JPS62227502A - Production of shape steel having web and flange such as h-steel - Google Patents

Production of shape steel having web and flange such as h-steel

Info

Publication number
JPS62227502A
JPS62227502A JP6956186A JP6956186A JPS62227502A JP S62227502 A JPS62227502 A JP S62227502A JP 6956186 A JP6956186 A JP 6956186A JP 6956186 A JP6956186 A JP 6956186A JP S62227502 A JPS62227502 A JP S62227502A
Authority
JP
Japan
Prior art keywords
slab
mold
flange
steel
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6956186A
Other languages
Japanese (ja)
Inventor
Akira Inagaki
稲垣 彰
Kazue Ikuta
生田 和重
Keiji Arima
有馬 慶治
Takeyoshi Ninomiya
二宮 健嘉
Kazuhiko Tsutsumi
一彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6956186A priority Critical patent/JPS62227502A/en
Publication of JPS62227502A publication Critical patent/JPS62227502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve efficiency and yield by subjecting an ingot which is formed to a plane or inward projecting shape on the long sides and is formed to a wedge shape in the central part on the short sides to wedge rolling by using a roll pair having a specific shape and successively expanding the surfaces corresponding to flanges. CONSTITUTION:The ingot 22 is cast by a continuous casting mold which is formed with the plane or the inward projecting curved surface in the transverse central part on the inside wall surfaces 3a of the casting mold on the diametrically opposed long sides 22 and is formed with the wedge-shaped projection in the transverse central part on the inside wall surfaces 32 of the diametrically opposed short sides 22a. The ingot 22 is subjected to wedge rolling by a pair of the rolls 4a, 4b, formed with caliber bottoms Ia larger by >=50mm than the thickness on the short sides of the ingot 22 and are formed with central bulging parts 41a in the transverse central part of the caliber bottoms Ia to successively expand the surfaces of the ingot corresponding to the flanges. The productivity and yield are improved by such method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はH形鋼、■形鋼、溝形鋼等ウェブとフランジを
有する形鋼の素材を連続鋳造で鋳造し、その鋳片を圧延
する形鋼の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention involves continuous casting of a material for a section steel having a web and a flange, such as an H section steel, a ■ section steel, or a channel steel, and then rolling the cast slab. The present invention relates to a method for producing shaped steel.

〔従来の技術〕[Conventional technology]

近時、H形鋼、■形鋼、溝形鋼等のウェブとフランジを
有する形鋼を圧延成形法によって製造する際の素材はス
ラブが多用されるようになった。
In recent years, slabs have come to be frequently used as the raw material for producing H-shaped steel, ■-shaped steel, channel steel, and other shaped steel having webs and flanges by the rolling method.

即ち従来は鋼塊を分塊圧延して粗形鋼片とするか、もし
くは連続鋳造でビームブランクt−製造するかのいずれ
かの手段が採用されていたが、最近では工程省略、省エ
ネルイー、製造の答易さ等の利点からスラブを素材とす
る手段が主流となっている。
That is, in the past, either methods were adopted, such as blooming a steel ingot into a rough-shaped steel billet or continuous casting to produce a beam blank, but recently, methods have been adopted that allow for the omission of processes, energy saving, and Due to advantages such as ease of manufacturing, methods using slabs as materials have become mainstream.

スラブ等の矩形鋼片を素材として粗造形する技術は例え
ば本願出願人が先に提案した特公昭58−19361号
公報あるいは特公昭58−37042号公報技術が公知
である。これらの手段はいずれも矩形断面のスラブ素材
のフランツ相当面を楔状の中央膨出部を有するロール対
で割)拡げつつエツジング圧延を行うものである。第4
図(イ)は矩形断面のスラブ2を示し、84図(嗜は圧
延ロール対1 a。
A technique for roughly forming a rectangular steel piece such as a slab as a material is known, for example, as disclosed in Japanese Patent Publication No. 58-19361 or Japanese Patent Publication No. 58-37042, which was previously proposed by the applicant of the present application. In all of these methods, the Franz-equivalent surface of a slab material having a rectangular cross section is widened by a pair of rolls having a wedge-shaped central bulge portion, and edge rolling is performed. Fourth
Figure (A) shows a slab 2 with a rectangular cross section, and Figure 84 (Figure 84 shows a pair of rolling rolls 1a).

1bでスラブ2のフランジ相当面2aを頂角αを形成し
た中央膨出部11a、llbで割り拡げる孔型Iを示し
ている。Q→、に)は前記頂角αからβ、γへ順次大き
な角度で逐次割り拡げ圧延する孔型■、■と圧延材21
の状況を示したものである。
1b shows a hole type I in which the flange-equivalent surface 2a of the slab 2 is expanded by central bulges 11a and llb forming an apex angle α. Q→, 2) are the grooves ■, ■ and the rolled material 21 which are sequentially split and rolled at larger angles from the apex angle α to β and γ.
This shows the situation.

なお、第4図(ホ)に示す孔型■は造形孔型であシ、前
記孔型■〜mでのエツジング圧延の最終段階または途中
において被圧延材の姿勢を90度転回しH姿勢で粗造形
仕上げを行う。
Note that the groove ■ shown in FIG. 4 (E) is a shaping hole type, and the posture of the material to be rolled is turned 90 degrees to the H posture in the final stage or in the middle of the edging rolling in the grooves ■ to m. Perform rough modeling finishing.

ところで一般に第4図(鴫に示した、始めにエツジング
圧延を行う孔型■の孔底幅mはスラブ厚tとほぼ等しく
設定しであるが、その理由は圧延中の被圧延材の誘導性
を良くするためである。このように孔底幅mとスラブ厚
tが関係づけであるため、孔型Iでのエツジング圧延に
よるフランジ拡幅量は自ずから孔型幅mに制約されるこ
とになる。
By the way, generally speaking, the hole bottom width m of the hole type (2) in which the edge rolling is first performed, as shown in Figure 4 (Diagram 1), is set approximately equal to the slab thickness t. In this way, since the hole bottom width m and the slab thickness t are related, the amount of flange widening by etching rolling in the groove I is naturally restricted by the groove width m.

また孔型Iの中心に被圧延材の中心が誘導されない場合
は孔型■の側面11mによってスラブ2のコーナ一部2
bvC「スリ下げ疵」と称される疵が生じるとともに、
上下フランジ部の肉量の割り振シが不均等になシ最終製
品で「ウェブ偏り」という形状不良の原因にもなってい
た。また一定つェプ厚みの最終製品とするためにはスラ
ブ厚みが厚いほどフランジの延伸に比較してウェブの延
伸が大きくなるので被圧延材長さ方向端部のクロッグが
長くな9、圧延歩留が悪化する要因にもなっていた。
In addition, if the center of the material to be rolled is not guided to the center of the groove I, the corner part 2 of the slab 2 is guided by the side surface 11m of the groove ■.
Along with the occurrence of scratches called bvC “scratching scratches”,
The distribution of the thickness of the upper and lower flanges was uneven, which caused a shape defect called ``web deviation'' in the final product. In addition, in order to obtain a final product with a constant thickness, the thicker the slab, the greater the stretching of the web compared to the stretching of the flange. It was also a factor in worsening the condition.

これらの難点を解決する手段としては、できるだけ多数
の割)拡げ孔mt−ロールに設ければよいが、一本のロ
ール胴長に刻設できる孔型の数には限界があり、特にウ
ェブ高さが大きいかフランジ幅が大きいH形鋼の場合、
実用化上問題があった。
As a means to solve these difficulties, it is possible to provide as many expanded holes as possible on the mt-roll, but there is a limit to the number of holes that can be carved on one roll body length, especially when the web height In the case of H-beam steel with a large diameter or a large flange width,
There were problems in practical implementation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は新規な形状の鋳片を用い、従来のスラブのフラ
ンジ対応側面を割シ拡げる手段の利点を活かして、大断
面の形鋼の製造を可能にするとともにスリ下げ疵、ウェ
ブ偏りを生ぜず、クロッグ長さを短くできるH形鋼等フ
ランジとウェブを有する形鋼を製造する方法を提供する
ものである。
The present invention uses a slab with a new shape and takes advantage of the conventional method of splitting and widening the flange-compatible side surface of a slab, making it possible to manufacture a section steel with a large cross-section, and also eliminating the occurrence of undercut flaws and web deviation. First, it provides a method for manufacturing a section steel having a flange and a web, such as an H section steel, which can shorten the clog length.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明の要旨とするところは相対する長辺の鋳型内
壁面を平面に形成するとともに相対する短辺の内壁面の
幅方向中央部に楔状突条を形成した連続鋳造鋳型によっ
て鋳片を鋳造したのち、前記鋳片の短辺厚みより50g
m以上大きい幅の孔底と該孔底の幅方向中央部に中央膨
出部を形成したロール対で前記鋳片を割り込み圧延し、
鋳片のフランジ相当面を逐次拡幅することを特徴とする
H形鋼等ウェブとフランジを有する形鋼の製造方法であ
る。
That is, the gist of the present invention is to cast a slab using a continuous casting mold in which the inner wall surfaces of the opposing long sides of the mold are formed flat, and a wedge-shaped protrusion is formed in the widthwise center of the inner wall surface of the opposing short side. After that, 50g from the short side thickness of the slab
Interrupt rolling the slab with a pair of rolls having a hole bottom with a width greater than m or more and a central bulge formed at the center of the hole bottom in the width direction;
This is a method for manufacturing a section steel having a web and a flange, such as an H section steel, characterized by sequentially widening the flange-equivalent surface of a slab.

以下本発明を図面に示す実施態様例に基いて詳細に説明
する。
The present invention will be explained in detail below based on embodiment examples shown in the drawings.

第1図(10は本発明で使用する鋳型3の構成を示し、
鋳型3は対向する長辺部3aと対向する短辺部3bで構
成され、長辺部3aの鋳型内壁面31aは平面に形成さ
れ、他方の鋳壓短辺部3bの幅方向中央部の内壁面には
断面三角形の楔状突条32が鋳型の鋳造方向に突設しで
ある。この楔状突条32の頂部角度θは鋳片の厚みとフ
ランジ面の割り拡げ量の関係から任意に設定できるが、
鋳片厚みtが200〜300mの一般的なスラブの場合
、90度前後が好ましい。即ち、頂部角度θが大き過ぎ
ると後述する圧延の際の誘導性が悪くな9、また楔状突
条32の高さを一定とした場合はフランジ相当部の肉量
が少なくなるのでフランジ造形上不利となる。一方、頂
部角度θが小さ過ぎると鋳型の楔状突条部の冷却手段が
難しく、鋳片品質に問題が生ずる懸念があるためである
FIG. 1 (10 shows the configuration of the mold 3 used in the present invention,
The mold 3 is composed of opposing long sides 3a and opposing short sides 3b. The mold inner wall surface 31a of the long side 3a is formed into a flat surface, and the inner wall surface 31a of the mold inner wall surface 31a of the long side 3a is formed into a flat surface. A wedge-shaped protrusion 32 having a triangular cross section is provided on the wall surface and protrudes in the casting direction of the mold. The top angle θ of this wedge-shaped protrusion 32 can be set arbitrarily depending on the relationship between the thickness of the slab and the amount of expansion of the flange surface.
In the case of a typical slab having a slab thickness t of 200 to 300 m, the angle is preferably around 90 degrees. That is, if the top angle θ is too large, the guidance during rolling (described later) will be poor9, and if the height of the wedge-shaped protrusions 32 is constant, the amount of wall material in the flange-corresponding portion will be reduced, which is disadvantageous in terms of flange formation. becomes. On the other hand, if the top angle θ is too small, it will be difficult to cool the wedge-shaped protrusions of the mold, and there is a concern that the quality of the slab will suffer.

鋳型3の冷却手段は特に図示していないが、鋳型の内部
に冷却水・9イブを挿通した周知の構造を採用すればよ
い。
Although cooling means for the mold 3 is not particularly shown, a well-known structure in which cooling water is inserted into the inside of the mold may be adopted.

第1図(ロ)は本発明で用いる鋳型の別の態様であり、
鋳型長辺部3aの鋳型内面31mは長辺幅方向全体にわ
たシ緩やかな楕円または円弧状に湾曲して幅方向の中央
部で最も突出する凸面で形成されている。短辺部3bの
幅方向中央部に楔状突条32を設けることは前述の第1
図(イ)と同様である。
FIG. 1 (b) shows another embodiment of the mold used in the present invention,
The mold inner surface 31m of the mold long side portion 3a is formed with a convex surface that is curved in a gentle elliptical or circular arc shape along the entire long side width direction and protrudes most at the center portion in the width direction. Providing the wedge-shaped protrusion 32 at the widthwise central portion of the short side portion 3b is the same as the above-mentioned first aspect.
It is the same as figure (a).

第1図(ハ)は鋳型長辺部3aのさらに異なる例であり
、長辺部の中央部のみに楕円または異なる曲率半径の複
合円弧面で凸面を形成し、長辺の両端部には平面部を残
したものである。第1図に)は平面の組合せの屈曲面で
凸面を形成した例を示す。本願発明でいう凸状の彎曲面
とは楕円または円弧状の彎曲面および平面の組合せでな
る屈曲面とを総称して言う。このような構成の鋳型によ
って鋳造された鋳片22は第2図G】に示すように長辺
22aはフラットであシ、短片22bVc@状の凹溝2
3が形成された鋳片、または第2図(ロ)は前記第1図
(ハ)の鋳型を用いて鋳造した一片の場合を示し、長辺
22aは内側に彎曲し、短片22bに楔状の凹m23を
有する独特な形状の鋳片が得られる。
FIG. 1(c) shows a further different example of the long side part 3a of the mold, in which a convex surface is formed only in the center of the long side by an ellipse or a complex circular arc surface with a different radius of curvature, and a flat surface is formed at both ends of the long side. This is what is left of the rest. Fig. 1) shows an example in which a convex surface is formed by a bent surface of a combination of planes. The convex curved surface in the present invention refers to a curved surface formed by a combination of an elliptical or arcuate curved surface and a flat surface. As shown in FIG. 2G, the slab 22 cast using the mold having such a configuration has a long side 22a that is flat, and a short piece 22b that has a Vc@-shaped concave groove 2.
2 (B) shows a piece cast using the mold shown in FIG. 1 (C), the long side 22a is curved inward, and the short piece 22b has a wedge-shaped A slab having a unique shape having a concave m23 is obtained.

なお、相対する短片22bを鋳型の幅方向に接近あるい
は離反する周知の幅変更手段を用いれば、厚みが一定で
幅が異なる任意の鋳片を得ることができる。
Note that by using a well-known width changing means that moves the opposing short pieces 22b toward or away from each other in the width direction of the mold, it is possible to obtain any desired cast pieces with a constant thickness and different widths.

さて、前記鋳片22は鋳造後、任意長さの鋳片に切断す
る切断工程、疵検査工程等を経て、熱片のままあるいは
適宜な中間加熱を施され、第3図(イ)に示す圧延ロー
ル対4a、4bで圧延される。
After casting, the slab 22 is subjected to a cutting process of cutting it into slabs of arbitrary length, a flaw inspection process, etc., and is then heated as a hot slab or subjected to appropriate intermediate heating, as shown in FIG. 3 (A). It is rolled by a pair of rolling rolls 4a and 4b.

この圧延ロール対は前記第4図で説明した従来のエツジ
ング孔型■とほぼ同形状の孔型1aを設けているが、本
願発明の孔型1 aの中央膨出部41a。
This pair of rolling rolls is provided with a groove 1a having almost the same shape as the conventional edging hole type (2) explained in FIG.

41bは前記鋳型の楔状突条32とほぼ等しい頂部角度
θに形成するのが望ましい。即ち、圧延の際、孔型の中
央に鋳片の中心を正しく合致させるには、従来の誘導ガ
イドの精度では充分でなく、本願発明では鋳片の凹溝2
3の角度と孔型1aの頂部角度θとをほぼ等しく構成す
ることで誘導の精度を極めて高くすることができる。次
に本願発明では孔型Iaの孔底@m1は鋳片の厚みtl
に対してm1≧(t 1 +501111)に設定する
ことを特徴としておシ、このような寸法関係の設定を行
う理由は以下の通りである。
41b is preferably formed to have a top angle θ approximately equal to that of the wedge-shaped protrusion 32 of the mold. In other words, the accuracy of the conventional guidance guide is not sufficient to align the center of the slab correctly with the center of the groove during rolling, and in the present invention, the concave groove 2 of the slab is
By configuring the angle 3 and the top angle θ of the hole mold 1a to be approximately equal, the precision of guidance can be made extremely high. Next, in the present invention, the hole bottom @m1 of the hole type Ia is the thickness tl of the slab.
The reason for setting such a dimensional relationship is as follows.

上述の通シ、孔型1aの中央へ鋳片が精度良く誘導され
るので孔型laでのフランジ相当部の拡幅量は従来に比
べて相当大きくできるが、通常のH形鋼等の形鋼ではエ
ラソング圧延終了時の必要なフランジ片幅(フランジ全
幅の172 )は25゜以上であるためである。なお、
本発明で言う鋳片の厚みtlとは、第2図(ロ)の鋳片
の場合は幅方向端部における厚みであフ、鋳片の図示を
省略した第1図(ロ)、に)の鋳型によって鋳造した鋳
片の場合も鋳片の幅方向端部、すなわち鋳片の厚みが最
大の部分を意味するものである。第3図0うは前記孔型
1aに続く第2のエツジングI[aを、に)は粗造形孔
型I[1aを示す。
The above-mentioned through hole guides the slab to the center of the hole 1a with high precision, so the width of the flange-equivalent part in the hole 1a can be made considerably larger than in the past. This is because the required width of one flange (172 degrees of the total width of the flange) at the end of rolling the gill song is 25 degrees or more. In addition,
In the case of the slab shown in Fig. 2 (B), the thickness tl of the slab referred to in the present invention refers to the thickness at the end in the width direction; In the case of a slab cast using the mold described above, this refers to the widthwise end portion of the slab, that is, the portion where the thickness of the slab is maximum. In FIG. 3, the second edging I [a] following the hole pattern 1a shows the roughly formed hole pattern I[1a].

〔作用及び実施例〕[Function and Examples]

短片に楔状の凹溝が形成された鋳片22を、との凹溝の
角度θとほぼ等しい頂角が形成された中央膨出部を有す
る孔型1mによって割り込み圧延を行う。この際、鋳片
の凹溝の角度と孔型の中央膨出部の頂角をほぼ等しく設
定しているので、鋳片は孔型1aの幅方向の中央に精度
良く誘導され、円滑なエツジング圧延が行われる。従っ
て鋳片のフランジ相当部の肉量も左右対象に均等に拡幅
され、孔型1aの最終ノクスでは第3図(口〕に示すよ
うに鋳片22のフランジ相当部22eは孔型1aの孔型
底幅ml内に充満される。この後、第3図e→に示すエ
ツジング孔型11aによつてさらにフランジ部を拡幅圧
延するとともに外側面の角度を大きくし、造形孔型11
1mで粗造形する。なお、鋳片の凹み深さによっては孔
型naは省略可能である。
A slab 22 having a wedge-shaped groove formed in the short piece is subjected to interruption rolling using a groove mold 1m having a central bulge having an apex angle approximately equal to the angle θ of the groove. At this time, since the angle of the concave groove of the slab and the apex angle of the central bulge of the hole mold are set to be approximately equal, the slab is guided to the center of the width direction of the hole mold 1a with high accuracy, resulting in smooth edging. Rolling is performed. Therefore, the thickness of the flange-equivalent portion of the slab 22 is expanded evenly symmetrically, and as shown in FIG. It fills the mold bottom width ml.After this, the flange part is further widened and rolled using the edging hole mold 11a shown in FIG.
Roughly model at 1m. Note that the hole shape na may be omitted depending on the depth of the depression in the slab.

第1表は本発明で製造した長辺が7ラツトで短辺に楔状
の凹溝を形成した鋳片(第2図(イ))と従来の矩形断
面のスラブとのノ臂ススケノ、−ルの比較をしたもので
ある。なお、最終製品は400X300のH形鋼で、鋳
片の大きさは本発明の鋳片が短片厚み250m、長辺幅
1150+m、凹溝の深さ65−であり、従来の比較鋳
片は短片厚み250m。
Table 1 shows the relationship between the slab manufactured by the present invention with a long side of 7 lats and a wedge-shaped groove formed on the short side (Figure 2 (a)) and a conventional slab with a rectangular cross section. This is a comparison of The final product is a 400 x 300 H-shaped steel, and the slab size of the present invention is 250 m short piece thickness, 1150 + m long side width, and 65-m groove depth, while the conventional comparison slab is a short piece. 250m thick.

長辺幅1150m11+のスラブである。It is a slab with a long side width of 1150m11+.

第1表から明らかなように本発明鋳片を使用すれば、従
来に比較して・42回数が2パス減少し、さらに孔型数
が1つ節約できている。なお、長辺が内側に彎曲した鋳
片の場合は・ヤス回数と孔型数の減少効果は上記と同様
の2・ヤス省略に加え、長辺の凹み程度に応じ造形孔型
でのウェブ圧下量が減少するため、さらに4ノ々ス省略
でき、クロッグ長さの減少効果も大きい。第5図は鋳片
の長辺の凹み部の厚みt2と両端の厚みtlに対するク
ロッグ長さの比の関係を示している。この場合のクロッ
グ長さはエツジング圧延と粗造形圧延を終了し、次段の
ユニバーサル圧延機で3・イス通した後の測定値にもと
すいている。第5図(へ)から凹み量りが大きくなるほ
どクロップ長さは短くできることが分る。但し、実際に
鋳片の凹み量h(第5図(ロ))を設定する際には、凹
み部の鋳片厚みがエツジング圧延時に座屈しない厚み釦
なるよう配慮すべきことは勿論である。
As is clear from Table 1, when the slab of the present invention is used, the number of passes is reduced by 2.42 compared to the conventional method, and the number of holes can be saved by one. In addition, in the case of slabs whose long sides are curved inward, the effect of reducing the number of filings and the number of holes is the same as above 2. In addition to omitting the file, web rolling in the forming holes depending on the degree of concavity on the long sides. Since the amount is reduced, an additional 4 noses can be omitted, and the effect of reducing the clog length is also large. FIG. 5 shows the relationship between the thickness t2 of the concave portion on the long side of the slab and the ratio of the clog length to the thickness tl of both ends. In this case, the clog length is also based on the value measured after finishing the edging rolling and rough shape rolling and passing the product through three chairs in the next stage universal rolling mill. It can be seen from FIG. 5(f) that the larger the concave scale, the shorter the crop length can be. However, when actually setting the amount h of recess in the slab (Figure 5 (b)), it goes without saying that care should be taken to ensure that the thickness of the slab at the recessed portion is such that it will not buckle during edging rolling. .

第1表 〔効果〕 本発明によれば鋳片をまず第1のエツジング孔型で圧延
する時、孔型の幅方向中央に正確に誘導されるのでスリ
下げ、ウェブ偏9が生じない。また・41回数が減少で
きるので圧延の能率向上が向上し、さらにクロッグ長さ
が短くなるので圧延歩留の向上も大きい。
Table 1 [Effects] According to the present invention, when the slab is first rolled in the first edging hole mold, it is accurately guided to the center in the width direction of the hole, so that there is no slippage and no web deviation 9 occurs. In addition, since the number of times of rolling can be reduced by 41 times, the efficiency of rolling is improved, and furthermore, since the clog length is shortened, the rolling yield is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する鋳型例の横断面略図で、(イ
)は長辺がフラット、(→〜(→は長辺を凸状の1曲面
に形成した鋳型を示す。第2図((イ)、(ロ)は本発
明法で鋳造した鋳片の部分切断斜視図、第3図(イ]、
(ロ)、H,に)は本発明で用いるエツジング孔型と被
圧延材の関係を示す説明略図、第4図ヒ)、(ロ)。 (ハ)、に)、(ホ)は従来の矩形鋼片を割り込みエツ
ジング圧延する手段を説明する略図、第5図(イ)、(
ロ)は本発明によるクロッグ長さの減少を示すグラフ及
び、鋳片の凹みの説明図である。 la、lb:圧延ロール対 2;スラブ      22;鋳片 11 m + 11’b ;中央膨出部3:鋳型   
    3a;長辺部 3b;短片部     32;楔状突条23;凹溝 本多小平 f、・− 岸田正行 藪 第2図 り3:凹ム 第3図
Fig. 1 is a schematic cross-sectional view of an example of a mold used in the present invention. ((A) and (B) are partially cutaway perspective views of slabs cast by the method of the present invention, Figure 3 (A),
(B), H, and B) are schematic explanatory diagrams showing the relationship between the etching hole type used in the present invention and the rolled material; FIGS. 4H) and (B); (C), (B) and (E) are schematic diagrams illustrating the conventional means for inserting and rolling a rectangular steel billet;
B) is a graph showing a decrease in clog length according to the present invention and an explanatory diagram of concavities in slabs. la, lb: rolling roll pair 2; slab 22; slab 11 m + 11'b; central bulge 3: mold
3a; Long side portion 3b; Short piece portion 32; Wedge-shaped protrusion 23; Concave groove Honda Kodaira f, - Masayuki Kishida Yasu 2nd drawing 3: Concave 3rd figure

Claims (1)

【特許請求の範囲】 1 相対する長辺の鋳型内壁面を平面に形成するととも
に相対する短辺の内壁面の幅方向中央部に楔状突条を形
成した連続鋳造鋳型によって鋳片を鋳造したのち、前記
鋳片の短辺厚みより50mm以上大きい幅の孔底と該孔
底の幅方向中央部に中央膨出部を形成したロール対で前
記鋳片を割り込み圧延し、鋳片のフランジ相当面を逐次
拡幅することを特徴とするH形鋼等ウェブとフランジを
有する形鋼の製造方法。 2 長辺の鋳型内壁面を幅方向中央部で内側に凸状の彎
曲面に形成した鋳型を用いることを特徴とする特許請求
の範囲第1項記載のH形鋼等ウェブとフランジを有する
形鋼の製造方法。 3 相対する鋳型の短辺が幅方向に拡縮自在な鋳型を用
いることを特徴とする特許請求の範囲第1項または第2
項記載のH形鋼等ウェブとフランジを有する形鋼の製造
方法。
[Scope of Claims] 1. After casting a slab using a continuous casting mold in which the inner wall surfaces of the opposing long sides of the mold are formed flat, and the inner wall surfaces of the opposing short sides are formed with a wedge-shaped protrusion in the center in the width direction. , the slab is rolled with a pair of rolls having a hole bottom with a width 50 mm or more larger than the thickness of the short side of the slab and a central bulge in the center of the hole bottom in the width direction, and the flange-equivalent surface of the slab is rolled. A method for manufacturing a section steel having a web and a flange, such as an H section steel, characterized by sequentially widening the width of the section steel. 2. A shape having a web and a flange, such as an H-shaped steel according to claim 1, characterized in that a mold is used in which the inner wall surface of the long side of the mold is formed into a curved surface that is convex inward at the center in the width direction. Method of manufacturing steel. 3. Claims 1 or 2, characterized in that a mold is used in which the shorter sides of opposing molds can be expanded and contracted in the width direction.
A method for manufacturing a section steel having a web and a flange, such as the H-section steel described in 2.
JP6956186A 1986-03-27 1986-03-27 Production of shape steel having web and flange such as h-steel Pending JPS62227502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6956186A JPS62227502A (en) 1986-03-27 1986-03-27 Production of shape steel having web and flange such as h-steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6956186A JPS62227502A (en) 1986-03-27 1986-03-27 Production of shape steel having web and flange such as h-steel

Publications (1)

Publication Number Publication Date
JPS62227502A true JPS62227502A (en) 1987-10-06

Family

ID=13406290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6956186A Pending JPS62227502A (en) 1986-03-27 1986-03-27 Production of shape steel having web and flange such as h-steel

Country Status (1)

Country Link
JP (1) JPS62227502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174363A (en) * 1990-10-04 1992-12-29 Dowa Mining Co., Ltd. Process for producing shape strips of metals
JPH0531553A (en) * 1991-07-30 1993-02-09 Kawasaki Steel Corp Cast bloom for wide flange shaped steel and method for casting this, and method for rolling raw shaped material for wide flange shaped steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436592A (en) * 1977-08-26 1979-03-17 Shiyouei Seisakushiyo Kk Supporter for porcelain insulator
JPS5442663A (en) * 1977-09-09 1979-04-04 Tokyo Shibaura Electric Co Vacuum circuit breaker
JPS5910401A (en) * 1982-07-12 1984-01-19 Sumitomo Metal Ind Ltd Production of roughly shaped billet for shape steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436592A (en) * 1977-08-26 1979-03-17 Shiyouei Seisakushiyo Kk Supporter for porcelain insulator
JPS5442663A (en) * 1977-09-09 1979-04-04 Tokyo Shibaura Electric Co Vacuum circuit breaker
JPS5910401A (en) * 1982-07-12 1984-01-19 Sumitomo Metal Ind Ltd Production of roughly shaped billet for shape steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174363A (en) * 1990-10-04 1992-12-29 Dowa Mining Co., Ltd. Process for producing shape strips of metals
JPH0531553A (en) * 1991-07-30 1993-02-09 Kawasaki Steel Corp Cast bloom for wide flange shaped steel and method for casting this, and method for rolling raw shaped material for wide flange shaped steel

Similar Documents

Publication Publication Date Title
JPS58188501A (en) Production of rough shape steel ingot for h-shaped steel
JPS62227502A (en) Production of shape steel having web and flange such as h-steel
WO2016148028A1 (en) H-shaped steel production method and h-shaped steel product
JP3065877B2 (en) Rough rolling method for H-shaped steel slab
JPS6156702A (en) Rough rolling method of h-shape steel
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
JPS5919765B2 (en) Rolling method of rough shaped steel billets for Z-shaped steel sheet piles
JP2512240B2 (en) Rough rolling method for Z-shaped steel sheet pile
JP2534223B2 (en) Rolling method of rough billet for H-section steel
JP7003841B2 (en) Manufacturing method of H-section steel
JPS5837042B2 (en) Manufacturing method of shaped steel
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JP2681536B2 (en) Channel rolling mill row
JPS629758A (en) Continuous casting machine
JPS6330101A (en) Production of channel steel with projection
JPS5918124B2 (en) Manufacturing method of rough shaped steel billet
JPH0426921B2 (en)
JPH05269501A (en) Method for rolling roughly shaped slab for h-shape steel with thick flange
JPH0214121B2 (en)
JP3617085B2 (en) Coarse slab rolling method for wide thick H-section steel
JPH02200302A (en) Method for rolling straight type steel sheet pile and rolling mill train thereof
JPH09108706A (en) Continuous joint type shape steel with nonsymmetrical joint and its rolling method
JP6447285B2 (en) Manufacturing method of H-section steel
JP2743821B2 (en) Rolling method of coarse billet for thick flange H-section steel
RU2056188C1 (en) Method of making special bent non-symmetrical sections