JPS6222540B2 - - Google Patents

Info

Publication number
JPS6222540B2
JPS6222540B2 JP55143626A JP14362680A JPS6222540B2 JP S6222540 B2 JPS6222540 B2 JP S6222540B2 JP 55143626 A JP55143626 A JP 55143626A JP 14362680 A JP14362680 A JP 14362680A JP S6222540 B2 JPS6222540 B2 JP S6222540B2
Authority
JP
Japan
Prior art keywords
thin film
silicon
pressure sensor
polycrystalline thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55143626A
Other languages
Japanese (ja)
Other versions
JPS5768079A (en
Inventor
Shinji Onga
Kazumichi Oomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14362680A priority Critical patent/JPS5768079A/en
Publication of JPS5768079A publication Critical patent/JPS5768079A/en
Publication of JPS6222540B2 publication Critical patent/JPS6222540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁性単結晶基板上に設けられた多
結晶薄膜シリコン又は、半導体基板上のフイール
ド絶縁膜上に設けられた多結晶薄膜シリコンを利
用した半導体圧力センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure sensor using polycrystalline thin film silicon provided on an insulating single crystal substrate or polycrystalline thin film silicon provided on a field insulating film on a semiconductor substrate. .

従来、圧力センサーとして、半導体の抵抗変化
を利用した、ダイアフラム型圧力センサーがよく
知られている。これは、例えば、化学エツチ等の
方法で、シリコンの円板の中央部に、周囲より薄
い部分を作り、この部分に、シリコンウエーハと
伝導型を異にする領域を拡散等により形成し、こ
の部分を圧力により変形をうけるようにする。さ
らに、この伝導型を異にする部分に電流を流し、
抵抗変化を検出できるように配線し、薄い部分が
上面と下面との圧力差により変形し、これにより
異なつた伝導型部分の抵抗の変化を検出して、そ
の圧力差を検出していた。
Conventionally, a diaphragm type pressure sensor that utilizes resistance change of a semiconductor is well known as a pressure sensor. For example, a thinner part is created in the center of a silicon disk than the surrounding area using a method such as chemical etching, and a region having a conductivity type different from that of the silicon wafer is formed in this part by diffusion or other methods. To cause a part to undergo deformation due to pressure. Furthermore, by passing current through parts with different conductivity types,
Wiring was done so that changes in resistance could be detected, and the thin part deformed due to the pressure difference between the top and bottom surfaces, thereby detecting the change in resistance of the different conductive parts, and detecting the pressure difference.

しかし、このような従来の半導体圧力センサー
には、次のようないくつかの難点を有していた。
すなわち、 (i) 圧力差に対して、センサー部分が一様に変形
するようにするため、Si基板の中央部を同じ厚
さになるようにエツチングしなければならなか
つた。また、センサーの製品間でも特性を同一
にするため、同じ厚さになるようにエツチング
しなければならなかつた。
However, such conventional semiconductor pressure sensors have the following drawbacks.
Namely, (i) In order to ensure that the sensor portion deforms uniformly in response to a pressure difference, the central portion of the Si substrate had to be etched to the same thickness. In addition, in order to make the characteristics the same between sensor products, it was necessary to etch them to the same thickness.

(ii) センサー部分の抵抗の温度に対する変化量が
大きくて、温度の測定を正確に認識しないと、
歪の大きさを大きく誤認するおそれがあつた。
(ii) If the resistance of the sensor part varies greatly with temperature and the temperature measurement cannot be recognized accurately,
There was a risk that the magnitude of distortion could be greatly misjudged.

(iii) センサーの電流を流す方向と、結晶面の種々
の方位との関係をきびしく管理しなければなら
なかつた。これは、シリコン単結晶のバンド構
造の本質にかかわる問題であり、センサーの電
流担体が電子であるか、正孔であるかによつて
もこまかく方位を管理する必要があつた。
(iii) The relationship between the direction of current flow in the sensor and the various orientations of the crystal planes had to be strictly controlled. This problem concerns the essence of the band structure of silicon single crystals, and it was necessary to carefully control the orientation depending on whether the current carrier in the sensor is electrons or holes.

本発明の目的はこのような欠点を解決するもの
である。すなわち、多結晶薄膜シリコンを利用す
ることにより、上記(i)の欠点に対しては、単に、
多結晶薄膜シリコンの膜厚を制御するだけでよ
く、ロツト間、Wafer間でも、バラツキの管理が
容易になる。さらに、上記(ii)の欠点に対しては、
本発明の効果の最大の特長である、特性の温度変
化依存在がほぼ皆無になり解決される。また上記
欠点(iii)に対しては、本発明によつて、基板の面方
位に対して、センサー部分はいづれの方向でもよ
く、したがつて、素子作成上の工程管理の困難度
も解決される。さらに、本発明では多結晶薄膜シ
リコンを用いているため、その膜の成長装置は、
通常のシリコン単結晶用の気相成長装置に比べ、
低温で稼動できるため装置の維持が容易である。
The object of the present invention is to overcome these drawbacks. In other words, by using polycrystalline thin film silicon, the above drawback (i) can be solved simply by
It is only necessary to control the thickness of the polycrystalline thin film silicon, making it easy to manage variations between lots and between wafers. Furthermore, regarding the drawback of (ii) above,
The dependence of characteristics on temperature changes, which is the greatest feature of the effects of the present invention, is almost completely eliminated. Further, regarding the above drawback (iii), according to the present invention, the sensor portion can be placed in any direction with respect to the surface orientation of the substrate, and therefore the difficulty in process control during device fabrication is solved. Ru. Furthermore, since polycrystalline thin film silicon is used in the present invention, the film growth apparatus is
Compared to regular silicon single crystal vapor phase growth equipment,
The equipment is easy to maintain because it can be operated at low temperatures.

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 本発明により多結晶薄膜シリコン中に電解効果
トランジスターを作成しこれを圧力センサー部分
に用いた実施例を第1図に示す。用いたシリコン
単結晶基板1は(001)面でその板厚は170μmで
あつた。この上に1.0μmの酸化シリコン膜2を
ウエツト酸素雰囲気で1000℃で成長させた。さら
に多結晶薄膜シリコン3をたとえば、3500Åだけ
成長さた。この多結晶薄膜シリコン3を写真食刻
法と、プラズマエツチング法を用いることによ
り、多結晶薄膜シリコンを島状にぬいた。このよ
うな構造で、次に950℃でドライ酸素雰囲気で酸
化を行ない、ゲート酸化膜4を成長きせた。ゲー
ト酸化膜の厚さは、同時に酸化したバルクシリコ
ンをテストピースとして測定し、660Åの値を得
た。さらにひきつづきゲート電極用の多結晶シリ
コン5を3500Å成長させ、再び写真食刻法と、プ
ラズマエツチング法とを用い、4,5を加工して
ゲート領域を作成した。次にソース、ドレイン6
と7、及び、ゲート電極5を、たとえばPOCl3
囲気中でN型伝導体とした。次に圧力センサー部
分の保護膜として酸化シリコン膜8を9000Å成長
させた。しかる後に、写真食刻法と化学薬品を用
いることにより、電極用窓9をあけた。さらにこ
の上に金属アルミ電極と蒸着し、アニールするこ
とにより、オーミツクコンタクトが得られ、ま
た、充分MOS素子として挙動することを確認し
た。
Example 1 FIG. 1 shows an example in which a field effect transistor was fabricated in polycrystalline thin film silicon according to the present invention and used as a pressure sensor portion. The silicon single crystal substrate 1 used had a (001) plane and a thickness of 170 μm. A 1.0 μm silicon oxide film 2 was grown thereon at 1000° C. in a wet oxygen atmosphere. Further, a polycrystalline thin film 3 of, for example, 3500 Å was grown. This polycrystalline thin film silicon 3 was cut out into island shapes by using a photolithography method and a plasma etching method. With this structure, oxidation was then performed at 950° C. in a dry oxygen atmosphere to grow a gate oxide film 4. The thickness of the gate oxide film was measured using a test piece of bulk silicon that was oxidized at the same time, and a value of 660 Å was obtained. Further, polycrystalline silicon 5 for a gate electrode was grown to a thickness of 3500 Å, and again photolithography and plasma etching were used to process 4 and 5 to form a gate region. Next, source and drain 6
and 7, and the gate electrode 5 were made into N-type conductors, for example, in a POCl 3 atmosphere. Next, a silicon oxide film 8 was grown to a thickness of 9000 Å as a protective film for the pressure sensor portion. Thereafter, electrode windows 9 were opened using photolithography and chemicals. Furthermore, by depositing a metal aluminum electrode on top of this and annealing it, it was confirmed that ohmic contact was obtained and that it behaved well as a MOS device.

また、ゲート下のチヤネル部分のボロンイオン
注入の条件は次のようにした。ボロンイオン注入
の加速電圧は40kvとし、ドーズ量は1010〜1012
cm2種々変化させた。
The conditions for boron ion implantation into the channel portion under the gate were as follows. The accelerating voltage for boron ion implantation was 40 kV, and the dose was 10 10 to 10 12 /
cm2 was varied.

次に圧力センサーの特性をしらべるため、用い
た治具を第2図に示す。
Next, Figure 2 shows the jig used to examine the characteristics of the pressure sensor.

圧力センサーを基板のまま、ほそい長方形にス
クライブ10した。このとき、センサーにおける
電流方向は長軸方向にとつた。また、スクライブ
した長方形の基板の大きさは3mm×20mmであつ
た。次にこのセンサーを第2図に示す治具にとり
つけた。この状態で、マイクロメーターヘツド1
1を回転させて、人為的に歪を加えた。その歪の
量Δεは、試料と治具の幾何学的位置及び、マイ
クロメータヘツドの回転角から計算した。
The pressure sensor was scribed into a thin rectangle 10 times as a substrate. At this time, the current direction in the sensor was in the long axis direction. The size of the scribed rectangular substrate was 3 mm x 20 mm. Next, this sensor was attached to the jig shown in FIG. In this state, micrometer head 1
1 was rotated and artificially distorted. The amount of strain Δε was calculated from the geometrical positions of the sample and jig and the rotation angle of the micrometer head.

第3図に本発明による圧力センサーの特性曲線
を示す。たて軸のΔρ/ρは、歪Δεをかける前
後における変化率を示している。Δρ/ρの値が
正の場合は、歪を印加した状態では、抵抗値が増
大したことを示す。また歪Δεが正の場合は、セ
ンサー内部に引張り応力が加わつていることを示
し、逆にΔεが負の場合は、センサー内部に圧縮
応力が加わつていることを示している。
FIG. 3 shows the characteristic curve of the pressure sensor according to the invention. Δρ/ρ on the vertical axis indicates the rate of change before and after applying the strain Δε. If the value of Δρ/ρ is positive, it indicates that the resistance value has increased under the applied strain. Further, when the strain Δε is positive, it indicates that tensile stress is applied inside the sensor, and conversely, when Δε is negative, it indicates that compressive stress is applied inside the sensor.

第3図には、チヤンネル部分のボロンイオン注
入が、5×1011/cm2の場合を示した。特性測定に
あたり、ゲート電圧と、測定温度を種々変化させ
た。ゲート電圧が10Vの場合を第3図の12に示
す。温度は473〓から101〓まで変化させたが、本
発明によるセンサーでは、温度に対するΔρ/ρ
の変化量は1%以下であつた。またゲート電圧が
15Vの場合の特性を曲線13に示す。このよう
に、従来になく温度依存性が極めて小さいセンサ
ーを形成することができた。
FIG. 3 shows the case where the boron ion implantation in the channel portion was 5×10 11 /cm 2 . When measuring the characteristics, we varied the gate voltage and measurement temperature. 12 in FIG. 3 shows the case where the gate voltage is 10V. The temperature was varied from 473〓 to 101〓, but in the sensor according to the present invention, Δρ/ρ with respect to temperature
The amount of change was less than 1%. Also, the gate voltage
Curve 13 shows the characteristics in the case of 15V. In this way, we were able to create a sensor with extremely low temperature dependence, unlike anything ever before.

また従来センサーの特性については、後で詳細
にのべるが、温度が10℃変化しただけでもそのΔ
ρ/ρは数%も変化する。
In addition, as for the characteristics of conventional sensors, which will be discussed in detail later, even if the temperature changes by 10°C, the Δ
ρ/ρ changes by several percent.

また第3図からわかるように、ゲート電圧が大
きい方が、歪Δεに対するΔρ/ρの変化が敏感
であることがわかる。また本発明では先にものべ
たように、素子の特性曲線に関して、素子のチヤ
ンネル方向と基板面内の方位との関係は殆んど無
関係であつた。これは、実際に圧力センサーを作
成する工程上で、新しい自由度を生み、しかも、
工程管理上も非常に有益である。
Further, as can be seen from FIG. 3, it can be seen that the larger the gate voltage is, the more sensitive is the change in Δρ/ρ to the strain Δε. Further, in the present invention, as mentioned above, regarding the characteristic curve of the element, the relationship between the channel direction of the element and the orientation within the substrate plane is almost unrelated. This creates a new degree of freedom in the process of actually creating a pressure sensor, and
It is also very useful in terms of process control.

従来方法によつて半導体圧力センサーを作成す
るに当り、その方向を種々変化させた場合につい
ては後述するが、従来技術ではその方位の送定が
特性に対して非常に重要な因子であつた。
In producing a semiconductor pressure sensor by a conventional method, cases in which the direction is variously changed will be described later, but in the prior art, the direction of transmission was a very important factor in determining the characteristics.

次に、MOSを形成しない多結晶薄膜シリコン
の圧力センサーを示す。まず単結晶(001)シリ
コン基板上に酸化シリコン膜を1.0μm成長させ
た。次に圧力センサーとなる多結晶薄膜シリコン
を4000Å成長させた。これをやはり写真食刻法と
エツチング法により島状にぬいた。この島状多結
晶薄膜シリコン領域にたとえばAsイオンを1×
1016/cm2のドーズだけ200KVで打ち込んだ。次に
1000℃で25分間アニールすることによりこのAs
イオンを電気的に活性な状態にした。次に先の実
施例とはことなり、ゲート酸化膜を成長させずに
メタルマスクを用いてAu―Sb8%を蒸着し電極と
した。その後400℃10分間アニールすることによ
り、オーミツクコンタクトを得ることができた。
Next, we will show a polycrystalline thin film silicon pressure sensor that does not form a MOS. First, a 1.0 μm thick silicon oxide film was grown on a single crystal (001) silicon substrate. Next, they grew a 4000Å polycrystalline silicon film that would become the pressure sensor. This was then sewn into island shapes using photoetching and etching. For example, As ions are applied to this island-like polycrystalline thin film region at 1×
Only a dose of 10 16 /cm 2 was applied at 200KV. next
This As by annealing at 1000 °C for 25 min
The ions were made electrically active. Next, unlike the previous example, 8% Au--Sb was evaporated using a metal mask to form an electrode without growing a gate oxide film. After that, an ohmic contact could be obtained by annealing at 400°C for 10 minutes.

同多結晶薄膜シリコンセンサーを含む基板を
3.5mm×15mmの長方形に切り出し第2図の治具を
用い、特性を測定した。その結果を第4図に示
す。
The substrate containing the same polycrystalline thin film silicon sensor
A rectangle of 3.5 mm x 15 mm was cut out and its characteristics were measured using the jig shown in Figure 2. The results are shown in FIG.

直線14に示すように、引張り及び、圧縮に関
してやはりよい直線性が得られた。第3図と比較
すると、歪Δεに対する抵抗の変化率Δρ/ρは
劣るが、温度依存性は、473〜101〓の間で皆無で
あつた。
As shown by straight line 14, good linearity in tension and compression was also obtained. Compared with FIG. 3, the rate of change in resistance Δρ/ρ with respect to strain Δε was inferior, but the temperature dependence was between 473 and 101〓 and was completely absent.

また、シリコン基板面内における方位依存性も
殆んどなく、また基板としてサフアイア基板
(0001)面を用いてもほぼ同様の効果がえられ
た。また、上記実施例1と異なり、D型(デプレ
ツシヨンモード)多結晶薄膜MOS圧力センサー
を作成したが、やはり同様の効果がえられた。
Furthermore, there was almost no orientation dependence within the plane of the silicon substrate, and almost the same effect was obtained even when a sapphire substrate (0001) plane was used as the substrate. Furthermore, unlike in Example 1, a D-type (depression mode) polycrystalline thin film MOS pressure sensor was fabricated, but similar effects were obtained.

実施例 2 第5図に本発明を用いて作成したダイヤフラム
型の圧力センサーを示す。図中の15は、本発明
により作成したダイヤフラム型圧力センサーの基
板を示す。この基板はたとえば単結晶シリコン
と、その上に成長させた酸化膜からできている。
これをクランプ16で円周部分をとめている。1
5の上には、本発明になる多結晶薄膜シリコンよ
りなる電界効果型圧力センサー17,18を設け
た。このとき、そのチヤンネル方向を、17はダ
イヤフラムの半径方向に、18は、半径方向に直
角に設けた。6,7はそれぞれソースとドレイン
を示す。
Example 2 FIG. 5 shows a diaphragm type pressure sensor produced using the present invention. Reference numeral 15 in the figure indicates a substrate of a diaphragm type pressure sensor produced according to the present invention. This substrate is made of, for example, single crystal silicon and an oxide film grown on it.
This is fixed at the circumferential portion with a clamp 16. 1
Field effect pressure sensors 17 and 18 made of polycrystalline thin film silicon according to the present invention were provided on top of the pressure sensor 5 . At this time, the channel directions 17 were provided in the radial direction of the diaphragm, and 18 were provided at right angles to the radial direction. 6 and 7 indicate a source and a drain, respectively.

このようにして、圧力P1と圧力P2をかけてみ
た。今P1>P2の場合は図に示すようにダイヤフラ
ムはわん曲する。これにつれて圧力センサー1
7,18も変形する。このとき17と18の両圧
力センサーにおいて、その歪Δεに対する感度す
なわち|Δρ/ρ/Δε|の値は、ほぼ同じで12.01と 12.03であつた。この値のちがいは個体によるち
がいで、両者の2方向による有意差はないと言え
る。この実施例では、半導体電界効果形圧力セン
サーとしたが、多結晶薄膜シリコンを単に島状に
したものでその端に電極をつけた圧力センサーを
用いたダイヤフラム型でも上記と同様の効果すな
わち方向による感度の差はみとめられなかつた。
又、温度変化に対する感度の変化も473Kと101K
の間で、実験誤差を考慮しても1%以下であつ
た。
In this way, I applied pressure P 1 and pressure P 2 . If P 1 > P 2 , the diaphragm bends as shown in the figure. Along with this, pressure sensor 1
7 and 18 are also transformed. At this time, in both pressure sensors 17 and 18, the sensitivity to strain Δε, that is, the value of |Δρ/ρ/Δε|, was almost the same, 12.01 and 12.03. The difference in this value depends on the individual, and it can be said that there is no significant difference between the two directions. In this example, a semiconductor field effect type pressure sensor was used, but a diaphragm type pressure sensor using a simple island-shaped polycrystalline thin film silicon with an electrode attached to the end can also have the same effect as above, that is, due to the direction. No difference in sensitivity was observed.
Also, the change in sensitivity to temperature changes is 473K and 101K.
The difference was less than 1% even considering experimental errors.

次に従来技術を用いて、半導体圧力センサーを
作成した場合の特性を示す。用いたシリコン単結
晶基板は(001)面であつた。これに多結晶薄膜
シリコンゲートのMOS型センサーを作つた。ま
た素子の基板との分離にはp―n接合法を用い
た。
Next, the characteristics of a semiconductor pressure sensor created using the conventional technology will be described. The silicon single crystal substrate used was a (001) plane. Based on this, we created a MOS type sensor with a polycrystalline thin film silicon gate. Furthermore, a pn junction method was used to separate the element from the substrate.

今、チヤネル方向を基板に対して〔100〕方向
と、〔110〕方向の2方向にセンサーを作成した。
そしてそれぞれチヤネル方向を長軸とするように
基板から素子を含んで切り出した。第2図に示す
治具を用いてセンサーの特性曲線を調べた。この
とき、ゲート電圧を5VとしてΔεとΔρ/ρと
の関係を測定した。また温度を300〓と273〓につ
いてその特性曲線をしらべた。その結果を第6図
の19,20,21,22に示す。
Now, I have created sensors with channel directions in two directions, the [100] direction and the [110] direction with respect to the board.
Then, each of the substrates was cut out including the elements so that the long axis was in the channel direction. The characteristic curve of the sensor was investigated using the jig shown in FIG. At this time, the relationship between Δε and Δρ/ρ was measured with a gate voltage of 5V. We also investigated the characteristic curves at temperatures of 300〓 and 273〓. The results are shown at 19, 20, 21, and 22 in FIG.

これらの特性曲線から次のことがわかつた。 The following was found from these characteristic curves.

〔100〕方向と〔110〕方向ではΔρ/ρの特
性が約10倍のちがいがある。このことは素子セ
ンサー作成上、方位決定を非常に慎重にしなけ
ればならないことを示している。
There is a difference of about 10 times in the characteristics of Δρ/ρ between the [100] direction and the [110] direction. This indicates that the direction must be determined very carefully when creating the element sensor.

300〓における特性曲線と273〓における特性
曲線とを比較すると、同じΔεでもΔρ/ρの
量が30%もちがつている。このように大きい温
度依存性をもつていることは、センサー利用
上、温度の測定を非常に正確にしないと、Δε
の量を大きく見誤まることになる。
Comparing the characteristic curve for 300〓 and the characteristic curve for 273〓, even with the same Δε, the amount of Δρ/ρ is different by 30%. Having such a large temperature dependence means that temperature measurement must be very accurate when using the sensor.
This would lead to a huge misjudgment of the amount.

本発明の応用分野はたとえば、化学プラントの
流量の測定や、動物の血圧の測定など温度変化が
ともなう流体の応用には大きな利益を生む。
Fields of application of the invention are, for example, of great benefit in applications involving fluids that are subject to temperature changes, such as the measurement of flow rates in chemical plants or the measurement of blood pressure in animals.

又、圧力センサー部分を単に化学エツチなどで
島状にぬいて作ることができるので、従来は、セ
ンサー部分は、周囲の半導体と異つた伝導型を形
成するに当り、拡散等を用いている。このため浮
遊p―n接合容量および、電流漏洩の問題があつ
た。p―n接合分離は用いる必要がなくなる。し
たがつて面積は小さくてすみ小型化に有利であ
る。
Furthermore, since the pressure sensor portion can be simply etched into an island shape using chemical etching, conventionally, the sensor portion uses diffusion or the like to form a conductivity type different from that of the surrounding semiconductor. This caused problems of floating pn junction capacitance and current leakage. There is no need to use pn junction isolation. Therefore, the area is small, which is advantageous for miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明を説明する為の図、第
3図、第4図は本発明特性を示す特性図、第5図
は本発明の応用を示す図、第6図はダイヤフラム
型圧力センサーの特性図である。 図に於いて、1……シリコン単結晶基板、2…
…酸化シリコン膜、3……多結晶薄膜シリコン、
4……ゲート酸化膜、5……ゲート電極用多結晶
シリコン、6,7……ソースとドレイン、8……
酸化シリコン膜、9……電極用窓、10……圧力
センサー、11……マイクロメーターヘツド、1
2……ゲート電圧が10Vの場合のΔρ/ρとΔε
の関係曲線、13……ゲート電圧が15Vの場合の
Δρ/ρとΔεの関係曲線、14……圧力センサ
ー特性、15……基板、16……クランプ、1
7,18……多結晶薄膜シリコンによる圧力セン
サー、19,20,21,22……圧力センサー
特性。
Figures 1 and 2 are diagrams for explaining the present invention, Figures 3 and 4 are characteristic diagrams showing the characteristics of the present invention, Figure 5 is a diagram showing the application of the present invention, and Figure 6 is a diaphragm. It is a characteristic diagram of a type|mold pressure sensor. In the figure, 1...silicon single crystal substrate, 2...
...Silicon oxide film, 3...Polycrystalline thin film silicon,
4... Gate oxide film, 5... Polycrystalline silicon for gate electrode, 6, 7... Source and drain, 8...
Silicon oxide film, 9... Electrode window, 10... Pressure sensor, 11... Micrometer head, 1
2...Δρ/ρ and Δε when the gate voltage is 10V
13...Relationship curve between Δρ/ρ and Δε when the gate voltage is 15V, 14...Pressure sensor characteristics, 15...Substrate, 16...Clamp, 1
7, 18... Pressure sensor using polycrystalline thin film silicon, 19, 20, 21, 22... Pressure sensor characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性単結晶基板上の多結晶薄膜シリコン又
は、半導体基板上の絶縁膜上に設けられた多結晶
薄膜シリコン上にゲート領域とこのゲート領域の
両側の前記多結晶薄膜シリコンにソース及びドレ
インが形成されたMOS型の素子を有し、かつ前
記基板側と多結晶薄膜シリコン側の圧力差による
歪により誘起される抵抗変化を検出する半導体圧
力センサー。
1 A gate region is formed on a polycrystalline thin film silicon on an insulating single crystal substrate or a polycrystalline thin film silicon provided on an insulating film on a semiconductor substrate, and a source and a drain are formed on the polycrystalline thin film silicon on both sides of this gate region. A semiconductor pressure sensor that has a MOS type element formed therein and detects a resistance change induced by strain caused by a pressure difference between the substrate side and the polycrystalline thin film silicon side.
JP14362680A 1980-10-16 1980-10-16 Semiconductor pressure sensor Granted JPS5768079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14362680A JPS5768079A (en) 1980-10-16 1980-10-16 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14362680A JPS5768079A (en) 1980-10-16 1980-10-16 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPS5768079A JPS5768079A (en) 1982-04-26
JPS6222540B2 true JPS6222540B2 (en) 1987-05-19

Family

ID=15343121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14362680A Granted JPS5768079A (en) 1980-10-16 1980-10-16 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS5768079A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339190B4 (en) * 1992-11-16 2006-04-13 Denso Corp., Kariya Semiconductor accelerometer
JP3303430B2 (en) * 1993-05-21 2002-07-22 株式会社デンソー FET type acceleration sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831078A (en) * 1971-08-26 1973-04-24
JPS54150987A (en) * 1978-05-18 1979-11-27 Gulton Ind Inc Strain gauge transducer and method of fabricating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831078A (en) * 1971-08-26 1973-04-24
JPS54150987A (en) * 1978-05-18 1979-11-27 Gulton Ind Inc Strain gauge transducer and method of fabricating same

Also Published As

Publication number Publication date
JPS5768079A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
KR840002283B1 (en) Silicon pressure sensor
US4188258A (en) Process for fabricating strain gage transducer
US4791465A (en) Field effect transistor type semiconductor sensor and method of manufacturing the same
US3994009A (en) Stress sensor diaphragms over recessed substrates
US4275406A (en) Monolithic semiconductor pressure sensor, and method of its manufacture
JPH0116030B2 (en)
US4287772A (en) Strain gage transducer and process for fabricating same
JPH05273053A (en) Temperature sensor and manufacture of the same
US4204185A (en) Integral transducer assemblies employing thin homogeneous diaphragms
CN112250031A (en) Thermopile infrared sensor with self-contained linear thermal resistance correction and preparation method thereof
US3848329A (en) Method for producing a semiconductor strain sensitive element of an electromechanical semiconductor transducer
JPS60126871A (en) Semiconductor pressure-sensitive device and manufacture thereof
JPS6222540B2 (en)
EP0149330B1 (en) Isfet sensor and method of manufacture
EP0211609A2 (en) Chemically sensitive semiconductor devices and their production
JPS6276784A (en) Semiconductor pressure sensor and its manufacture
EP0174712A2 (en) Semiconductor devices having electrically conductive paths
JPH0554708B2 (en)
JPH01136378A (en) Manufacture of pressure transducer
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
JPH0679009B2 (en) Chemical sensor
JPH03208375A (en) Semiconductor pressure sensor
JPS6097677A (en) Semiconductor pressure sensor
JPH02196472A (en) Semiconductor pressure sensor
JPS59172778A (en) Manufacture of pressure sensor