WO2010044771A1 - Roll-on encapsulation method for semiconductor packages - Google Patents

Roll-on encapsulation method for semiconductor packages Download PDF

Info

Publication number
WO2010044771A1
WO2010044771A1 PCT/US2008/079811 US2008079811W WO2010044771A1 WO 2010044771 A1 WO2010044771 A1 WO 2010044771A1 US 2008079811 W US2008079811 W US 2008079811W WO 2010044771 A1 WO2010044771 A1 WO 2010044771A1
Authority
WO
WIPO (PCT)
Prior art keywords
chips
resin
substrate
wheel
resin material
Prior art date
Application number
PCT/US2008/079811
Other languages
French (fr)
Inventor
Kazuaki Ano
Original Assignee
Texas Instruments Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Incorporated filed Critical Texas Instruments Incorporated
Priority to CN2008801253077A priority Critical patent/CN101925989B/en
Priority to PCT/US2008/079811 priority patent/WO2010044771A1/en
Publication of WO2010044771A1 publication Critical patent/WO2010044771A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • This relates in general to the field of semiconductor devices and processes, and more specifically to the structure and fabrication method of plastic packages for semiconductor devices based on a roll-on encapsulation technique.
  • the transfer molding technology has been the favored method for encapsulating semiconductor devices in plastic packages.
  • the semiconductor chip is first assembled on a substrate such as a leadframe by physically attaching the chip to the substrate and conductively connecting the chip terminals to the substrate pads, most commonly by arching spans of bonding wire.
  • the substrate together with the assembled chip is transferred to a mold press and positioned in the mold cavity.
  • the cavity has a precision gate, through which the semi- viscous molding compound, driven by a piston, is pressured. From the gate, the compound spreads through the cavity along a substantially linear front.
  • the gate is designed for a uniform, gentle front progress, filling the cavity and embedding the chip, bonding wires, and substrate. Manufacturing the molds, gates, presses etc. requires precision machines and is thus expensive; as an example, a mold for about 200 device units may be about $ 250,000.
  • the molding compound is conventionally a formulation based on an epoxy polymer mixed with a catalyst and a hardening agent; before the molding operation, the compound is stored at low temperatures due to its partially cross-linked state. When the temperature is increased, the compound acquires a low viscosity state at the so-called glass transition temperature around 150 0 C. In the temperature range of about 175 0 C, the compound is pressured through the gate; afterwards, it polymerizes ("cures") fully in storage at temperatures of about 175 0 C. For mpst molding compound, the time required for the molding and curing steps is between 6 and 8 hours.
  • the epoxy polymer of the molding compound typically contains up to about 90 % inorganic fillers, such as silica, in order to reduce thermomechanical stresses caused by the more than one order of magnitude difference between the coefficients of thermal expansion (CTE) of polymers and semiconductor chips.
  • the diameters of these fillers have a distribution between about 35 and 75 ⁇ m; the fillers may be crystalline or spherical, and consequently have an abrasive effect of the precision gates of the mold cavities.
  • the gates need periodic repairs or refurbishments. To refurbish the gates requires precision machines and is thus expensive; for example, to refurbish a 200-unit mold costs about $ 50,000.
  • the bonding wires used in a typical assembly process are made of a gold or copper alloy and have a diameter of about 25 ⁇ m.
  • the wire is fed through a capillary of the bonder.
  • the capillary attaches the wire to the chip, then moves the wire in an arching span to the substrate, and attaches the wire to the substrate.
  • wire sweep is observed and measured by analyzing X- ray pictures from the top and the side of the molded package.
  • the parameters determining wire sweep are the design of the cavity and the gate; the composition and the diameter of the bonding wire, the formulation, shelf life, and moisture content of the compound; and the compound viscosity during the cavity filling process. Specifications including molding compound formulation, chip and leadframe designs, and process conditions (temperature, pressure, time, etc.) state the maximum allowed wire sweep for a device type.
  • one general rule states that, after wire sweep, adjacent wires must still have a distance of at least two wire diameters.
  • Another rule defines the percentage of allowed wire sweep based on the wire length employed. For instance, the allowed wire sweep may be 15 % of wire length. Deviations from these rules are considered device failures; they reach for certain cases 300 to 600 ppm.
  • the step of attaching the chip to the substrate Prior to the wire bonding and molding operations, it is common practice in the step of attaching the chip to the substrate, to place a drop of a semi-liquid mixture of adhesive resin (epoxy) and catalyst on the substrate.
  • the resin usually contains 70 to 80 % inorganic fillers of small diameter (1 to 3 ⁇ m).
  • An adhesive chip attach film has recently been introduced, which can replace the method of resin dropping.
  • the film is commercially offered by Nippon Steel Chemical, Japan, under the brand name NEX- 130.
  • the film includes 30 weight % adhesive epoxy resin and 70 weight % silica filler.
  • the resin viscosity drops steeply at temperatures above 30 0 C and has a viscosity minimum in the temperature range from 90 to 130 0 C; at temperatures above 150 0 C, the resin polymerizes ("cures").
  • a lamination process in which the film is applied to the wafer, the whole semiconductor wafer rests face-down on a heater stage (80 0 C) and a heated roller laminates the film onto the back side of the wafer.
  • the singulated chips are placed adhesive- layer-down on a substrate.
  • the resin is then cured at 150 0 C followed by a curing step at 180 0 C.
  • Applicant solved the wire sweep, molding cost, and time problems when he discovered that he can apply the adhesive film for attaching chips as a lamination technology for encapsulating chip and wires.
  • the method uses a sheet of epoxy-type, partially cured (B- stage), adhesive resin, which enters low viscosity when heated to the lamination temperature range; the resin then behaves like thick cream.
  • the sheet is gently deposited, for instance by rolling, onto the wire -bonded semiconductor chips, causing practically no stress on the wires, and consequently no noticeable wire sweep.
  • the resin can be provided with a high content of small, rounded silica fillers, which lowers the CTE of the encapsulant towards the CTE of substrate and silicon.
  • the deposition of the low- viscosity resin employs an apparatus with a movable and heatable wheel and a heater stage.
  • a tape is provided, which includes a layer of an adhesive polymeric resin and a film of an inert plastic compound.
  • the tape is wrapped around the wheel so that the film touches the wheel and the layer faces away from the wheel.
  • the wheel is heated to a temperature high enough to transits the polymeric resin into a low-viscosity state.
  • a substrate strip which has been assembled with a plurality of semiconductor chips connected to the substrate by bonding wires, is placed on a station also heated to the transition temperature.
  • the wheel is then moved to roll the low viscosity resin on the chips and wires along the strip, while the inert film is separated. The chips and wires are thus encapsulated.
  • the invention eliminates a number of perennial shortcomings of the conventional molding technology. Since the method allows the encapsulation not only of a substrate strip, but of whole substrate sheets, the invention lends itself to high encapsulation productivity. Since the deposition of the low viscosity, cream- like resin is gentle on the bonding wires, the invention eliminates wire sweep. Since the soft resin fills any space of the chip assembly, the invention eliminates any incomplete fill and trapped air observed in the traditional mold flow. And since the resin is soft, the invention eliminates chip cracks due to the high compound pressure in transfer molding. BRIEF DESCRIPTION OF THE DRAWING
  • the accompanying figure illustrates schematically an apparatus to deposit, by the roll-on method of a wheel, a layer of low- viscosity adhesive resin on the bonding wires connecting semiconductor chips to a substrate, thereby encapsulating chips and wires.
  • the chip attach compound forms a meniscus around the chip periphery.
  • substrate 110 is shown as a strip; alternatively, the substrate may be a sheet, on which the chips are arranged in a two-dimensional array.
  • a variety of materials may be used as base material for the substrate.
  • substrate 110 may be a plastic foil made of a polyimide compound in the thickness range from about 40 to 80 ⁇ m.
  • substrate may be a somewhat thicker insulating board made of ceramic or FR-4. Integral with substrate 110 are conductive traces and through-holes; substrate 110 further has metallic contact pads 111 on its surface of chip attachment, suitable for metallic wire attachment, and metallic pads on the opposite surface (pads not shown in the figure), suitable for solder attachment.
  • the assembly on insulating substrate 110 includes adhesive polymeric compounds 104 to attach chips 101 to the substrate.
  • Preferred choices for the adhesive compounds include epoxy- based and polyimide -based formulations, which have been mixed with catalysts (for alternative attachment materials and processes see FIG. X).
  • the formulations include silver fillers between 50 and 80 volume %.
  • the meniscus 104a indicates that chips 101 have been attached by the method of placing drops of the semi-liquid compound on the substrate; the substrate is held at ambient temperature. By pressing the chips onto the drops, the liquid spreads under the chip area to form a fillet layer with a meniscus around the chip perimeter.
  • the attachment process continues by raising the temperature to about 100 0 C in order to drive the solvents out of the fillet layer; dependent on the chip size, this process step may last between about 10 min and 6 hours. By further raising the temperature to about 175 to 200 0 C and keeping it for about 30 to 60 min, the polymer is allowed to cure by cross-linking (polymerization phase).
  • the chip terminals 102 are connected to the substrate contact pads 111 by bonding wires 120.
  • the preferred wire metal is gold or a gold alloy; alternatively, it may be copper or a copper alloy.
  • the preferred bonding technique is ball bonding using a bonder with wires in the diameter range between 15 and 33 ⁇ m, preferably 20 to 25 ⁇ m; for power devices, thicker wires with diameters of about 50 ⁇ m may be used. From the length of the gold wire protruding from the bonder capillary, a free air ball with a preferred diameter from about 1.2 to 1.6 wire diameters is formed.
  • the free air ball is placed on the terminal 102 and pressed against the metallization of the pad.
  • the capillary is lifted and the wire is moved towards the pad 111 forming an arch, which spans the gap between terminals 102 and pad 111.
  • the wire is attached to pad 111 by stitch bonding.
  • the bonders are controlled to place adjacent arches in an orderly pattern, free of disturbances, at a minimum distance of at least two wire diameters.
  • apparatus 100 includes a flat station 130, onto which substrate 110 with the attached and wire-bonded chips can be placed.
  • Station 130 can be heated to temperatures of about 300 0 C; it may further be helpful for some process steps described below, if station 130 (together with substrate 110) can be moved laterally in the direction indicated by arrow 131.
  • a tape which includes a layer 140 of an adhesive polymeric resin and a film 141 of an inert plastic compound.
  • Layer 140 has preferably a thickness between about 300 and 900 ⁇ m, and film 141 has preferably a thickness between about 25 and 40 ⁇ m.
  • the thickness of layer 140 depends on the thickness of the chips (for many products between 100 and 275 ⁇ m) and the arch height of the bonding wires.
  • the resin of layer 140 is an epoxy formulation mixed with a catalyst (so-called B- stage resin), which exhibits the rheological phases of melting and hardening (curing) within certain temperature ranges. Tapes of the described configurations are commercially available, for instance from Nippon Steel Chemical, Japan.
  • the viscosity of the resin of layer 140 is high, for example approximately 800k Pa • s. With increasing temperature, the resin transverses the melting phase; the resin viscosity decreases with increasing temperature to reach about 8k Pa • s at about 70 0 C and about 800 Pa • s at about 90 0 C. The resin retains the low viscosity between the temperatures of about 90 and 130 0 C. At the low viscosity, the resin behaves like cream. At temperatures higher than about 130 0 C, the viscosity starts to increase again, because the resin enters the curing phase. At about 200 0 C, the resin's viscosity is again about 800k Pa • s.
  • the epoxy resin of layer 140 further has a high volume (between about 70 and 80 %) of silica filler in order to lower the CTE of the pure epoxy (about 70 ppm) to a CTE of about 10 ppm.
  • Layer 140 is electrically insulating.
  • the epoxy resin of layer 140 exhibits strong adhesion to the substrate materials frequently used in semiconductor devices, such as polyimide, FR-4, leadframes, and solder mask. In shear tests, the adhesive strength has been measured between 25 and 40 N • mm "2 .
  • layer 140 is heated to the low-viscosity state of the resin and laminated on the bonding wires and chips.
  • the lamination process can be performed manually.
  • the preferred lamination method uses the apparatus 100 depicted in the figure.
  • substrate 110 with the chips 101 attached to the substrate and the chip terminals 102 electrically connected to the substrate pads 111 by bonding wires 120, is placed on heatable station 130. As the figure shows, the bonding wires 120 face away from substrate 110.
  • Apparatus 100 includes a heatable wheel 150, which can rotate around its axis, as indicated by arrow 151 in the figure, and further can be moved in x-, y-, and z-directions.
  • the lamination tape including adhesive resin layer 140 and inert film 141 is provided. A portion of the tape is placed around wheel 150 so that inert film 141 touches the wheel and resin layer 140 faces away from the wheel.
  • wheel 150 and station 130 are heated to a temperature suitable to transform the polymeric resin of layer 140 to a low- viscosity state.
  • the preferred temperature range is between about 70 and 130 0 C, and the more preferred temperature range is between about 80 and 90 0 C.
  • Wheel 150 with the tape is moved above one end of substrate strip 110 so that the polymeric layer 140 faces the wire arches of the wire-bonded chips.
  • Wheel 150 with the tape is lowered until the low-viscosity resin 140 touches the wires of the first chip.
  • the wheel is then lowered gently further until resin 140 completely immerses the chip and the wires in the cream-like resin with little disturbance to the wire bonds.
  • the pressure on the wires is about 0.2 MPa.
  • the wheel is then rolled forward along the strip to immerse the adjacent wires and chips in resin 140, while at the same time film 141 is separated from the deposited resin 140 (see portion 141a in the figure).
  • the pressure on the wires remains about 0.2 MPa.
  • the preferred speed of the lateral movement of the wheel (x-direction) is between about 40 and 100 mm/s. In this manner, the chips and wires of the assembled plurality of chips are encapsulated and the flat surface 140a of the deposited resin is exposed.
  • station 131 may also be moved in the direction indicated by arrow 131.
  • the roll-on lamination method using the cream- like resin of layer 140 encapsulates the chips and wires without entrapped voids and without deflected wires.
  • the process delivers no observable wire sweep and wire disturbance, even when extended sheets of substrates with a plurality of assembled chips are processed in batch encapsulation.
  • the polymeric resin is hardened (cured) by cross-linking the molecules.
  • This step is preferably performed in two phases: In the first phase, the temperature of station 130 is raised to the range of 150 to 160 0 C; this phase of polymerization lasts for about 1 hour. The time can be shortened to about 10 min, when the temperature rises to around 180 0 C. Thereafter, in the second phase, the substrate with the encapsulated chips is removed from station 130 and brought into an oven, where the resin can be fully cured (hardened) at 180 0 C for about 1 hour. Consequently, the total time for the two-step curing phase is 2 hours or less, a significant improvement over the 6 to 7 hours needed for curing the molding compounds in the conventional transfer molding method.
  • the substrate strip with the plurality of wire-bonded chips in hardened encapsulation is then submitted to the device singulation step, which is preferably performed by sawing.
  • the discrete devices are in a hard package, which has saw marks at the package sides from the cutting saw. The package sides are free of protrusions.
  • the encapsulation method of the invention can be coordinated with a chip attach process different from the one used for the chips in the figure.
  • a preferred method deposits the attachment compound as a tape to the whole semiconductor wafer.
  • the tape has an adhesive film with a thickness in the range from 30 to 130 ⁇ m, and a composition of 30 weight % epoxy resin and 70 weight % silica filler (in contrast to the silver-filled chip attach material 104).
  • the film is protected by an inert cover film.
  • Such tapes are commercially offered, for example by Nippon Steel Chemical, Japan, under the brand name NEX- 130.
  • the epoxy film has low viscosity because it is at a temperature of about 90 to 130 0 C.
  • the wafer is placed on a dicing tape and singulated by a saw into discrete chips with the adhesive film attached. Due to the sawing process, the attachment compound has edges in straight contour with the chip edges.
  • the singulated chips are lifted, one by one, and placed onto substrate 110, to which they adhere.
  • the substrate together with the attached chips is then brought to a temperature between about 150 and 160 0 C for a first phase of epoxy curing (for about one hour). Thereafter, the chip attach layer is stable enough to allow the process steps of wire bonding as described above.
  • the second phase for completing the epoxy curing is performed concurrently with the curing of the polymeric resin of layer 140 described above.
  • the invention applies to any type of semiconductor chip, discrete or integrated circuit, and the material of the semiconductor chip may include silicon, silicon germanium, gallium arsenide, or any other semiconductor or compound material used in integrated circuit manufacturing.
  • the invention applies also to devices, for which manufacturing cost is a primary concern.
  • An example for cost-sensitive products is the smart card modules; they require manufacturing by low-cost batch processing. Some of these products may have additional priorities such as the thinness of the products, or the flexibility for reacting quickly to market requirements. These concerns can by satisfied simultaneously by the method of the invention.
  • a method for encapsulating integrated circuit chips or similar microelectronic devices wherein a continuous series of chips is moved relative to a continuous length of resin material to bring successive heated portions of the resin material into close proximity with successive ones of the chips, to flow the heated portions of resin material to encapsulate the chips.
  • the length of resin material may advantageously be provided on a length of film which acts as a carrier; the chips may be provided on a conveyor; and the film and conveyor may be moved in opposite directions relative to each other; with the resin material being flowed away from the film and onto the chips.
  • the flowed resin material may cured after it is flowed onto the chips, and the encapsulated chips singulated into discrete encapsulated components.
  • Apparatus for encapsulating integrated circuit chips or similar microelectronic devices may comprise a first conveyor, a second conveyor, a heater, and a mechanism for moving the first and second conveyor relative to each other.
  • the apparatus may be dimensioned, configured and adapted to bring successive heated portions of a continuous length of resin material on the first conveyor into close proximity with respective ones of a series of chips on the second conveyor, to flow the heated portions to encapsulate the chips.

Abstract

A resin encapsulating compound is deposited using an apparatus with a movable and heatable wheel and a heater stage. A tape is provided, which includes a layer (140) of an adhesive polymeric resin and a film (141) of an inert plastic compound. The tape is wrapped around a wheel (150) so that the film touches the wheel and the layer faces away from the wheel. The wheel is heated to a temperature high enough to transits the polymeric resin into a low-viscosity state. A substrate strip (110), which has been assembled with a plurality of semiconductor chips (101) connected to the substrate by bonding wires (120), is placed on a station (130) also heated to the transition temperature. The wheel is then moved to roll the low viscosity resin on the chips and wires along the strip, while the inert film is separated. The chips and wires are thus encapsulated.

Description

ROLL-ON ENCAPSULATION METHOD FOR SEMICONDUCTOR PACKAGES
This relates in general to the field of semiconductor devices and processes, and more specifically to the structure and fabrication method of plastic packages for semiconductor devices based on a roll-on encapsulation technique. BACKGROUND
Ever since its introduction in the early 1960's, the transfer molding technology has been the favored method for encapsulating semiconductor devices in plastic packages. In this method, the semiconductor chip is first assembled on a substrate such as a leadframe by physically attaching the chip to the substrate and conductively connecting the chip terminals to the substrate pads, most commonly by arching spans of bonding wire. Then, the substrate together with the assembled chip is transferred to a mold press and positioned in the mold cavity. The cavity has a precision gate, through which the semi- viscous molding compound, driven by a piston, is pressured. From the gate, the compound spreads through the cavity along a substantially linear front. The gate is designed for a uniform, gentle front progress, filling the cavity and embedding the chip, bonding wires, and substrate. Manufacturing the molds, gates, presses etc. requires precision machines and is thus expensive; as an example, a mold for about 200 device units may be about $ 250,000.
The molding compound is conventionally a formulation based on an epoxy polymer mixed with a catalyst and a hardening agent; before the molding operation, the compound is stored at low temperatures due to its partially cross-linked state. When the temperature is increased, the compound acquires a low viscosity state at the so-called glass transition temperature around 150 0C. In the temperature range of about 175 0C, the compound is pressured through the gate; afterwards, it polymerizes ("cures") fully in storage at temperatures of about 175 0C. For mpst molding compound, the time required for the molding and curing steps is between 6 and 8 hours.
The epoxy polymer of the molding compound typically contains up to about 90 % inorganic fillers, such as silica, in order to reduce thermomechanical stresses caused by the more than one order of magnitude difference between the coefficients of thermal expansion (CTE) of polymers and semiconductor chips. The diameters of these fillers have a distribution between about 35 and 75 μm; the fillers may be crystalline or spherical, and consequently have an abrasive effect of the precision gates of the mold cavities. As a consequence, the gates need periodic repairs or refurbishments. To refurbish the gates requires precision machines and is thus expensive; for example, to refurbish a 200-unit mold costs about $ 50,000. The bonding wires used in a typical assembly process are made of a gold or copper alloy and have a diameter of about 25 μm. In an automated bonder, the wire is fed through a capillary of the bonder. During the bonding operation, the capillary attaches the wire to the chip, then moves the wire in an arching span to the substrate, and attaches the wire to the substrate. There are specifications how long a wire span can be for a given alloy and wire diameter, how much the wire is allowed to sag under its own weight, and how close to each other the spans can be located.
When the front of the molding compound progresses from the gate through the cavity of the mold, the compound exerts pressure on the wire spans. This pressure deflects the span sidewise, bends and tilts it in a direction away from the gate. This disturbance is commonly referred to as wire sweep. Generally, wire sweep is observed and measured by analyzing X- ray pictures from the top and the side of the molded package. Among the parameters determining wire sweep are the design of the cavity and the gate; the composition and the diameter of the bonding wire, the formulation, shelf life, and moisture content of the compound; and the compound viscosity during the cavity filling process. Specifications including molding compound formulation, chip and leadframe designs, and process conditions (temperature, pressure, time, etc.) state the maximum allowed wire sweep for a device type. For example, one general rule states that, after wire sweep, adjacent wires must still have a distance of at least two wire diameters. Another rule defines the percentage of allowed wire sweep based on the wire length employed. For instance, the allowed wire sweep may be 15 % of wire length. Deviations from these rules are considered device failures; they reach for certain cases 300 to 600 ppm.
Prior to the wire bonding and molding operations, it is common practice in the step of attaching the chip to the substrate, to place a drop of a semi-liquid mixture of adhesive resin (epoxy) and catalyst on the substrate. The resin usually contains 70 to 80 % inorganic fillers of small diameter (1 to 3 μm). By pressing the chip onto the drop, the liquid spreads under the chip area to form a fillet layer with a meniscus around the chip perimeter. The mixture is then allowed to polymerize and harden.
An adhesive chip attach film has recently been introduced, which can replace the method of resin dropping. The film is commercially offered by Nippon Steel Chemical, Japan, under the brand name NEX- 130. In a thickness range from 30 to 130 μm, the film includes 30 weight % adhesive epoxy resin and 70 weight % silica filler. The resin viscosity drops steeply at temperatures above 30 0C and has a viscosity minimum in the temperature range from 90 to 130 0C; at temperatures above 150 0C, the resin polymerizes ("cures"). In a lamination process, in which the film is applied to the wafer, the whole semiconductor wafer rests face-down on a heater stage (80 0C) and a heated roller laminates the film onto the back side of the wafer. After dicing the laminated wafer, the singulated chips are placed adhesive- layer-down on a substrate. The resin is then cured at 150 0C followed by a curing step at 180 0C. SUMMARY Applicant recognized that today's failure rate of 300 to 600 ppm caused by excess wire sweep during the transfer molding operation for semiconductor packages is unacceptable for the ongoing market trend towards more integrated and miniaturized semiconductor components, especially when this failure rate could get worse due to the introduction of thinner gold wires, driven by cost reduction. In addition, applicant saw that the high cost of acquiring and maintaining the molds, driven by precision tooling and gate replacement, the long lead time for mold maintenance, and the slow molding and curing processes are incompatible with the quick change of products, fast turn-around-time and productivity improvements required by the fast-moving consumer market.
Applicant solved the wire sweep, molding cost, and time problems when he discovered that he can apply the adhesive film for attaching chips as a lamination technology for encapsulating chip and wires. The method uses a sheet of epoxy-type, partially cured (B- stage), adhesive resin, which enters low viscosity when heated to the lamination temperature range; the resin then behaves like thick cream. In the encapsulation process at elevated temperatures, the sheet is gently deposited, for instance by rolling, onto the wire -bonded semiconductor chips, causing practically no stress on the wires, and consequently no noticeable wire sweep. In addition, the resin can be provided with a high content of small, rounded silica fillers, which lowers the CTE of the encapsulant towards the CTE of substrate and silicon.
Applicant demonstrated that this method lends itself to large-scale batch processing, making it a low cost manufacturing technology without the need for expensive molds and costly maintenance. In fast turn-around-time, the encapsulation compound and the package thickness can be changed from run to run, bringing hitherto unknown flexibility to the encapsulation technology. Further, test results of the fully cured products indicated that the encapsulated chips show no noticeable delamination after numerous temperature cycles, and the devices have excellent reliability characteristics in moisture and stress tests. As an additional advantage, applicant invented a methodology to coordinate deposition techniques for both the chip attachment and the chip encapsulation steps, including the compound curing cycles, applicable when using different compound formulations for the different steps.
In an embodiment, the deposition of the low- viscosity resin employs an apparatus with a movable and heatable wheel and a heater stage. A tape is provided, which includes a layer of an adhesive polymeric resin and a film of an inert plastic compound. The tape is wrapped around the wheel so that the film touches the wheel and the layer faces away from the wheel. The wheel is heated to a temperature high enough to transits the polymeric resin into a low-viscosity state. A substrate strip, which has been assembled with a plurality of semiconductor chips connected to the substrate by bonding wires, is placed on a station also heated to the transition temperature. The wheel is then moved to roll the low viscosity resin on the chips and wires along the strip, while the inert film is separated. The chips and wires are thus encapsulated.
It is a technical advantage that the invention eliminates a number of perennial shortcomings of the conventional molding technology. Since the method allows the encapsulation not only of a substrate strip, but of whole substrate sheets, the invention lends itself to high encapsulation productivity. Since the deposition of the low viscosity, cream- like resin is gentle on the bonding wires, the invention eliminates wire sweep. Since the soft resin fills any space of the chip assembly, the invention eliminates any incomplete fill and trapped air observed in the traditional mold flow. And since the resin is soft, the invention eliminates chip cracks due to the high compound pressure in transfer molding. BRIEF DESCRIPTION OF THE DRAWING
The accompanying figure illustrates schematically an apparatus to deposit, by the roll-on method of a wheel, a layer of low- viscosity adhesive resin on the bonding wires connecting semiconductor chips to a substrate, thereby encapsulating chips and wires. The chip attach compound forms a meniscus around the chip periphery. DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
The figure depicts in simplified manner an apparatus, generally designated 100, for executing the encapsulation method of semiconductor devices according to the invention. A plurality of semiconductor chips 101 with terminals 102 is assembled on an insulating substrate strip 110. Substrate 110 is shown as a strip; alternatively, the substrate may be a sheet, on which the chips are arranged in a two-dimensional array. A variety of materials may be used as base material for the substrate. When the overall device thickness has to be kept at a low value, substrate 110 may be a plastic foil made of a polyimide compound in the thickness range from about 40 to 80 μm. Alternatively, substrate may be a somewhat thicker insulating board made of ceramic or FR-4. Integral with substrate 110 are conductive traces and through-holes; substrate 110 further has metallic contact pads 111 on its surface of chip attachment, suitable for metallic wire attachment, and metallic pads on the opposite surface (pads not shown in the figure), suitable for solder attachment.
The assembly on insulating substrate 110 includes adhesive polymeric compounds 104 to attach chips 101 to the substrate. Preferred choices for the adhesive compounds include epoxy- based and polyimide -based formulations, which have been mixed with catalysts (for alternative attachment materials and processes see FIG. X). In order to improve the thermal conductivity of the adhesive compounds, the formulations include silver fillers between 50 and 80 volume %. In the figure, the meniscus 104a indicates that chips 101 have been attached by the method of placing drops of the semi-liquid compound on the substrate; the substrate is held at ambient temperature. By pressing the chips onto the drops, the liquid spreads under the chip area to form a fillet layer with a meniscus around the chip perimeter. The attachment process continues by raising the temperature to about 100 0C in order to drive the solvents out of the fillet layer; dependent on the chip size, this process step may last between about 10 min and 6 hours. By further raising the temperature to about 175 to 200 0C and keeping it for about 30 to 60 min, the polymer is allowed to cure by cross-linking (polymerization phase).
As the figure shows, the chip terminals 102 are connected to the substrate contact pads 111 by bonding wires 120. The preferred wire metal is gold or a gold alloy; alternatively, it may be copper or a copper alloy. The preferred bonding technique is ball bonding using a bonder with wires in the diameter range between 15 and 33 μm, preferably 20 to 25 μm; for power devices, thicker wires with diameters of about 50 μm may be used. From the length of the gold wire protruding from the bonder capillary, a free air ball with a preferred diameter from about 1.2 to 1.6 wire diameters is formed. On a pedestal heated to a temperature between 150 and 270 0C, the free air ball is placed on the terminal 102 and pressed against the metallization of the pad. The capillary is lifted and the wire is moved towards the pad 111 forming an arch, which spans the gap between terminals 102 and pad 111. The wire is attached to pad 111 by stitch bonding. The bonders are controlled to place adjacent arches in an orderly pattern, free of disturbances, at a minimum distance of at least two wire diameters.
As the figure further shows, apparatus 100 includes a flat station 130, onto which substrate 110 with the attached and wire-bonded chips can be placed. Station 130 can be heated to temperatures of about 300 0C; it may further be helpful for some process steps described below, if station 130 (together with substrate 110) can be moved laterally in the direction indicated by arrow 131.
For the method according to the invention, a tape is provided, which includes a layer 140 of an adhesive polymeric resin and a film 141 of an inert plastic compound. Layer 140 has preferably a thickness between about 300 and 900 μm, and film 141 has preferably a thickness between about 25 and 40 μm. The thickness of layer 140 depends on the thickness of the chips (for many products between 100 and 275 μm) and the arch height of the bonding wires. The resin of layer 140 is an epoxy formulation mixed with a catalyst (so-called B- stage resin), which exhibits the rheological phases of melting and hardening (curing) within certain temperature ranges. Tapes of the described configurations are commercially available, for instance from Nippon Steel Chemical, Japan. At ambient temperature, the viscosity of the resin of layer 140 is high, for example approximately 800k Pa • s. With increasing temperature, the resin transverses the melting phase; the resin viscosity decreases with increasing temperature to reach about 8k Pa • s at about 70 0C and about 800 Pa • s at about 90 0C. The resin retains the low viscosity between the temperatures of about 90 and 130 0C. At the low viscosity, the resin behaves like cream. At temperatures higher than about 130 0C, the viscosity starts to increase again, because the resin enters the curing phase. At about 200 0C, the resin's viscosity is again about 800k Pa • s. The epoxy resin of layer 140 further has a high volume (between about 70 and 80 %) of silica filler in order to lower the CTE of the pure epoxy (about 70 ppm) to a CTE of about 10 ppm. Layer 140 is electrically insulating. Furthermore, the epoxy resin of layer 140 exhibits strong adhesion to the substrate materials frequently used in semiconductor devices, such as polyimide, FR-4, leadframes, and solder mask. In shear tests, the adhesive strength has been measured between 25 and 40 N • mm"2.
In the encapsulation method, layer 140 is heated to the low-viscosity state of the resin and laminated on the bonding wires and chips. For a small number of chips, the lamination process can be performed manually. The preferred lamination method uses the apparatus 100 depicted in the figure. In the apparatus, substrate 110, with the chips 101 attached to the substrate and the chip terminals 102 electrically connected to the substrate pads 111 by bonding wires 120, is placed on heatable station 130. As the figure shows, the bonding wires 120 face away from substrate 110.
Apparatus 100 includes a heatable wheel 150, which can rotate around its axis, as indicated by arrow 151 in the figure, and further can be moved in x-, y-, and z-directions. Next, the lamination tape including adhesive resin layer 140 and inert film 141 is provided. A portion of the tape is placed around wheel 150 so that inert film 141 touches the wheel and resin layer 140 faces away from the wheel. In the next step, wheel 150 and station 130 are heated to a temperature suitable to transform the polymeric resin of layer 140 to a low- viscosity state. As mentioned above, the preferred temperature range is between about 70 and 130 0C, and the more preferred temperature range is between about 80 and 90 0C. Wheel 150 with the tape is moved above one end of substrate strip 110 so that the polymeric layer 140 faces the wire arches of the wire-bonded chips.
Wheel 150 with the tape is lowered until the low-viscosity resin 140 touches the wires of the first chip. The wheel is then lowered gently further until resin 140 completely immerses the chip and the wires in the cream-like resin with little disturbance to the wire bonds. The pressure on the wires is about 0.2 MPa. The wheel is then rolled forward along the strip to immerse the adjacent wires and chips in resin 140, while at the same time film 141 is separated from the deposited resin 140 (see portion 141a in the figure). The pressure on the wires remains about 0.2 MPa. The preferred speed of the lateral movement of the wheel (x-direction) is between about 40 and 100 mm/s. In this manner, the chips and wires of the assembled plurality of chips are encapsulated and the flat surface 140a of the deposited resin is exposed. If desirable, station 131 may also be moved in the direction indicated by arrow 131.
Experience has shown that the roll-on lamination method using the cream- like resin of layer 140 encapsulates the chips and wires without entrapped voids and without deflected wires. The process delivers no observable wire sweep and wire disturbance, even when extended sheets of substrates with a plurality of assembled chips are processed in batch encapsulation.
In the next process step, the polymeric resin is hardened (cured) by cross-linking the molecules. This step is preferably performed in two phases: In the first phase, the temperature of station 130 is raised to the range of 150 to 160 0C; this phase of polymerization lasts for about 1 hour. The time can be shortened to about 10 min, when the temperature rises to around 180 0C. Thereafter, in the second phase, the substrate with the encapsulated chips is removed from station 130 and brought into an oven, where the resin can be fully cured (hardened) at 180 0C for about 1 hour. Consequently, the total time for the two-step curing phase is 2 hours or less, a significant improvement over the 6 to 7 hours needed for curing the molding compounds in the conventional transfer molding method.
The substrate strip with the plurality of wire-bonded chips in hardened encapsulation is then submitted to the device singulation step, which is preferably performed by sawing. After the sawing process, the discrete devices are in a hard package, which has saw marks at the package sides from the cutting saw. The package sides are free of protrusions.
The encapsulation method of the invention can be coordinated with a chip attach process different from the one used for the chips in the figure. A preferred method deposits the attachment compound as a tape to the whole semiconductor wafer. The tape has an adhesive film with a thickness in the range from 30 to 130 μm, and a composition of 30 weight % epoxy resin and 70 weight % silica filler (in contrast to the silver-filled chip attach material 104). The film is protected by an inert cover film. Such tapes are commercially offered, for example by Nippon Steel Chemical, Japan, under the brand name NEX- 130. During the deposition on the wafer, the epoxy film has low viscosity because it is at a temperature of about 90 to 130 0C. After deposition, the wafer is placed on a dicing tape and singulated by a saw into discrete chips with the adhesive film attached. Due to the sawing process, the attachment compound has edges in straight contour with the chip edges.
From the dicing tape, the singulated chips are lifted, one by one, and placed onto substrate 110, to which they adhere. The substrate together with the attached chips is then brought to a temperature between about 150 and 160 0C for a first phase of epoxy curing (for about one hour). Thereafter, the chip attach layer is stable enough to allow the process steps of wire bonding as described above. The second phase for completing the epoxy curing is performed concurrently with the curing of the polymeric resin of layer 140 described above.
The invention applies to any type of semiconductor chip, discrete or integrated circuit, and the material of the semiconductor chip may include silicon, silicon germanium, gallium arsenide, or any other semiconductor or compound material used in integrated circuit manufacturing.
The invention applies also to devices, for which manufacturing cost is a primary concern. An example for cost-sensitive products is the smart card modules; they require manufacturing by low-cost batch processing. Some of these products may have additional priorities such as the thinness of the products, or the flexibility for reacting quickly to market requirements. These concerns can by satisfied simultaneously by the method of the invention.
In a general embodiment, a method is provided for encapsulating integrated circuit chips or similar microelectronic devices wherein a continuous series of chips is moved relative to a continuous length of resin material to bring successive heated portions of the resin material into close proximity with successive ones of the chips, to flow the heated portions of resin material to encapsulate the chips. The length of resin material may advantageously be provided on a length of film which acts as a carrier; the chips may be provided on a conveyor; and the film and conveyor may be moved in opposite directions relative to each other; with the resin material being flowed away from the film and onto the chips. The flowed resin material may cured after it is flowed onto the chips, and the encapsulated chips singulated into discrete encapsulated components.
Apparatus for encapsulating integrated circuit chips or similar microelectronic devices may comprise a first conveyor, a second conveyor, a heater, and a mechanism for moving the first and second conveyor relative to each other. The apparatus may be dimensioned, configured and adapted to bring successive heated portions of a continuous length of resin material on the first conveyor into close proximity with respective ones of a series of chips on the second conveyor, to flow the heated portions to encapsulate the chips.
Those skilled in the art to which the invention relates will appreciate that many variations and embodiments are possible within the scope of the claimed invention.

Claims

CLAIMSWhat we claim is:
1. A method for fabricating a semiconductor device comprising the steps of: providing a tape including a layer of an adhesive polymeric resin operable to acquire low viscosity when heated; heating the resin to a desired viscosity; and depositing the heated resin on the bonding wires connecting a semiconductor chip to a substrate, thereby encapsulating the chip and the wires.
2. The method of Claim 1, further including, after the step of depositing, the step of hardening the resin.
3. A method for fabricating a semiconductor device comprising the steps of: placing a substrate strip with a plurality of semiconductor chips, connected to the substrate by bonding wires, on a heatable station so that the wires face away from the substrate; placing a tape including a layer of an adhesive polymeric resin and a film of an inert plastic compound around a heatable wheel so that the layer faces away from the wheel; heating the wheel and the substrate to a temperature suitable to transform the polymeric resin to a low-viscosity state; and rolling the wheel relative to the strip to deposit the low- viscosity resin on the chips and wires, thereby encapsulating the chips and wires.
4. The method of Claim 3, further including the step of separating the inert film concurrently with depositing the resin.
5. The method of Claim 4, further including the steps of: hardening the resin; and singulating the substrate strip into discrete encapsulated devices.
6. The method of Claim 5, wherein the step of singulating is performed by sawing.
7. A method for encapsulating an integrated circuit chip or similar microelectronic device, comprising providing a continuous series of chips; providing a continuous length of resin material; moving the length of resin material relative to the series of chips and heating the resin material to bring a heated portion of the resin material into close proximity with a chip, to flow the heated portion of resin material to encapsulate the chip; the method flowing successive portions of the resin material onto successive ones of the chips.
8. The method of Claim 7, wherein the length of resin material is provided on a length of film; the chips are provided on a conveyor; and the film and conveyor are moved in opposite directions relative to each other; the resin material being flowed away from the film and onto the chips.
9. The method of Claim 8, wherein the flowed resin material is cured after it is flowed onto the chips; and the encapsulated chips are singulated into discrete encapsulated components.
10. Apparatus for encapsulating an integrated circuit chip or similar microelectronic device, comprising a first conveyor; a second conveyor; a heater; and a mechanism for relatively moving the first and second conveyor; the apparatus being dimensioned and configured to bring successive heated portions of a continuous length of resin material on the first conveyor into close proximity with respective ones of a series of chips on the second conveyor, to flow the heated portions to encapsulate the chips.
PCT/US2008/079811 2008-10-14 2008-10-14 Roll-on encapsulation method for semiconductor packages WO2010044771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801253077A CN101925989B (en) 2008-10-14 2008-10-14 Roll-on encapsulation method for semiconductor packages
PCT/US2008/079811 WO2010044771A1 (en) 2008-10-14 2008-10-14 Roll-on encapsulation method for semiconductor packages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/079811 WO2010044771A1 (en) 2008-10-14 2008-10-14 Roll-on encapsulation method for semiconductor packages

Publications (1)

Publication Number Publication Date
WO2010044771A1 true WO2010044771A1 (en) 2010-04-22

Family

ID=42106749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/079811 WO2010044771A1 (en) 2008-10-14 2008-10-14 Roll-on encapsulation method for semiconductor packages

Country Status (2)

Country Link
CN (1) CN101925989B (en)
WO (1) WO2010044771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806048B2 (en) 2016-03-16 2017-10-31 Qualcomm Incorporated Planar fan-out wafer level packaging

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299955A1 (en) * 2012-05-08 2013-11-14 Nxp B.V. Film based ic packaging method and a packaged ic device
US9337064B2 (en) * 2014-09-15 2016-05-10 Micron Technology, Inc. Methods of protecting peripheries of in-process semiconductor wafers and related in-process wafers and systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627477B1 (en) * 2000-09-07 2003-09-30 International Business Machines Corporation Method of assembling a plurality of semiconductor devices having different thickness
JP2005286246A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006117919A (en) * 2004-09-24 2006-05-11 Nagase & Co Ltd Three-dimensional sheet-like adherend for sealing semiconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534115B1 (en) * 2003-04-02 2004-06-07 住友電気工業株式会社 Edge-polished nitride semiconductor substrate, edge-polished GaN free-standing substrate, and edge processing method for nitride semiconductor substrate
JP4616719B2 (en) * 2005-07-20 2011-01-19 富士通株式会社 IC chip mounting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627477B1 (en) * 2000-09-07 2003-09-30 International Business Machines Corporation Method of assembling a plurality of semiconductor devices having different thickness
JP2005286246A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006117919A (en) * 2004-09-24 2006-05-11 Nagase & Co Ltd Three-dimensional sheet-like adherend for sealing semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806048B2 (en) 2016-03-16 2017-10-31 Qualcomm Incorporated Planar fan-out wafer level packaging

Also Published As

Publication number Publication date
CN101925989B (en) 2012-07-04
CN101925989A (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US7829389B2 (en) Roll-on encapsulation method for semiconductor packages
JP4607429B2 (en) Semiconductor device manufacturing method and semiconductor device
US7160755B2 (en) Method of forming a substrateless semiconductor package
TWI413195B (en) Method and apparatus of compression molding for reducing viods in molding compound
TWI495021B (en) Chip package structure and method for manufacturing the same
US8836101B2 (en) Multi-chip semiconductor packages and assembly thereof
KR101388753B1 (en) Apparatus and methods for molded underfills in flip chip packaging
US20080187613A1 (en) Method of manufacturing wafer-level chip-size package and molding apparatus used in the method
US6331737B1 (en) Method of encapsulating thin semiconductor chip-scale packages
US8242614B2 (en) Thermally improved semiconductor QFN/SON package
US8084301B2 (en) Resin sheet, circuit device and method of manufacturing the same
US6221695B1 (en) Method for fabricating a compression layer on the dead frame to reduce stress defects
US6544816B1 (en) Method of encapsulating thin semiconductor chip-scale packages
JP2002033411A (en) Semiconductor device with heat spreader and its manufacturing method
US7829379B2 (en) Wafer level stacked die packaging
WO2010044771A1 (en) Roll-on encapsulation method for semiconductor packages
JP3561209B2 (en) Flip chip mounting binder and method of manufacturing semiconductor device using the same
JP2004282042A (en) Assembling method for semiconductor device
TWI529819B (en) Roll-on encapsulation method for semiconductor packages
JP2002270627A (en) Semiconductor device manufacturing method
TWI234213B (en) Chip package structure and process for fabricating the same
TWI244731B (en) Method for improving balance of molding flow during assembling semiconductor packages with fail unit
CN111863634B (en) Manufacturing method of ultrathin packaging structure
JP2010086996A (en) Method of manufacturing circuit device
KR100499328B1 (en) Flip Chip Packaging Method using Dam

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125307.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877462

Country of ref document: EP

Kind code of ref document: A1