JPS62226630A - Photochemical vapor deposition equipment - Google Patents

Photochemical vapor deposition equipment

Info

Publication number
JPS62226630A
JPS62226630A JP6855686A JP6855686A JPS62226630A JP S62226630 A JPS62226630 A JP S62226630A JP 6855686 A JP6855686 A JP 6855686A JP 6855686 A JP6855686 A JP 6855686A JP S62226630 A JPS62226630 A JP S62226630A
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
light source
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6855686A
Other languages
Japanese (ja)
Inventor
Koji Shiozaki
宏司 塩崎
Hiroi Ootake
大竹 弘亥
Kazuhiko Shirakawa
一彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6855686A priority Critical patent/JPS62226630A/en
Publication of JPS62226630A publication Critical patent/JPS62226630A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the ununiformity of thickness and quality of a film due to a light source and gas distribution, by rotating or reciprocating a substrate arranged in a reaction chamber with respect to a light source. CONSTITUTION:An Si substrate 3 is mounted on a stand 2 in a sample chamber 1, and a rotary pump 10 and a mechanical booster pump 9 are operated in order. At a substrate temperature of 300 deg.C and a pressure of 10<-3> Torr, a specified amount of SiH4 gas and N2O gas is introduced to keep the state at 8 Torr. Rotating the stand 2 at a rate of 10 sec/revolution, an SiO2 film is formed on the substrate 3 by applying an Hg lamp 6 having a wavelength of 185 nm. By the effect of rotation of the stand, the ununiformity of thickness and quality of the film can be avoided, and the SiO2 film of uniform distribution and quality can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光化学気相成長装置の改良に関するもので、特
に光源、ガス分布などによる膜厚及び膜質の不均一性を
低減させるようにした光化学気相成長装置に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement of a photochemical vapor deposition apparatus, and particularly relates to a photochemical vapor deposition apparatus that reduces non-uniformity in film thickness and film quality caused by light source, gas distribution, etc. The present invention relates to a vapor phase growth apparatus.

〈従来の技術〉 近年、低温で無損傷の膜を形成することが出来るという
ことで、光エネルギーを用いた光化学気相成長法が注目
されている。光化学気相成長法は、反応ガスを光源から
放射される紫外光エネルギーにより励起及び反応を生起
せしめ、基板上へ薄膜を形成する化学気相成長法である
<Prior Art> In recent years, photochemical vapor deposition using light energy has been attracting attention because it is capable of forming damage-free films at low temperatures. Photochemical vapor deposition is a chemical vapor deposition method in which a reactive gas is excited and reacted with ultraviolet light energy emitted from a light source to form a thin film on a substrate.

〈発明が解決しようとする間m点〉 しかしながら、従来の光化学気相成長装置では、光源の
発光強度のバラツキ、あるいはガス分布のバラツキによ
り堆積された薄膜に膜厚及び膜質の不均一が生じるとい
う問題点がある。
<Point m to be solved by the invention> However, in the conventional photochemical vapor deposition apparatus, non-uniformity in film thickness and film quality occurs in the deposited thin film due to variations in the emission intensity of the light source or variations in gas distribution. There is a problem.

即ち、一般に光化学気相成長装置では光源として、低圧
水銀灯などの放電管を複数個並べる方法がとられている
が、個々の放電管の発光強度のバラツキ及び反応中に照
射窓へ形成された薄膜によって、反応室内に載置された
基板上の照射光強度に不均一性が生じ、この照射光強度
の不均一性及びガス分布により、光化学気相成長法で基
板上に形成される薄膜には膜厚及び膜質の不均一が生じ
るという問題点があった。
In other words, photochemical vapor deposition equipment generally uses a method in which multiple discharge tubes such as low-pressure mercury lamps are lined up as a light source. This causes non-uniformity in the irradiation light intensity on the substrate placed in the reaction chamber, and due to this non-uniformity in the irradiation light intensity and gas distribution, the thin film formed on the substrate by photochemical vapor deposition There was a problem in that the film thickness and film quality were non-uniform.

本発明は、このような点にかんがみて創案されたもので
あり、膜厚及び膜質の均一な薄膜を形成することが可能
な光化学気相成長装置を提供することを目的としている
The present invention was devised in view of these points, and an object of the present invention is to provide a photochemical vapor deposition apparatus capable of forming a thin film with uniform thickness and quality.

〈間頴点を解決するための手段〉 上記の目的を達成するため、本発明は波長300nm以
下の紫外光を放射する光源と、この光源からの光を透過
するような入射窓を備えた反応室からなる光化学気相成
長装置において、上記の反応室内に載置される基板を上
記の光源に対して回転あるいは往復動運動させる手段を
備えるように構成している。
<Means for solving the problem> In order to achieve the above object, the present invention provides a light source that emits ultraviolet light with a wavelength of 300 nm or less, and a reaction system that includes an entrance window that transmits the light from the light source. A photochemical vapor deposition apparatus comprising a chamber is configured to include means for rotating or reciprocating the substrate placed in the reaction chamber with respect to the light source.

即ち本発明は、光化学気相成長装置において、紫外光の
照射強度分布及びガス分布等の不均一による膜厚、膜質
の不均一性を低減させるように、光源及びガス流に対し
て基板を回転あるいは往復動運動させるため、ウェハー
サセプタを回転あるいは往復動運動させることを特徴と
している。
That is, in a photochemical vapor deposition apparatus, the present invention rotates a substrate with respect to a light source and a gas flow so as to reduce non-uniformity in film thickness and film quality due to non-uniformity in the irradiation intensity distribution of ultraviolet light and gas distribution. Alternatively, it is characterized in that the wafer susceptor is rotated or reciprocated in order to perform reciprocating motion.

〈作 用〉 光源及びガス流に対して、ウェハーサセプタを回転させ
ることにより、基板上の各部位に作用する紫外光及びガ
ス流の不均一が平均化され基板上には膜厚及び膜質の均
一な良質の薄膜が形成されることになる。
<Function> By rotating the wafer susceptor with respect to the light source and gas flow, the non-uniformity of the ultraviolet light and gas flow acting on each part of the substrate is averaged, and the film thickness and quality are uniform on the substrate. This results in the formation of a high-quality thin film.

〈実施例〉 以下、本発明の一実施例を図面を参照して詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の光化学気相成長装置の一実施例の構成
を示す模式図である。
FIG. 1 is a schematic diagram showing the structure of an embodiment of the photochemical vapor deposition apparatus of the present invention.

第1図において、1は反応室(試料室)、2はウェハー
サセプタ、3はシリコンウェハー、4はヒーターブロッ
ク、5は合成石英よりなる入射窓、6は低圧水銀灯(H
gランプ)、7はガス導入口、8はゲートバルブ、9は
メカニカルブースタポンプ、10は油回転ポンプである
In Fig. 1, 1 is a reaction chamber (sample chamber), 2 is a wafer susceptor, 3 is a silicon wafer, 4 is a heater block, 5 is an entrance window made of synthetic quartz, and 6 is a low-pressure mercury lamp (H
g lamp), 7 is a gas inlet, 8 is a gate valve, 9 is a mechanical booster pump, and 10 is an oil rotary pump.

上記ウェハーサセプタ2はモータ12に連結されたヒー
タブロック4の中心部にあるサセプタピックアップ機構
11に取付け、ヒータブロック4の中心部にあるサセプ
タピックアップ機構++ヲ下部よりモータ12で回転さ
せることにより、ウェハー3及びウェハーサセプタ2を
回転させるように構成している。
The wafer susceptor 2 is attached to a susceptor pickup mechanism 11 located at the center of a heater block 4 connected to a motor 12, and the susceptor pickup mechanism ++ located at the center of the heater block 4 is rotated by the motor 12 from the bottom. 3 and the wafer susceptor 2 are configured to rotate.

上記の如く構成された装置の試料室1内のウェハーサセ
プタ2上に、まずP型(+00)シリコン(Si )基
板(+5−250・cm ) aを設置し、次にロータ
リーポンプ10を作動させて試料室l内の圧力を粗づ[
きした後、メカニカルブースタポンプ9を用いて試料室
1内をI 0−3(To r r )まで真空排気した
。この排気操作中にヒーターブロック4を用いて基板3
の温度を300 C−c:)まで上昇させて保持した。
First, a P-type (+00) silicon (Si) substrate (+5-250 cm) a is placed on the wafer susceptor 2 in the sample chamber 1 of the apparatus configured as described above, and then the rotary pump 10 is activated. to roughen the pressure inside the sample chamber [
After that, the inside of the sample chamber 1 was evacuated to I0-3 (Torr) using the mechanical booster pump 9. During this exhaust operation, the substrate 3 is heated using the heater block 4.
The temperature was raised to and held at 300 C-c:).

上記ポンプ9によって10  (Torr)以下まで真
空排気した後、5iH4(シラン)ガス。
After evacuation to 10 (Torr) or less using the pump 9, 5iH4 (silane) gas is added.

N20(亜酸化窒素)ガスを例えばそれぞれ15(SC
CM)及び200(SCCM)導入し、試料室l内の圧
力をs、o(Torr)に保持し、波長+85nm(3
,3mW/m)の低圧水銀灯(Hgランプ)6を用いて
、ウェハーサセプタ2をlO秒/1回転の速度で回1訳
させながらシリコン基板3上に酸化シリコン膜を50n
m形成した。
N20 (nitrous oxide) gas, for example, at 15 (SC)
CM) and 200 nm (SCCM), the pressure inside the sample chamber l was maintained at s, o (Torr), and the wavelength +85 nm (3
, 3 mW/m), a 50 nm silicon oxide film is deposited on the silicon substrate 3 while rotating the wafer susceptor 2 once at a speed of 10 seconds/1 rotation.
m was formed.

次にガス導入ロアを閉じ、メカニカルブースタポンプ9
を使用して、試料室1内を10 ”(Torr)LJ下
主でjLケまた徘、せ弛宕1山り、−N nガスか進入
して大気圧にもどし、試料室1を開いて試料3を取り出
した。
Next, close the gas introduction lower and mechanical booster pump 9
Using a 10" (Torr) LJ, enter the inside of the sample chamber 1 with a 10" (Torr) LJ, then let the -N gas enter to return it to atmospheric pressure, and open the sample chamber 1. Sample 3 was taken out.

また、比較のためウェハーサセプタ2を回転させない以
外は上記した試料作製と同一の成膜条件でシリコン基板
上に膜厚が50nmの酸化シリコン膜を形成した比較試
料を作製した。
Further, for comparison, a comparative sample was prepared in which a silicon oxide film having a thickness of 50 nm was formed on a silicon substrate under the same film forming conditions as in the sample preparation described above, except that the wafer susceptor 2 was not rotated.

次に、取り出した試料3及び比較試料を自動偏光分光解
析器により、試料内5点を測定し、膜厚の均一性を調べ
たところ、基板を回転させて酸化シリコン膜を形成した
試料について、膜厚の均一性が基板を回転させない場合
よりも、格段に優れていることが確認された。
Next, using an automatic polarization spectrometer to measure sample 3 and the comparison sample taken out, five points within the sample were measured to examine the uniformity of the film thickness. It was confirmed that the uniformity of the film thickness was much better than when the substrate was not rotated.

なお第2図は、N20/SiH4のガス流量比に対して
、形成された酸化シリコン膜の膜厚均一性について、基
板を回転させた場合とさせない場合で比較したものであ
る。
In addition, FIG. 2 compares the film thickness uniformity of the formed silicon oxide film with respect to the gas flow rate ratio of N20/SiH4 when the substrate is rotated and when the substrate is not rotated.

また前記試料について、それぞれMISキャパシタを作
製し、絶縁耐圧分布を調べたところ、基板を回転させて
酸化シリコン膜を形成した試料について分布の整った均
質な酸化シリコン膜が得られた。
Furthermore, when MIS capacitors were manufactured for each of the samples and the dielectric breakdown voltage distribution was examined, it was found that a homogeneous silicon oxide film with a uniform distribution was obtained for the sample in which the silicon oxide film was formed by rotating the substrate.

なお第3図において、軸)は基板を回転させた場合、(
b)は基板を回転させなかった場合の絶縁耐圧分布を示
したものである。
In Fig. 3, when the board is rotated, the axis () becomes (
b) shows the dielectric strength distribution when the substrate is not rotated.

なお本発明は上記実施例に限定されるものではなく、そ
の要旨を逸脱しない範囲で種々の変形で実施することが
出来、例えば基板は回転に限定されるものではなく、横
方向へ基板を往復運動させても良いことは言うまでもな
い。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented in various modifications without departing from the gist thereof. For example, the substrate is not limited to rotation, but may be reciprocated in the horizontal direction. It goes without saying that it is good to exercise.

更に、上記した試料室内のガス圧力や基板加熱温度等の
条件は仕様等に応じて適宜定めれば良いことは言うまで
もない。
Furthermore, it goes without saying that the conditions such as the gas pressure in the sample chamber and the substrate heating temperature described above may be determined as appropriate according to specifications and the like.

また、使用する光源の波長は上記実施例に限定されるも
のではなく、光化学気相成長により絶縁膜等を形成する
際、反応ガスを励起9分解することが可能な300nm
以下の波長であれば良く、例えば254nm(I 1.
OmW/cyl)の低圧水銀灯を用いても良いことは言
うまでもない。
In addition, the wavelength of the light source used is not limited to the above example, and is 300 nm, which can excite and decompose a reactive gas when forming an insulating film etc. by photochemical vapor deposition.
Any wavelength below is sufficient, for example 254 nm (I 1.
It goes without saying that a low-pressure mercury lamp (OmW/cyl) may also be used.

〈発明の効果〉 以上のように本発明によれば、膜厚及び膜質の均一な薄
膜を簡単な構造を付加するのみで容易に形成することが
でき、ゲート絶縁膜から層間絶縁膜まで幅広い薄膜形成
に用いることができ、極めて有効なものである。
<Effects of the Invention> As described above, according to the present invention, a thin film with uniform thickness and quality can be easily formed by adding a simple structure, and a wide range of thin films from gate insulating films to interlayer insulating films can be formed. It can be used for formation and is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第3図(a)及び(b)はそれぞれ本発明装置及び従来
装置により形成された酸化シリコン膜の絶縁耐圧分布を
示す図である。 l・・・試料室、2・・・ウェハーサセプタ、3・・・
シリコンウェハー、4・・・ヒーターブロック、5・・
・合成石英よりなる入射窓、6・・・低圧水銀灯、7・
・・ガス導入口、11・・・サセプタピックアップ機構
、I2・・・モータ。 特許出願人 工業技術院長 等々力 達第2図 ε (MV/Cm) E (MV/cm) 耗殊町麗鳴 第3図
FIGS. 3(a) and 3(b) are diagrams showing the breakdown voltage distribution of silicon oxide films formed by the apparatus of the present invention and the conventional apparatus, respectively. l...Sample chamber, 2...Wafer susceptor, 3...
Silicon wafer, 4... Heater block, 5...
・Entrance window made of synthetic quartz, 6...low-pressure mercury lamp, 7.
...Gas inlet, 11...Susceptor pickup mechanism, I2...Motor. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 2 ε (MV/Cm) E (MV/cm) Reimei, Izushu-cho Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、波長300nm以下の紫外光を放射する光源と該光
源からの光を透過するような入射窓を備えた反応室から
なる光化学気相成長装置において、上記反応室内に載置
される基板を上記光源に対して回転あるいは往復動運動
させる手段を備えてなることを特徴とする光化学気相成
長装置。
1. In a photochemical vapor deposition apparatus consisting of a reaction chamber equipped with a light source that emits ultraviolet light with a wavelength of 300 nm or less and an entrance window that transmits the light from the light source, the substrate placed in the reaction chamber is A photochemical vapor deposition apparatus characterized by comprising means for rotating or reciprocating a light source.
JP6855686A 1986-03-28 1986-03-28 Photochemical vapor deposition equipment Pending JPS62226630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6855686A JPS62226630A (en) 1986-03-28 1986-03-28 Photochemical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6855686A JPS62226630A (en) 1986-03-28 1986-03-28 Photochemical vapor deposition equipment

Publications (1)

Publication Number Publication Date
JPS62226630A true JPS62226630A (en) 1987-10-05

Family

ID=13377151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6855686A Pending JPS62226630A (en) 1986-03-28 1986-03-28 Photochemical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPS62226630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240032A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd High-speed formation of si oxide film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121915A (en) * 1982-12-28 1984-07-14 Hitachi Ltd Vapor growth device
JPS59231819A (en) * 1983-06-15 1984-12-26 Hitachi Ltd Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121915A (en) * 1982-12-28 1984-07-14 Hitachi Ltd Vapor growth device
JPS59231819A (en) * 1983-06-15 1984-12-26 Hitachi Ltd Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240032A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd High-speed formation of si oxide film

Similar Documents

Publication Publication Date Title
US5614252A (en) Method of fabricating barium strontium titanate
US6514801B1 (en) Method for manufacturing thin-film transistor
US6150265A (en) Apparatus for forming materials
US5759923A (en) Method and apparatus for fabricating silicon dioxide and silicon glass layers in integrated circuits
JP3517934B2 (en) Method of forming silicon film
JPS61127121A (en) Formation of thin film
US4588610A (en) Photo-chemical vapor deposition of silicon nitride film
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
EP0005491A1 (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
JPH0774245A (en) Semiconductor device and fabrication thereof
JP2002502108A (en) Surface modification of semiconductors using electromagnetic radiation
JPH07321046A (en) Device and method for thin film formation
JPH06333857A (en) Device and method for forming film
JP3973051B2 (en) Method and apparatus for depositing materials using primers
JP3491903B2 (en) Method for manufacturing thin film semiconductor device
JPS62226630A (en) Photochemical vapor deposition equipment
JPH0233153A (en) Manufacture of semiconductor device
JPH09263944A (en) Film forming device
US6417115B1 (en) Treatment of dielectric materials
US6281122B1 (en) Method for forming materials
JPS593931A (en) Forming of thin film
JP2000349084A (en) Silicone polymer insulation film on semiconductor substrate, and method for formation thereof
JPH08125185A (en) Method and system for fabricating thin film transistor
JPS629189B2 (en)
JPS62160732A (en) Forming method for silicon oxynitride films