JPS62226634A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS62226634A
JPS62226634A JP6873086A JP6873086A JPS62226634A JP S62226634 A JPS62226634 A JP S62226634A JP 6873086 A JP6873086 A JP 6873086A JP 6873086 A JP6873086 A JP 6873086A JP S62226634 A JPS62226634 A JP S62226634A
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
subassembly
sealing layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6873086A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hidaka
日高 俊幸
Hitoshi Kamijo
上條 仁
Katsuhiko Sudo
克彦 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP6873086A priority Critical patent/JPS62226634A/en
Publication of JPS62226634A publication Critical patent/JPS62226634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To inhibit production of voids in a sealing layer of a molded material, by dropping epoxy resin for forming a resin sealing layer under evacuated conditions, and then setting the resin under atmospheric pressure. CONSTITUTION:While a subassembly l0 brazed to and interposed between electrode members of a pair of lead wires is rotated around the lead wires, epoxy resin M is dropped from the above within the evacuated atmosphere of 0.1-l torr. The resin M is caused to wrap round the assembly 10. Further, the resin M is shaped by centrifugal force under similar evacuated conditions to form a resin sealing layer. After that, the resin scaling layer 4 is set under atmospheric pressure. By processing the epoxy resin within the evacuated atmosphere in this manner, residual voids in the epoxy resin can be decreased substantially. Thus, a semiconductor element having high reliability can be produced easily.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 本発明は、エポキシ樹脂封止層の成形に型を用いないよ
うにした樹脂モールド型の半導体素子の製造方法に係り
、特に比較的小型のダイオードなどの製造に好適な半導
体素子の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a method for manufacturing a resin mold type semiconductor element in which a mold is not used for molding an epoxy resin sealing layer, and in particular, a method for manufacturing a semiconductor element of a relatively small size. The present invention relates to a method for manufacturing a semiconductor device suitable for manufacturing diodes and the like.

〔従来技術〕[Prior art]

比較的小型のダイオードとしては、従来から樹脂モール
ド型のものが広く使用されている。
Conventionally, resin molded diodes have been widely used as relatively small diodes.

そして、この樹脂モールド型のダイオードも。And this resin mold type diode too.

初期の頃はモールド成形用に型を用いたものが主として
使用されていたが、近年、型を用いないで封止層の成形
を行なった半導体素子が提案され、その例を特開昭59
−113648号公報などに見ろことができろ。
In the early days, molds were mainly used for molding, but in recent years, semiconductor devices in which the sealing layer was formed without using a mold have been proposed, and an example of this is described in JP-A-59
- You can see it in Publication No. 113648.

第2図はこのようなモールド成形型音用いないで製造さ
れたダイオードの例で、PN接合Jを有する半導体ペレ
ット1を1対になったリード電極2で挟持し、P b 
−S n合金のろう材3で固着させた半導体のサブアセ
ンブリをエポキシ樹脂でモールドし、封止層4としたも
のである。なお、この図で、5はNiメッキ層、6はシ
リコン樹脂の表面安定化層、7はリード部、84’!A
gメッキ層であり、2atXヘツダ一部、2bはフラン
ジ部である。
Figure 2 shows an example of a diode manufactured without using such a molding die, in which a semiconductor pellet 1 having a PN junction J is sandwiched between a pair of lead electrodes 2, and P b
A semiconductor subassembly fixed with a -Sn alloy brazing material 3 is molded with epoxy resin to form a sealing layer 4. In this figure, 5 is a Ni plating layer, 6 is a surface stabilizing layer of silicone resin, 7 is a lead part, and 84'! A
2atX is a part of the header, and 2b is a flange.

ところで、このモールド成形型を用いない半導体素子の
製造方法としては、従来から第3図に示す方法が用いら
れていた。
By the way, as a method of manufacturing a semiconductor element without using a mold, a method shown in FIG. 3 has been used conventionally.

この第3図において、10はサブアセンブリ、11はモ
ールド材M?ニ一定量吐出するノズルであり、このとき
のモールド材Mとしてを工、分子内にエポキシ基を有す
るエポキシ樹脂と、このエポキシ樹脂100モルに対し
て3〜15モルの有機二塩基酸ジヒドラジドおよび同じ
く100モルに対して2〜7モルのイミダゾール化合物
を含有させた。速硬化性でかつ揺変性に富む一液形のエ
ポキシ樹脂が用いられる。尚1表面安定化層6は図示を
省略している。
In this FIG. 3, 10 is a subassembly, 11 is a molding material M? (2) It is a nozzle that discharges a certain amount, and the molding material M at this time is an epoxy resin having an epoxy group in the molecule, 3 to 15 moles of organic dibasic acid dihydrazide per 100 moles of this epoxy resin, and the same. The imidazole compound was contained in an amount of 2 to 7 moles per 100 moles. A one-component epoxy resin that is fast-curing and highly thixotropic is used. Note that the first surface stabilizing layer 6 is not shown.

サブアセンブリ10はそのリード部が水平になるように
した上でこのリード部を軸として矢印のように所定の回
転速度で回転させられている。
The subassembly 10 is rotated at a predetermined rotational speed as shown by an arrow around the lead portion with its lead portion being horizontal.

そこで、まず、第3図1alに示すように、ノズル11
から所定量のモールド材M(粘度の高い液状のもの)を
サブアセンブリ10の中央部の半導体ベレットが存在す
る部分に滴下させる。このとき、ノズル11からモール
ド材Mが吐出されてくる速度を適当な早さに保つと、サ
ブアセンブリ10が回転しているため、同図1blに示
すようにモールド材Mが付着したあと、このモールド材
M+、順次サブアセンブリに巻き取られてゆき、滴下が
終ったあと、同図+C)に示すように、このモールド材
Mはサブアセンブリの半導体ペレット部分に、回転方向
にほぼ均一に分布した形となる。
Therefore, first, as shown in FIG. 3 1al, the nozzle 11
A predetermined amount of molding material M (highly viscous liquid material) is dropped onto the central portion of the subassembly 10 where the semiconductor pellet is present. At this time, if the speed at which the molding material M is discharged from the nozzle 11 is maintained at an appropriate speed, since the subassembly 10 is rotating, after the molding material M has adhered as shown in FIG. The molding material M+ was wound around the subassembly one after another, and after the dripping was finished, this molding material M was distributed almost uniformly in the rotational direction on the semiconductor pellet part of the subassembly, as shown in Figure 1+C). It takes shape.

そこで、さらにサブアセンブリの回転を続けろと、第3
[F]ld)に示すように、モールド材であるエポキシ
樹脂の揺変性と、サブアセンブリの回転による遠心力に
よりモールド材(工球形に成形されてゆき、これに伴っ
て電極に形成されているフランジ部の方にも流れてゆき
、最終的には同図(elに示すように、はぼ球形となり
、このあと所定の硬化処理を施こせば樹脂モールド型半
導体素子が完成する。なお、詳細は上記した公報に開示
があるので省略する。
So, the third one asked me to continue rotating the subassembly.
As shown in [F]ld), the thixotropy of the epoxy resin, which is the molding material, and the centrifugal force caused by the rotation of the subassembly cause the molding material to be formed into a spherical shape, and the electrode is formed accordingly. It also flows towards the flange part, and finally becomes a spherical shape as shown in the same figure (el). After that, if a prescribed hardening process is performed, a resin molded semiconductor element is completed. Since it is disclosed in the above-mentioned publication, it will be omitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来の方法では、第4図に示すよう
に、電極2のヘッダ一部2aとフランジ部2bの間にボ
イドBが発生し易く、信頼性の低下馨もたらす虞れが多
いという問題点があった。
However, in this conventional method, as shown in FIG. 4, voids B are likely to occur between the header part 2a and the flange part 2b of the electrode 2, which may lead to a decrease in reliability. was there.

本発明の目的は、上記した従来技術の問題点を除き、モ
ールド材による封止層中でのボイドの発生を抑え、信頼
性に富んだ半導体素子を容易に得ることができろように
した半導体素子の製造方法を提供するにある。
An object of the present invention is to eliminate the problems of the prior art described above, suppress the generation of voids in the sealing layer caused by the molding material, and easily obtain a highly reliable semiconductor element. The present invention provides a method for manufacturing an element.

〔問題点′lt解決″’fるための手段〕上記問題点は
、本発明によれば、エポキシ樹脂をサブアセンブリに滴
下して巻付ける工程を減圧状態で行ない、その後、大気
圧に戻してエポキシ樹脂の硬化?行なうことにより解決
される。
[Means for solving the problem] According to the present invention, the above problem is solved by performing the process of dropping the epoxy resin onto the subassembly and wrapping it under reduced pressure, and then returning it to atmospheric pressure. The problem can be solved by curing the epoxy resin.

〔作 用〕[For production]

ボイドは減圧中に発生するので、その後での大気圧中で
の硬化中に押し潰されてしまい、硬化後の樹脂封止層に
はボイドが残らない。
Since voids are generated during depressurization, they are crushed during subsequent curing at atmospheric pressure, and no voids remain in the resin sealing layer after curing.

〔実施例〕〔Example〕

以下1本発明による半導体素子の製造方法について、図
示の実施例により詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to the present invention will be described in detail below with reference to illustrated embodiments.

第1図は本発明の一実施fQft示す説明図で、以下、
この第1図の工程層1から/165まで、順次説明する
FIG. 1 is an explanatory diagram showing one implementation of the present invention fQft.
Process layers 1 to /165 in FIG. 1 will be sequentially explained.

まず、第1図の工程/161に示すように、サブアセン
ブIJI(l減圧雰囲気中に保持し、第3図の従来例に
おけるiり〜lc)の工程と同じようにしてサブアセン
ブリ10)k回転させながらエポキシ樹脂M4一定量0
滴下ノズルから吐出させ、それtサブアセンブリ10に
付着9巻き付ける。なお、この時の条件としては、雰囲
気温度50〜100℃、気圧0.1〜1.0Torrが
適当である。
First, as shown in step 161 in FIG. 1, the subassembly 10) is rotated in the same manner as in the process of subassembly IJI (l held in a reduced pressure atmosphere, and i to lc in the conventional example in FIG. 3). epoxy resin M4 constant amount 0
It is discharged from the dripping nozzle and wrapped around the subassembly 10 9 times. Note that the appropriate conditions at this time are an ambient temperature of 50 to 100°C and an atmospheric pressure of 0.1 to 1.0 Torr.

しかして、この工程では、エポキシ樹脂を巻き付けてい
るため、減圧下ではあるが、従来例の場合と同じくエポ
キシ樹脂中にボイドが残ってしまうことが多い。
However, in this process, since the epoxy resin is wrapped around the epoxy resin, voids often remain in the epoxy resin, as in the conventional example, even though it is under reduced pressure.

次に、42の工程に移り、ここでも減圧状態のままとし
、これも第3図の従来例におけるtd)、 telの工
程と同じようにしてサブアセンブリ10を引続き回転さ
せ、遠心力によりエポキシ樹脂Mの形状を球形に成形す
る。
Next, the process moves to step 42, where the reduced pressure is maintained, and the subassembly 10 is continued to be rotated in the same manner as the steps td) and tel in the conventional example shown in FIG. 3, and the epoxy resin is Mold the shape of M into a sphere.

この時の条件は、雰囲気温度、気圧とも7F61の場合
と同一で良い。
The conditions at this time may be the same as in the case of 7F61 in terms of ambient temperature and atmospheric pressure.

続いて/I63の工程に進むと、ここでは減圧状態から
大気圧中に戻し、引続きサブアセンブリ10を回転させ
ながら今度tX41./%2のときより高い、例えば1
60〜200℃で加熱する。しかして、この工程に入ま
た最初の頃を工、まだエポキシ樹脂M tx硬化してい
ないから、この工程で、それまで減圧下にあった雰囲気
を大気圧(戻すと、減圧下で発生したエポキシ樹脂M中
のボイドは押し潰されてなくなってしまう。
Next, proceeding to the step /I63, the pressure is returned from the reduced pressure state to atmospheric pressure, and while the subassembly 10 is being rotated, the next step is tX41. /%2, e.g. 1
Heat at 60-200°C. However, since the epoxy resin Mtx has not yet been cured at the beginning of this process, when the atmosphere that had been under reduced pressure is returned to atmospheric pressure (returning to atmospheric pressure), the epoxy resin generated under reduced pressure is The voids in the resin M are crushed and disappear.

こうして、加熱しながら数分間おくと、エポキシ樹脂M
の表面部分が少し硬化するから、そうなったら温度?下
げ、サブアセンブリの回転を止めても、エポキシ樹脂モ
ールドの形が変形しないようになる。なお、このときの
加熱の条件は、上記したように160〜200℃が適当
である。
In this way, if you leave it for a few minutes while heating, the epoxy resin M
The surface part of will harden a little, so what about the temperature? Even if the subassembly is lowered and the subassembly stops rotating, the shape of the epoxy resin mold will not be deformed. Note that the appropriate heating conditions at this time are 160 to 200°C, as described above.

その後、腐4の工程で一坦冷却したあと、ひき続いて屑
5の工程に進み、ここでは、封止層4としてモールドし
たエポキシ樹脂Mの性能が充分発揮されるように、予め
定められた所定の条件で硬化を行う。
Thereafter, after uniform cooling in the step 4, the process proceeds to the step 5, in which a predetermined amount of water is used to fully demonstrate the performance of the epoxy resin M molded as the sealing layer 4. Curing is performed under predetermined conditions.

この実施例では、温度120℃〜180℃1時間3〜2
4時間で良好な封止特性が得られた。
In this example, the temperature was 120°C to 180°C for 1 hour 3 to 2 hours.
Good sealing properties were obtained within 4 hours.

従って、この実施例によれば、エポキシ樹脂からなる封
止層4中にボイドが残存する虞れをなくすことができ、
高い信頼!!:ヲもった半導体素子ン容易に得ることが
できろ。
Therefore, according to this embodiment, it is possible to eliminate the possibility that voids remain in the sealing layer 4 made of epoxy resin,
High trust! ! : It would be easy to obtain semiconductor devices with good quality.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、エポキシ樹脂に
よる半導体素子の封止工程の一部を減圧下で行なうとい
う簡単な構成により、封止層中でのボイドを容易になく
すことができるから、従来技術の問題点に充分に対処し
、エポキシ樹脂の滴下、巻付け成形による半導体素子の
利点?充分に活用しながら機械的強度、耐湿性に優れ、
高い信頼性の半導体素子を製造することができる。
As explained above, according to the present invention, voids in the sealing layer can be easily eliminated by a simple configuration in which a part of the sealing process of the semiconductor element with the epoxy resin is performed under reduced pressure. , to fully address the problems of the prior art, and the advantages of semiconductor devices made by dropping and wrapping epoxy resin? It has excellent mechanical strength and moisture resistance while being fully utilized.
Highly reliable semiconductor elements can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体素子の製造方法の一実施例
を示す説明図、第2図は本発明の対象となる樹脂モール
ド型半導体素子の一例を示す断面図、第3囚はエポキシ
樹脂の巻付け成形による製造方法の従来例を示す説明図
、第4図は従来例におけろ問題点?説明するための断面
図である。 1・・・・・・半導体ベレツ)、2a・・・・・・ヘッ
ダ一部、2b・・・・・・フランジ部%4・・・・・・
封止層、10・・・・・・サブアセンブリ、M・・・・
・・エポキシ樹脂。 第 IFjA IQ−−−−”j7丁乞ン7す M−−−一エボキシ撞功1 4−−−一蚤ゴ」=1 第2図
FIG. 1 is an explanatory diagram showing an example of the method for manufacturing a semiconductor device according to the present invention, FIG. An explanatory diagram showing a conventional example of a manufacturing method using wrap-forming, FIG. 4 shows problems with the conventional example. It is a sectional view for explanation. 1...Semiconductor bezel), 2a...Header part, 2b...Flange part%4...
Sealing layer, 10... Subassembly, M...
··Epoxy resin. No. IFjA IQ----"j7-chop-7suM---1 eboxy combination 1 4----1 flea go" = 1 Figure 2

Claims (1)

【特許請求の範囲】 1、半導体ペレットが一対の電極部材間にろう付け挟持
されたサブアセンブリを、その電極部材のリード線延長
方向を水平な軸として回転させながら速硬化性および揺
変性のエポキシ樹脂を滴下して樹脂封止層を形成させる
ようにした樹脂モールド型半導体素子の製造方法におい
て、エポキシ樹脂をサブアセンブリに滴下しそれに巻付
ける工程を減圧状態で行ない、その後のエポキシ樹脂の
硬化工程を大気圧のもとで行なうように構成したことを
特徴とする半導体素子の製造方法。 2、特許請求の範囲第1項において、上記減圧状態が0
.1ないし1.0Torrの範囲となるように構成した
ことを特徴とする半導体素子の製造方法。
[Claims] 1. A subassembly in which a semiconductor pellet is brazed and sandwiched between a pair of electrode members is rotated with the direction in which the lead wires of the electrode members extend as a horizontal axis, and fast-curing and thixotropic epoxy In a method for manufacturing a resin-molded semiconductor device in which a resin sealing layer is formed by dropping resin, the step of dropping epoxy resin onto a subassembly and wrapping it around the subassembly is performed under reduced pressure, and the subsequent step of curing the epoxy resin 1. A method for manufacturing a semiconductor device, characterized in that the method is configured to perform the steps under atmospheric pressure. 2. In claim 1, the reduced pressure state is 0.
.. 1. A method of manufacturing a semiconductor device, characterized in that the pressure is within a range of 1 to 1.0 Torr.
JP6873086A 1986-03-28 1986-03-28 Manufacture of semiconductor element Pending JPS62226634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6873086A JPS62226634A (en) 1986-03-28 1986-03-28 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6873086A JPS62226634A (en) 1986-03-28 1986-03-28 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS62226634A true JPS62226634A (en) 1987-10-05

Family

ID=13382200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6873086A Pending JPS62226634A (en) 1986-03-28 1986-03-28 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS62226634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070722A1 (en) * 2014-11-06 2016-05-12 周宗涛 Uv epoxy resin instillation forming method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070722A1 (en) * 2014-11-06 2016-05-12 周宗涛 Uv epoxy resin instillation forming method and application thereof
US10711089B2 (en) 2014-11-06 2020-07-14 CollTech (Dongguan) Bonding Technology Co., Ltd. UV epoxy resin instillation molding method and application thereof

Similar Documents

Publication Publication Date Title
JP3199963B2 (en) Method for manufacturing semiconductor device
US7829389B2 (en) Roll-on encapsulation method for semiconductor packages
JPS59161054A (en) Method of packing selective region of circuit
KR900002454A (en) Semiconductor device and manufacturing method
US5314842A (en) Resin-sealed type semiconductor device and method for manufacturing the same
US4540603A (en) Resin-molded semiconductor device and a process for manufacturing the same
JPS62226634A (en) Manufacture of semiconductor element
JP3333084B2 (en) Method of manufacturing bare chip molded part and bare chip molded part manufactured by the method
JP2873009B2 (en) Semiconductor device and manufacturing method thereof
JPS6175549A (en) Electronic circuit including semiconductor element and manufacture of the same
JPS59217344A (en) Resin molded type semiconductor device
US20060189029A1 (en) Method for efficient annealing of plated semiconductor package leads
WO2010044771A1 (en) Roll-on encapsulation method for semiconductor packages
JPH0745765A (en) Resin sealing method for semiconductor device
JPS62113433A (en) Manufacture of resin sealed type semiconductor device
JPH06314756A (en) Manufacture of semiconductor
JPS5950534A (en) Resin sealing process of semiconductor
JPS60134447A (en) Manufacture of semiconductor device
JPS6235546A (en) Sealing resin for semiconductor element
JPH07161764A (en) Resin sealed type semiconductor device and manufacture thereof
JPH06105724B2 (en) Method for manufacturing semiconductor device
JP2878184B2 (en) Resin-sealed semiconductor device
TWI529819B (en) Roll-on encapsulation method for semiconductor packages
JPH06151491A (en) Method and apparatus for manufacturing resin sealed type semiconductor device
JPS6184041A (en) Semiconductor device