JPS6222531B2 - - Google Patents

Info

Publication number
JPS6222531B2
JPS6222531B2 JP82500649A JP50064982A JPS6222531B2 JP S6222531 B2 JPS6222531 B2 JP S6222531B2 JP 82500649 A JP82500649 A JP 82500649A JP 50064982 A JP50064982 A JP 50064982A JP S6222531 B2 JPS6222531 B2 JP S6222531B2
Authority
JP
Japan
Prior art keywords
chip
temperature
alloy
contact
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP82500649A
Other languages
Japanese (ja)
Other versions
JPS58501648A (en
Inventor
Yabanchu Kei Hatsusan
Sebujin Okutai
Jon Ei Paibanasu
Kurarensu Jei Supekutaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPS58501648A publication Critical patent/JPS58501648A/en
Publication of JPS6222531B2 publication Critical patent/JPS6222531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4338Pistons, e.g. spring-loaded members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Description

請求の範囲 1 基体と、上記基体の1つの表面に取付けられ
た半導体チツプと、上記半導体チツプの第2の表
面に密接して配置された熱伝達素子と、上記熱伝
達素子及び上記チツプ間の界面に配置された熱伝
導性非共晶合金の薄層とより成り、 上記熱伝導性非共晶合金は、ビスマス、鉛、錫
及びインジウムを含む合金であつて、上記半導体
チツプの温度が正常動作温度を上廻つたとき、固
相線・液相線温度範囲に入るような固相線温度を
有する合金であることを特徴とする、冷却手段を
備えた半導体組立体。
Claim 1: A base body, a semiconductor chip attached to one surface of the base body, a heat transfer element disposed in close proximity to a second surface of the semiconductor chip, and a heat transfer element between the heat transfer element and the chip. a thin layer of a thermally conductive non-eutectic alloy disposed at the interface, the thermally conductive non-eutectic alloy being an alloy containing bismuth, lead, tin, and indium such that the temperature of the semiconductor chip is normal. 1. A semiconductor assembly equipped with cooling means, characterized in that the alloy is an alloy having a solidus temperature that falls within the solidus/liquidus temperature range when the operating temperature is exceeded.

2 上記合金は重量比で51.45%のビスマス、
31.35%の鉛、15.20%の錫及び2.0%のインジウム
の組成である請求の範囲第1項記載の半導体組立
体。
2 The above alloy contains 51.45% bismuth by weight,
The semiconductor assembly of claim 1 having a composition of 31.35% lead, 15.20% tin and 2.0% indium.

3 上記合金は重量比で48.35%のビスマス、
28.15%の鉛、14.50%の錫及び9.0%のアンチモン
の組成である請求の範囲第1項記載の半導体組立
体。
3 The above alloy contains 48.35% bismuth by weight,
The semiconductor assembly of claim 1 having a composition of 28.15% lead, 14.50% tin, and 9.0% antimony.

〔技術分野〕〔Technical field〕

本発明は集積回路チツプ・デバイス用の冷却装
置に関するものであり、具体的にはチツプ冷却を
達成するために低い熱的接触抵抗を維持する方法
及び装置に関する。
TECHNICAL FIELD This invention relates to cooling systems for integrated circuit chip devices and, more particularly, to methods and apparatus for maintaining low thermal contact resistance to achieve chip cooling.

〔背景技術〕[Background technology]

集積回路(IC)チツプ・デバイスの応用に際
して、チツプ及びヒートシンクのような隣接素子
間の界面で密着状態を維持すると同時に、チツプ
表面上に重負荷が掛るのを回避することが極めて
望ましい。密着は、過度の温度上昇を防止し且つ
寸法変化、不均等熱膨脹などの不都合な結果が生
じるのを防ぐよう、熱放散を改善するように働ら
く。
In integrated circuit (IC) chip device applications, it is highly desirable to maintain intimate contact at the interface between the chip and adjacent elements, such as heat sinks, while avoiding heavy loads on the chip surface. The adhesion serves to improve heat dissipation to prevent excessive temperature rise and to prevent undesirable consequences such as dimensional changes, uneven thermal expansion, etc. from occurring.

熱放散を正しく行なうためには半導体チツプか
ら熱をうばい去り、その熱を効果的な方法で放散
することが必要である。熱は一般にチツプの1つ
の表面から例えば熱放散装置即ちヒートシンク、
冷は冷却装置へ伝達され、且つチツプの反対側表
面からボンド材料を介して基板へ伝達される。後
者の熱伝達経路を経由する熱の流れに対する抵抗
の方が相対的に高い。従つて熱放散を最大にする
ためには、チツプ表面及び熱放散装置間の界面に
於ける熱抵抗が最小でなければならない。
Proper heat dissipation requires removing heat from the semiconductor chip and dissipating it in an effective manner. Heat is generally transferred from one surface of the chip to a heat dissipator, e.g.
Cooling is transferred to the cooling device and from the opposite surface of the chip through the bond material to the substrate. The resistance to heat flow through the latter heat transfer path is relatively higher. Therefore, to maximize heat dissipation, the thermal resistance at the interface between the chip surface and the heat dissipation device must be minimized.

一般に、ICチツプ・デバイスのための従来の
熱放散技術では、重大な問題を生じることなく85
℃の最大許容チツプ温度まで熱制御することが出
来る。しかし半導体チツプをより高い回路密度
で、より小さく、且つより大きい電力で動作する
ように作る傾向の下では、発熱の大きさは現在採
用されている冷却技術のみでは過熱の問題を解決
できないほど急激に増加する。従つてチツプ界面
に於ける熱抵抗を十分に低下させることは難かし
い。その上ヒートシンク構造体の他の界面位置に
於ける熱抵抗を最小化することも極めて重要であ
る。
Traditional heat dissipation techniques for IC chip devices generally allow
Thermal control is possible up to the maximum allowable chip temperature of °C. However, with the trend of making semiconductor chips smaller, with higher circuit densities, and with higher power consumption, the amount of heat generated is rapidly increasing to the point where currently employed cooling technologies alone cannot solve the overheating problem. increases to Therefore, it is difficult to sufficiently reduce the thermal resistance at the chip interface. Additionally, it is extremely important to minimize thermal resistance at other interface locations of the heat sink structure.

しかし従来のICチツプ組立体の機械的形状は
達成しうる熱接触抵抗の値に影響を及ぼす。例え
ばチツプ表面と熱伝達装置との間の滑らかで連続
したボンデングであるかのように見える部分は、
大概の部分が実は無効な連続状態を生じさせる一
連の比較的少数の接触点であるに過ぎない。かく
て接触界面は比較的高い熱抵抗を与える。理想的
には、界面に於て極めて低い接触負荷を持ちしか
も低い熱抵抗を実現することが徴小ICチツプ・
デバイスにとつて望ましい。更にこれらの状態は
製品の寿命の間適正なレベルに制御され且つ維持
されなければならない。
However, the mechanical geometry of conventional IC chip assemblies affects the value of thermal contact resistance that can be achieved. For example, what appears to be a smooth, continuous bond between the chip surface and the heat transfer device
Most are actually just a series of relatively small number of contact points that create an invalid continuum. The contact interface thus provides a relatively high thermal resistance. Ideally, a small IC chip would have extremely low contact loads at the interface and low thermal resistance.
Desirable for devices. Furthermore, these conditions must be controlled and maintained at appropriate levels during the life of the product.

〔発明の開示〕[Disclosure of the invention]

本発明によつて解決される技術的課題は集積回
路チツプ・デバイスに於ける効率的な熱放散及び
温度制御である。チツプ・デバイス及びヒートシ
ンク間の橋渡し界面に低い熱抵抗を形成するため
に非共晶金属合金が使われる。合金は固相線・液
相線温度範囲を持ち、かくて若しも回路動作中に
ストレスが与えられるならたとえチツプ・デバイ
ス及びヒートシンクの界面に低い接触負荷があつ
たとしても、低い熱抵抗で界面を再確立し且つ維
持する能力を持つ。チツプ界面ばかりでなく、上
述の冷却手段は極めて低い熱抵抗を達成するだけ
に設計次第で、ヒートシンクの他の界面的領域に
於ても使うことが出来る。
The technical problem solved by the present invention is efficient heat dissipation and temperature control in integrated circuit chip devices. Non-eutectic metal alloys are used to create low thermal resistance at the bridging interface between the chip device and the heat sink. The alloy has a solidus-liquidus temperature range and thus exhibits low thermal resistance if stressed during circuit operation, even with low contact loads at the chip device and heat sink interfaces. Has the ability to re-establish and maintain interfaces. In addition to the chip interface, the cooling means described above can also be used in other interfacial areas of the heat sink, depending on the design, as they achieve very low thermal resistance.

〔図面の概略的説明〕[Schematic description of drawings]

第1A図及び1B図はチツプ温度が夫々固相線
温度より低いとき及びより高いときの、一定の接
触負荷の下でのチツプ表面及びヒートシンクの表
面間の界面の状態を図解したIC回路半導体チツ
プ組立体の断面図である。
Figures 1A and 1B are IC circuit semiconductor chips illustrating the state of the interface between the chip surface and the heat sink surface under constant contact load when the chip temperature is below and above the solidus temperature, respectively. FIG. 3 is a cross-sectional view of the assembly.

第2図はチツプ界面に本発明を組込んだICチ
ツプ組立体のヒートシンクの1例の部分切除断面
図である。
FIG. 2 is a partially cutaway sectional view of an example of a heat sink of an IC chip assembly incorporating the present invention at the chip interface.

第3図は一定の界面接触負荷を有するチツプ界
面に於ける熱抵抗減少及び維持特性を図解した、
界面温度に関する界面抵抗のグラフである。
Figure 3 illustrates the thermal resistance reduction and maintenance characteristics at the chip interface with a constant interfacial contact load.
3 is a graph of interfacial resistance with respect to interfacial temperature.

第4図はチツプ及び帽子型カバー界面の両者に
本発明を組込んだICチツプ組立体に於ける他の
ヒートシンク技術の部分切除断面図である。
FIG. 4 is a partially cut away cross-sectional view of another heat sink technique in an IC chip assembly incorporating the present invention at both the chip and cap interface.

本発明を実施するための最良の態様 図について説明するとICパツケージは半導体
チツプ10を含み、それは例えば半田球接続体で
あつてもよいボンド着手段14によつて基体12
へボンド着されている。矢印で示すような制御さ
れた負荷力Fが例えばスプリング16によつてチ
ツプ10へ供給されて、銅のような高熱伝導性材
料製の枢着可能ピストン式熱伝達素子18とチツ
プ10との表面接触度を最大にするように働ら
く。チツプに於て発生された熱はチツプ界面を横
切つてピストン素子へ伝導され、そしてピストン
素子からギヤツプ間隙26を横切る基本的には気
体伝導により包囲構造体へ伝導される。包囲する
帽子型構造体20はICパツケージのカバー及び
付加的な熱放散手段として働らく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the figures, an IC package includes a semiconductor chip 10 which is connected to a substrate 12 by means of bond attachment 14, which may be, for example, a solder ball connection.
He is wearing a bond. A controlled loading force F, as indicated by the arrow, is applied to the chip 10 by, for example, a spring 16, so that the surfaces of the chip 10 and a pivotable piston-type heat transfer element 18 made of a highly thermally conductive material such as copper are applied. Works to maximize contact. Heat generated in the tip is conducted across the tip interface to the piston element and from the piston element to the surrounding structure by essentially gas conduction across the gap gap 26. The surrounding cap structure 20 serves as a cover for the IC package and as an additional heat dissipation means.

本発明に従つてICパツケージの組立中に、低
温度非共晶ビスマス合金22が熱伝導素子へボン
ド着される。良好な実施例で使用された合金は市
販のオストアロイ(Ostalloy、米国Arconium社
製)である。その合金はビスマス51.45%、鉛
31.35%、錫15.20%、インジウム2.0%を含み、約
88℃の固相線温度TS及び約112℃の液相線温度T
Lによつて特徴づけられる。使用しうる他の低溶
融温度合金はビスマス48.35%、鉛28.15%、錫
14.50%及びアンチモン9.0%の組成を有し、約87
℃の固相線温度及び約128℃の液相線温度を有す
る。更に他の組成物もICデバイスの所望温度動
作条件次第で使用可能である。
During assembly of an IC package in accordance with the present invention, a low temperature non-eutectic bismuth alloy 22 is bonded to the thermally conductive elements. The alloy used in the preferred embodiment is a commercially available Ostalloy (manufactured by Arconium, USA). Its alloy is 51.45% bismuth, lead
Contains 31.35%, 15.20% tin, 2.0% indium, approx.
Solidus temperature T S of 88°C and liquidus temperature T S of approximately 112°C
Characterized by L. Other low melting temperature alloys that may be used are 48.35% bismuth, 28.15% lead, and tin.
14.50% and antimony 9.0%, approximately 87
It has a solidus temperature of 128°C and a liquidus temperature of about 128°C. Additionally, other compositions may be used depending on the desired temperature operating conditions of the IC device.

ビスマス合金22はヒートシンク表面上に約
0.05mmの厚さに付着される。但しその付着は最初
は、第1A図に示されたように空所24間の離隔
点に於てチツプ10の表面と実際に接触するに過
ぎない。小集合熱伝達領域上に冷却用チツプ表面
をランダムに接触させるこのような合金の初期状
態では、界面熱抵抗は比較的高く、且つ熱伝導は
比較的低い。
Bismuth alloy 22 is placed on the heatsink surface at approximately
Adhered to a thickness of 0.05mm. However, the attachment initially only makes actual contact with the surface of the chip 10 at the spacing between the cavities 24, as shown in FIG. 1A. In the initial state of such alloys, with random contact of the cooling chip surfaces over small collective heat transfer areas, the interfacial thermal resistance is relatively high and the thermal conductivity is relatively low.

ICパツケージ組立中且つ合金が付着された後
でデバイスの温度が合金の溶融範囲まで高められ
る。チツプの温度が固相線温度TSよりも高い温
度TCへ増加するとビスマス合金は溶融し、そし
て加えられた力Fの作用により粘性流れ条件下
で、空所空間24を満たすように順応する(第1
B図)。結果として生じた増大した接触領域、及
び今や空所を満たしている合金を介するチツプと
熱伝達素子との間の改善された熱経路が界面の熱
抵抗の急激な減少を生じさせ、かくて過剰な熱の
効果的な放散を可能にする。この基本的なプロセ
スでは、薄い合金層の上述の局地的順応作用は表
面張力の制御作用によつて界面領域に局限され
る。
During IC package assembly and after the alloy is deposited, the temperature of the device is increased to the melting range of the alloy. As the temperature of the chip increases to a temperature TC above the solidus temperature TS , the bismuth alloy melts and adapts to fill the void space 24 under viscous flow conditions under the action of an applied force F. (1st
Figure B). The resulting increased contact area and improved thermal path between the chip and the heat transfer element through the alloy that now fills the cavity causes a sharp decrease in the interfacial thermal resistance, thus reducing excess allows effective dissipation of heat. In this basic process, the above-mentioned local accommodation effects of the thin alloy layer are localized to the interfacial region by the controlling effects of surface tension.

その部分の継続する処理中に、例えば寸法的な
変動、熱膨脹の相異、衝撃装填効果などに起因し
てチツプの表面と熱伝達素子との間の接触界面に
若しも裂目が生じるならば、空所が再び発生する
ことに起因して熱接触抵抗が瞬間的に増加する。
結果として短時間の温度上昇が生じて合金の溶融
範囲に及ぶことにより低い熱抵抗を回復し、これ
に続いて温度が最初の落付いた状態へ急速に低下
する。要するに、チツプ表面に順応するように溶
融する合金の自己修復プロセスが生じるので熱接
触抵抗は下げられて更に低い温度レベルに維持さ
れる。
During continued processing of the part, if cracks occur at the contact interface between the surface of the chip and the heat transfer element due to, for example, dimensional variations, thermal expansion differences, impact loading effects, etc. For example, the thermal contact resistance increases instantaneously due to the reoccurrence of voids.
The result is a brief temperature rise through the melting range of the alloy, thereby restoring the low thermal resistance, followed by a rapid drop in temperature to the initial settled state. In short, a self-healing process occurs in which the alloy melts to conform to the chip surface, so that the thermal contact resistance is lowered and maintained at a lower temperature level.

良好な実施例では、凡そ100グラムの接触負荷
で0.1乃至0.2℃/ワツトのチツプ界面熱抵抗が得
られる。比較してみると、本発明の手段で得られ
る抵抗レベルは熱伝達グリースで実現される抵抗
レベルの凡そ5乃至7分の1である。
In a good embodiment, a chip interfacial thermal resistance of 0.1 to 0.2° C./watt is obtained at a contact load of approximately 100 grams. By comparison, the resistance levels achieved by means of the present invention are approximately five to seven times lower than those achieved with thermal transfer greases.

本発明に従うプロセスが第3図に示される。組
立時にリフロ処理により比較的高い抵抗RHが低
い抵抗レベルRLへ減少される。温度を最大動作
条件よりも下に減少すると、抵抗は動作温度範囲
内でそのような低いレベルRLに維持される。し
かし若しも点Aで示すように界面擾乱が生じる
と、抵抗の上昇は温度の上昇を生じさせてペース
ト状になる「緩み(pasty)」範囲へ入らせ、そ
の範囲で抵抗及び温度の両者が夫々初期状態へ急
速に減少する。例えば最大固相線温度△TMSは1
−3℃、固相線・液相線温度△TSLは15−25℃の
範囲である。
A process according to the invention is illustrated in FIG. During assembly, the reflow process reduces the relatively high resistance R H to a low resistance level R L . Decreasing the temperature below maximum operating conditions maintains the resistance at such a low level R L within the operating temperature range. However, if an interfacial disturbance occurs, as shown at point A, the increase in resistance causes an increase in temperature to enter the pasty range, in which both resistance and temperature increase. rapidly decrease to their respective initial states. For example, the maximum solidus temperature △T MS is 1
-3°C, solidus/liquidus temperature ΔT SL is in the range of 15-25°C.

本発明のシステムは正常の動作条件下では常に
固体状態である。熱抵抗・温度回復のための固相
線・液相線範囲への侵入は製品の寿命に較べると
極めて僅かな時間にしかならない。システムは実
質的に常時固体状態にあるので、界面に於ける接
触負荷は低く、不都合な冶金学上の現象は本質的
に排除される。その上、最初の低い抵抗値RL
得られると、チツプ表面の擾乱は抵抗の瞬間的な
増加を生じさせる。これらの僅かな抵抗変化は極
めて短時間で取去られる。開示された自己回復技
術により、余分のリフロ工程を必要とすることな
く極めて低い熱抵抗レベルが維持される。開示さ
れた技術はチツプ界面に於ける低い熱抵抗の長期
間維持を保証する。これはチツプ寸法が減少し且
つ熱放散要求が高まるので極めて重要である。
The system of the present invention is always in the solid state under normal operating conditions. Penetration into the solidus/liquidus range for thermal resistance/temperature recovery takes a very short amount of time compared to the product's lifespan. Since the system is substantially permanently in the solid state, contact loads at the interface are low and undesirable metallurgical phenomena are essentially eliminated. Moreover, once an initial low resistance value R L is obtained, disturbances on the chip surface cause an instantaneous increase in resistance. These small resistance changes are removed in a very short time. The disclosed self-healing technology maintains extremely low thermal resistance levels without the need for extra reflow steps. The disclosed technology ensures long-term maintenance of low thermal resistance at the chip interface. This is extremely important as chip size decreases and heat dissipation requirements increase.

第2図に示されたヒートシンク技術を適用する
ことによりチツプ界面に低い熱抵抗を達成したこ
とに加え、本発明はヒートシンク構造の他の界面
でも低い熱抵抗を得るように適用可能である。本
発明がチツプ界面及び帽体界面の両者に使用され
たそのような構造の例は第4図に示される。制御
された負荷力Fが、例えばスプリング16によつ
て枢着ピストン熱伝達素子18へ向つて矢印で示
すように斜に印加される。この構成によればチツ
プ表面10及び帽子表面20との熱伝達素子18
の表面接触は最大化され、且つ夫々負荷力成分F
V及びFHによつて実行される。ビスマス合金22
が凡そ0.05mmの厚さにピストンの各表面に付着さ
れる。しかし第1A図に示されたように、最初は
空所24間の離隔した点だけでチツプ10の表面
と実際に接触するに過ぎない。同様に帽体20の
表面と合金22の接触も点接触及び空所空間を伴
う。小さい集中熱伝達領域上に冷却チツプ表面及
び帽体表面をランダムに接触させるこの合金の初
期状態では、界面に於ける熱抵抗は比較的高く、
且つ熱伝達は比較的低い。
In addition to achieving low thermal resistance at the chip interface by applying the heat sink technique shown in FIG. 2, the present invention can be applied to obtain low thermal resistance at other interfaces of the heat sink structure. An example of such a structure in which the present invention is used at both the tip and cap interfaces is shown in FIG. A controlled load force F is applied diagonally, for example by a spring 16, towards the pivoted piston heat transfer element 18 as shown by the arrow. With this configuration, the heat transfer element 18 between the tip surface 10 and the cap surface 20
The surface contact of is maximized, and each loading force component F
Performed by V and F H. bismuth alloy 22
is applied to each surface of the piston to a thickness of approximately 0.05 mm. However, as shown in FIG. 1A, initially there is only actual contact with the surface of chip 10 at discrete points between cavities 24. Similarly, the contact between the surface of cap body 20 and alloy 22 involves point contact and void space. In the initial state of this alloy, where the cooled chip surface and cap surface are in random contact over a small concentrated heat transfer area, the thermal resistance at the interface is relatively high;
And heat transfer is relatively low.

ビスマス合金が付着され終えた後のICパツケ
ージ組立中、デバイスの温度は合金の溶融範囲へ
と上昇される。チツプの温度が固相線温度TS
りも高い温度TCへ増加されると、ビスマス合金
は溶融し、そして印加された力成分FVの作用の
下で前述のような空所空間を満たす。本質的にそ
れと同時に、介在するピストン材料の高い熱伝導
率に起因して帽体界面の合金が溶融し、且つ印加
された力成分FHの作用の下でこの領域の空所空
間を満たす。その結果両界面の接触領域が増加す
るので、熱抵抗が急に減少しかくて過剰な熱を効
果的に放散させる。
During IC package assembly after the bismuth alloy has been deposited, the temperature of the device is increased to the melting range of the alloy. When the temperature of the chip is increased to a temperature T C higher than the solidus temperature T S , the bismuth alloy melts and fills the void space as described above under the action of the applied force component F V . Essentially at the same time, the alloy at the cap interface melts due to the high thermal conductivity of the intervening piston material and fills the void space in this region under the action of the applied force component F H . As a result, the contact area between both interfaces increases, so that the thermal resistance decreases rapidly, effectively dissipating excess heat.

この部分の継続する動作中に、前にチツプ接触
と関連して説明されたような理由で界面に裂目が
若しも生じるならば、チツプと帽体の界面に空所
が再発生することに起因して熱接触抵抗が瞬間的
に増加する。その結果として短時間の温度上昇行
程が合金の溶融範囲中に存在することにより、低
い熱抵抗が回復しそれに続いて温度が最初の非擾
乱状態へ急速に低下する。要するに、チツプ及び
帽体表面に順応するように溶融する合金の自己回
復プロセスが生じるので、接触熱抵抗は低下し且
つ低いレベルに維持される。
During continued operation of this part, if a tear occurs at the interface for the reasons previously explained in connection with tip contact, a void will reoccur at the tip/cap interface. Thermal contact resistance increases instantaneously due to As a result, a brief temperature rise step is present in the melting range of the alloy, whereby the low thermal resistance is restored, followed by a rapid drop in temperature to the initial undisturbed state. In short, a self-healing process occurs in which the alloy melts to conform to the tip and cap surfaces, so that the contact thermal resistance is reduced and maintained at a low level.

本発明に従うプロセスはチツプ接触表面状態の
例として第3図に示される。帽体界面状態のプロ
セスはチツプ接触のプロセスと同じである。かく
て両者の界面状態に於て、組立時の比較的高い抵
抗RHはリフロ処理によつて低いレベルRLへ減少
される。温度が最大動作状態より下へ減少して
も、抵抗は動作温度範囲のそのような低いレベル
Lに留まる。若しも界面の擾乱が生じるなら
ば、合金の自己修復作用により、第3図と関連し
て前述した態様で低い熱抵抗及び温度の急速な回
復が行なわれる。
The process according to the invention is illustrated in FIG. 3 as an example of chip contact surface conditions. The process of cap interface state is the same as that of chip contact. Thus, at both interface conditions, the relatively high resistance R H during assembly is reduced to a lower level R L by the reflow process. Even as the temperature decreases below maximum operating conditions, the resistance remains at such a low level R L of the operating temperature range. If interfacial disturbance occurs, the self-healing action of the alloy provides low thermal resistance and rapid recovery of temperature in the manner described above in connection with FIG.

上述のように良好な実施例で0.1乃至0.2℃/ワ
ツトのチツプ界面熱抵抗が凡そ100グラムの接触
負荷で得られる。この接触負荷の大きさでビスマ
ス合金と帽体表面の接触領域を相対的にもつと大
きくすると、相当する望ましい帽体界面熱抵抗は
0.01乃至0.02℃/ワツトの範囲となる。
As mentioned above, in a good embodiment a chip interfacial thermal resistance of 0.1 to 0.2°C/watt is obtained at a contact load of approximately 100 grams. If we increase the relative contact area between the bismuth alloy and the cap surface with this contact load, the corresponding desirable cap interface thermal resistance is
The temperature ranges from 0.01 to 0.02℃/watt.

第2図及び4図に示されたICチツプ冷却技術
は効果の高い熱放散を達成し且つ維持するため取
りうる多数の形態のうちの2つだけを示す。本発
明の構造を用いると、9−20ワツト/チツプの熱
放散を必要とする応用例に適する。
The IC chip cooling techniques illustrated in FIGS. 2 and 4 represent only two of the many possible configurations for achieving and maintaining efficient heat dissipation. The structure of the present invention is suitable for applications requiring heat dissipation of 9-20 watts/chip.

JP82500649A 1981-12-29 1981-12-29 Semiconductor assembly with cooling means Granted JPS58501648A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1981/001754 WO1983002363A1 (en) 1981-12-29 1981-12-29 Cooling means for integrated circuit chip device

Publications (2)

Publication Number Publication Date
JPS58501648A JPS58501648A (en) 1983-09-29
JPS6222531B2 true JPS6222531B2 (en) 1987-05-19

Family

ID=22161583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP82500649A Granted JPS58501648A (en) 1981-12-29 1981-12-29 Semiconductor assembly with cooling means

Country Status (4)

Country Link
EP (1) EP0097157B1 (en)
JP (1) JPS58501648A (en)
DE (1) DE3176475D1 (en)
WO (1) WO1983002363A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106837A (en) * 2019-08-05 2019-09-18 엘지전자 주식회사 Autonomous vehicle for carrying user group with multiple users, method and control server for controlling the autonomous driving vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462462A (en) * 1981-11-17 1984-07-31 International Business Machines Corporation Thermal conduction piston for semiconductor packages
JPS60126853A (en) * 1983-12-14 1985-07-06 Hitachi Ltd Cooling device for semiconductor chip
USRE35721E (en) * 1983-12-14 1998-02-03 Hitachi, Ltd. Cooling device of semiconductor chips
JPS6115353A (en) * 1984-06-29 1986-01-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Chip cooler
DE19802117C1 (en) * 1998-01-21 1999-06-02 Fne Gmbh Thermically-controllable device for controlled heat source

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271638A (en) * 1963-11-04 1966-09-06 Emil M Murad Encased semiconductor with heat conductive and protective insulative encapsulation
US3536460A (en) * 1966-12-28 1970-10-27 Great Lakes Carbon Corp Connections between electrical conductors and carbon bodies and method of making same
US3449818A (en) * 1967-05-16 1969-06-17 North American Rockwell Superconductor joint
US3996447A (en) * 1974-11-29 1976-12-07 Texas Instruments Incorporated PTC resistance heater
US3993123A (en) * 1975-10-28 1976-11-23 International Business Machines Corporation Gas encapsulated cooling module
US4193445A (en) * 1978-06-29 1980-03-18 International Business Machines Corporation Conduction cooled module
US4203129A (en) * 1978-07-11 1980-05-13 International Business Machines Corporation Bubble generating tunnels for cooling semiconductor devices
US4323914A (en) * 1979-02-01 1982-04-06 International Business Machines Corporation Heat transfer structure for integrated circuit package
US4254431A (en) * 1979-06-20 1981-03-03 International Business Machines Corporation Restorable backbond for LSI chips using liquid metal coated dendrites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106837A (en) * 2019-08-05 2019-09-18 엘지전자 주식회사 Autonomous vehicle for carrying user group with multiple users, method and control server for controlling the autonomous driving vehicle

Also Published As

Publication number Publication date
EP0097157A1 (en) 1984-01-04
EP0097157A4 (en) 1985-03-08
DE3176475D1 (en) 1987-11-05
EP0097157B1 (en) 1987-09-30
WO1983002363A1 (en) 1983-07-07
JPS58501648A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US4607277A (en) Semiconductor assembly employing noneutectic alloy for heat dissipation
US7439617B2 (en) Capillary underflow integral heat spreader
US7429502B2 (en) Integrated circuit device incorporating metallurgical bond to enhance thermal conduction to a heat sink
US6281573B1 (en) Thermal enhancement approach using solder compositions in the liquid state
US20070013054A1 (en) Thermally conductive materials, solder preform constructions, assemblies and semiconductor packages
KR100447867B1 (en) Semiconductor package
US7369411B2 (en) Thermal interface assembly and method for forming a thermal interface between a microelectronic component package and heat sink
JP4809606B2 (en) Heat sink and heat spreader assembly
EP0473929B1 (en) Method of forming a thin film electronic device
JPH0231499B2 (en)
JPS6238860B2 (en)
WO2002011504A2 (en) Thermal interface material on a mesh carrier
TWI329350B (en) Capacitor attachment method
JPS6222531B2 (en)
JP6144440B1 (en) Preform for semiconductor encapsulation
JP2005129886A (en) Semiconductor device and its manufacturing method
TWI484604B (en) Metal thermal interface materials and packaged semiconductors comprising the materials
JP2020518461A (en) Solder material and die attachment method
EP1601012A2 (en) Microelectronic assembly having variable thickness solder joint
JPH05267362A (en) Packaging structure for semiconductor device
JP3418164B2 (en) Electronic package and method of manufacturing electronic package
JPS61171153A (en) Semiconductor device
JP2008270846A (en) Method for manufacturing semiconductor device
JPH05235098A (en) Flip chip bonding method
WO2016182425A1 (en) A lead frame for selective soldering