the deformed wire strength was 126 Kyr:
/- has not been reached.

I@3は本発明組成で且つceq o、62%、8.7
 rl。
I@3 has the composition of the present invention and ceq o, 62%, 8.7
rl.

の径で7 s KPf/−の強度を有する線材を、強加
圧アップセット方式で溶接し、更に溶接部を900℃に
30秒高岡波方式で加熱後、8℃/ secの冷却速度
で冷却し、その後異形線に加工した結果を示すもので、
断線中割れを生ずることもなく、137に9f/yjの
異形線が製造された。
Wire rods with a diameter of , which shows the result of processing into irregularly shaped wires.
A deformed wire of 9 f/yj was manufactured in 137 without any cracking during wire breakage.

随4は本発明組成を満足し、且つo、64%のCeqと
88 K9f/−の強度を有する7、 6113の線材
を、同じく強加圧アップセット方式で溶接し、溶接部を
850℃に1分直接通電で加熱後、11℃/ secの
冷却速度で溶接して異形線に加工したときの結果で、断
線事故もなく、138 Kpf/−の強度を有する異形
線が得られた。
No. 4 is a wire rod of 7.6113 which satisfies the composition of the present invention and has a Ceq of 64% and a strength of 88K9f/-, and is welded using the same strong pressure upset method, and the welded part is heated to 850℃ for 1 hour. After heating by direct energization for 1 minute, welding was performed at a cooling rate of 11° C./sec to form a deformed wire, and a deformed wire with a strength of 138 Kpf/- was obtained without any disconnection accidents.

Nfl 5は同じく本発明組成からなり、且つCeqO
368%、6.8ツの径で、85Kpf/−の強度を有
する線材をレーザ一方式で溶接し、溶接部を通電加熱方
式で、840℃に45秒加熱後、6℃/secの冷却速
度で冷却したのち、異形加工したもので、無事120 
K9f/−の異形線が得られた。
Nfl 5 also consists of the composition of the present invention and contains CeqO
A wire rod with a diameter of 368%, 6.8 mm, and a strength of 85 Kpf/- was welded using a single laser method, and the welded part was heated to 840 °C for 45 seconds using an electric current heating method, followed by a cooling rate of 6 °C/sec. After cooling it in
A deformed line of K9f/- was obtained.

は6は随5と全く同じ組成、線径、強度を有し、溶接も
同じくレーザ一方式で行われたが、溶接後の熱処理で、
冷却速度を23℃/ secまで上げたために、熱処理
実施個所にマルテンサイトが現われ、加工性が劣化した
例である。
No. 6 had exactly the same composition, wire diameter, and strength as No. 5, and welding was also performed using the same laser method, but in the heat treatment after welding,
This is an example where the cooling rate was increased to 23°C/sec, and martensite appeared in the heat-treated areas, resulting in poor workability.

N[17は本発明組成から成り、Ceqo、55%、9
.0藷の径で、71Kyt/−の強度の線材を強加圧ア
ップセット方式で溶接し、更に溶接部を高周波誘導加熱
で920℃に20秒加熱後、7℃/ secで冷却し、
異形線に加工したもので、割れの発生もなく13sKp
f/−の強度を有する異形線が得られた。
N [17 consists of the composition of the present invention, Ceqo, 55%, 9
.. Wire rods with a diameter of 0.5 mm and a strength of 71 Kyt/- were welded using a strong pressure upset method, and the welded part was heated to 920 °C for 20 seconds by high-frequency induction heating, and then cooled at 7 °C / sec.
Processed into irregularly shaped wire, 13sKp without cracking
A profiled wire with an intensity of f/- was obtained.

更に随8は本発明組成から成り、且つCeq O,72
%、7.41の径で93KPf/−の線材をフラッシュ
バット溶接し、溶接部を通電加熱方式で840℃×40
秒加熱後、12℃/ secで冷却して、その後異形線
に加工したもので、途中割れが生ずることもなく、l 
s o KH/−の強度の異形線を得ることができた。
Furthermore, No. 8 consists of the composition of the present invention, and Ceq O, 72
%, a diameter of 7.41 and a wire rod of 93KPf/- was flash butt welded, and the welded part was heated at 840℃ x 40
After heating for seconds, cooling at 12℃/sec, and then processing into irregularly shaped wire, there is no cracking during the process, and the l
It was possible to obtain an irregular line with an intensity of s o KH/-.

闇9は本発明組成を満足し、且つCeq O,60%、
8.2.の径で82にグf/−の強度の線材をレーザー
溶接し、溶接部を高周波誘導加熱で880℃に30秒加
熱後、18℃/ Secで冷却して、その後異形線に加
工したもので、割れを発生することなく加工でき、14
0 KS’f/rIjの異形線が得られた。
Darkness 9 satisfies the composition of the present invention, and contains Ceq O, 60%,
8.2. A wire with a diameter of 82 mm and a strength of 82 mm/- is laser welded, the welded part is heated to 880℃ for 30 seconds by high frequency induction heating, cooled at 18℃/sec, and then processed into a deformed wire. , can be processed without cracking, 14
An irregular line of 0 KS'f/rIj was obtained.

またNl110は同じく本発明組成から成り、且つCe
q 0.63%、6.41の径で5sKpf/−の線材
を強加圧アップセット方式で溶接し、溶接部を高周波誘
導加熱で850℃に70秒加熱後、15℃、/secの
冷却速度で冷却し、その後異形線加工した場合の結果で
、134 KPf/mj  の鋼線が得られた。
In addition, Nl110 also has the composition of the present invention, and has Ce
q 0.63%, a wire rod with a diameter of 6.41 and a diameter of 5sKpf/- was welded using a strong pressure upset method, and the welded part was heated to 850℃ for 70 seconds using high-frequency induction heating, and then the cooling rate was 15℃/sec. When the wire was cooled and then processed into a modified wire, a steel wire of 134 KPf/mj was obtained.

随11〜20は比較例で、忠11はMnが本発明の下限
を下回っているために、126 Kyf/−の異形線強
度に到達しなかった例、随12はSlが本発明の上限を
上回ると共に、溶接後の熱処理の冷速も本発明の上限を
上回ったために、加工性が著しく劣化した例、随13は
Cが本発明の下限を下回っているために、126Kpf
/−の製品強度に到達しなかった例、l@14と15は
それぞれMとNbが本発明の上限を超えているために、
多食の窒化物が析出して加工性が劣化した例、随16は
CとCr  が共に本発明の上限を超えているために、
溶接部に熱処理後マルテンサイトが現われ、加工性が劣
化した例、随17はMnとCrは単独では本発明内にあ
るが、その合計量が1.5係を超え、またT1  とB
も本発明の上限を超えているために加工性が劣化した例
、N[11BはC,Mn、Cr単独では本発明内にある
が、Ceqが本発明の下限を下回り、且つまた溶接後の
熱処理の冷速も本発明の下限を下回っているために、製
品強度が126 Ky f /mjに達しなかった例、
醜19はMn、Si、Vがいずれも本発明の上限を超え
、またp、sも0.03%を超え、更には溶接後の熱処
理の冷速も20℃/secを超えているために加工性が
劣化した例、随20はAll、 Ti 、 Nb 、 
B単独では本発明内にあるが、その合計量が本発明の上
限を超え、またNも0.0120%も含有されていたた
めに、加工性が劣化した例を示す。
Nos. 11 to 20 are comparative examples, and No. 11 is an example in which the irregular wire strength of 126 Kyf/- was not reached because Mn was below the lower limit of the present invention, and No. 12 was an example in which Sl exceeded the upper limit of the present invention. At the same time, the cooling rate of the heat treatment after welding also exceeded the upper limit of the present invention, resulting in significant deterioration in workability.
The examples where the product strength of /- was not reached, l@14 and 15, are because M and Nb exceed the upper limit of the present invention, respectively.
In Example 16, where machinability deteriorated due to the precipitation of highly erodible nitrides, both C and Cr exceeded the upper limits of the present invention.
In Example 17, where martensite appeared in the weld after heat treatment and the workability deteriorated, Mn and Cr are within the scope of the present invention individually, but their total amount exceeds a factor of 1.5, and T1 and B
An example in which workability deteriorated because N[11B exceeds the upper limit of the present invention, C, Mn, and Cr alone are within the scope of the present invention, but Ceq is below the lower limit of the present invention, and also after welding An example where the product strength did not reach 126 Ky f /mj because the cooling rate of the heat treatment was also below the lower limit of the present invention,
Ugly 19 is because Mn, Si, and V all exceed the upper limit of the present invention, p and s also exceed 0.03%, and furthermore, the cooling rate of heat treatment after welding exceeds 20 ° C / sec. Examples of deteriorated workability, No. 20 are All, Ti, Nb,
Although B alone is within the scope of the present invention, the total amount thereof exceeds the upper limit of the present invention, and since 0.0120% of N was also contained, the workability was deteriorated.

(発明の効果) 以上の実施例からも明らかなように、本発明は炭素鋼の
成分を特定して、線材のアズロールの引張強さtoK9
r/−以上を得て、溶接によって長尺線材とし、溶接部
の熱処理によって全長に亘り整粒された微細なフェライ
ト・パーライト組織を得るので、海底ケーブル用異形線
の製造条件に適応する線材を容易に製造し得て、その工
業的効果は犬である。
(Effects of the Invention) As is clear from the above examples, the present invention specifies the components of carbon steel and increases the tensile strength toK9 of the wire rod Azurol.
r/- or more, a long wire is made by welding, and a fine ferrite/pearlite structure that is grained over the entire length is obtained by heat treatment of the welded part, so it is possible to create a wire that is suitable for the manufacturing conditions of deformed wires for submarine cables. It is easy to manufacture and its industrial effectiveness is outstanding.

【図面の簡単な説明】[Brief explanation of drawings]

第3図は公知の異形線の断面図である。 10・・光ファイバー心線、  20・・・異形線。 FIG. 3 is a sectional view of a known deformed wire. 10... Optical fiber core wire, 20... Deformed wire.

Claims (1)

【特許請求の範囲】[Claims] 重量%でC0.30〜0.65%、Si1.0%以下、
Mn0.3〜1.5%、Cr1.2%以下で、Mn+C
r0.3〜1.5%、及びAl0.002〜0.1%、
Ti0.002〜0.1%、Nb0.001〜0.3%
、V0.001〜0.3%、B0.0005〜0.1%
の1種または2種以上を、合計0.0005〜0.3%
、残部Fe及び不可避不純物から成ると共に、Ceq=
C+1/5(Mn+Cr)≧0.57%を満足する鋼塊
を熱間圧延し、続いて該線材を溶接して長尺線材とし、
該溶接部をオーステナイト域に加熱保持し、続いて3〜
20℃/secで冷却して、微細なフェライト・パーラ
イト組織とすることを特徴とする長尺高張力鋼線用線材
の製造方法。
C0.30-0.65%, Si 1.0% or less in weight%,
Mn 0.3-1.5%, Cr 1.2% or less, Mn+C
r0.3-1.5%, and Al0.002-0.1%,
Ti0.002-0.1%, Nb0.001-0.3%
, V0.001-0.3%, B0.0005-0.1%
One or more of the following, totaling 0.0005 to 0.3%
, the balance consists of Fe and unavoidable impurities, and Ceq=
Hot rolling a steel ingot satisfying C+1/5(Mn+Cr)≧0.57%, then welding the wire rod to make a long wire rod,
The welded part is heated and maintained in the austenite region, and then 3~
A method for producing a long high-tensile steel wire rod, which comprises cooling at 20° C./sec to obtain a fine ferrite-pearlite structure.
JP24404885A 1985-11-01 1985-11-01 Manufacture of wire rod for long-sized high tension steel wire Granted JPS62228431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24404885A JPS62228431A (en) 1985-11-01 1985-11-01 Manufacture of wire rod for long-sized high tension steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24404885A JPS62228431A (en) 1985-11-01 1985-11-01 Manufacture of wire rod for long-sized high tension steel wire

Publications (2)

Publication Number Publication Date
JPS62228431A true JPS62228431A (en) 1987-10-07
JPH0454728B2 JPH0454728B2 (en) 1992-09-01

Family

ID=17112946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24404885A Granted JPS62228431A (en) 1985-11-01 1985-11-01 Manufacture of wire rod for long-sized high tension steel wire

Country Status (1)

Country Link
JP (1) JPS62228431A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340643B1 (en) * 1997-07-02 2002-07-18 이구택 Manufacture method of wire rod for welding rod
WO2008044859A1 (en) * 2006-10-11 2008-04-17 Posco Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
US20130133789A1 (en) * 2010-08-17 2013-05-30 Makoto Okonogi Steel wire of special steel and wire rod of special steel
WO2014054756A1 (en) 2012-10-04 2014-04-10 新日鐵住金株式会社 Shaped steel wire for undersea-cable protecting tube, manufacturing method therefor, and pressure-resistant layer
EP2765213A4 (en) * 2011-10-07 2016-03-30 Kobe Steel Ltd Steel wire for bolt, bolt, and manufacturing processes therefor
CN110453145A (en) * 2019-08-20 2019-11-15 南京钢铁股份有限公司 High-strength quake-proof reinforcing steel bar and rolling mill practice

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340643B1 (en) * 1997-07-02 2002-07-18 이구택 Manufacture method of wire rod for welding rod
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
WO2008044859A1 (en) * 2006-10-11 2008-04-17 Posco Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
US8734599B2 (en) 2006-10-11 2014-05-27 Posco Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
US20130133789A1 (en) * 2010-08-17 2013-05-30 Makoto Okonogi Steel wire of special steel and wire rod of special steel
US10704118B2 (en) * 2010-08-17 2020-07-07 Nippon Steel Corporation Steel wire and wire rod
US11203797B2 (en) 2010-08-17 2021-12-21 Nippon Steel Corporation Steel wire and wire rod
EP2765213A4 (en) * 2011-10-07 2016-03-30 Kobe Steel Ltd Steel wire for bolt, bolt, and manufacturing processes therefor
WO2014054756A1 (en) 2012-10-04 2014-04-10 新日鐵住金株式会社 Shaped steel wire for undersea-cable protecting tube, manufacturing method therefor, and pressure-resistant layer
US9274298B2 (en) 2012-10-04 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Deformed steel wire for protection tube of submarine cable, method for manufacturing same, and pressure-resistant layer
CN110453145A (en) * 2019-08-20 2019-11-15 南京钢铁股份有限公司 High-strength quake-proof reinforcing steel bar and rolling mill practice

Also Published As

Publication number Publication date
JPH0454728B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
RU2301838C2 (en) Steels with pack-net martensite-austenite microstructure subjected to cold treatment
JPS62228431A (en) Manufacture of wire rod for long-sized high tension steel wire
CN1312311C (en) Deformed wire for reinforcing marine optical fiber cable
US5180204A (en) High strength steel pipe for reinforcing door of car
JP3307164B2 (en) Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking
JPH02107743A (en) Ultrahigh tensile strength pc steel wire or steel rod excellent in uniform elongation and its production
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
US5665182A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
WO1994028187A1 (en) High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
JPS63118013A (en) Production of hot rolled wire rod of high-si steel
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JPH0742499B2 (en) Method for manufacturing high strength electric resistance welded steel pipe for automobiles in which heat-affected zone is hard to soften
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPH03271329A (en) Manufacture of high strength steel wire
IE53019B1 (en) Method of manufacturing steel reinforcements for concrete, having improved properties
JPH0765142B2 (en) Deformed wire for submarine optical fiber cable
KR20000025991A (en) High strength wire rod having an excellent wire drawing property and method for manufacturing the same
EP0494448A1 (en) Method for manufacturing electric-resistance-welded steel pipe with high strength
JPH0742548B2 (en) Wire rod for long high-strength steel wire with excellent weldability and cold workability
CN112705880B (en) Low-temperature high-toughness welding wire for X80 pipeline steel and preparation method thereof
JP2000119807A (en) Deformed reinforcing bar and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term