JPS62225209A - Separation of liquid mixture - Google Patents

Separation of liquid mixture

Info

Publication number
JPS62225209A
JPS62225209A JP6856086A JP6856086A JPS62225209A JP S62225209 A JPS62225209 A JP S62225209A JP 6856086 A JP6856086 A JP 6856086A JP 6856086 A JP6856086 A JP 6856086A JP S62225209 A JPS62225209 A JP S62225209A
Authority
JP
Japan
Prior art keywords
membrane
separation
liquid mixture
electric field
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6856086A
Other languages
Japanese (ja)
Other versions
JPH0626651B2 (en
Inventor
Toru Kashiwagi
亨 柏木
Kazuhiro Okabe
和弘 岡部
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61068560A priority Critical patent/JPH0626651B2/en
Publication of JPS62225209A publication Critical patent/JPS62225209A/en
Publication of JPH0626651B2 publication Critical patent/JPH0626651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the separation performance of a membrane by adding an electrolyte to a volatile org. liq./water mixture, impressing a high-frequency electric field from a couple of electrodes arranged through the membrane, and carrying out permeation, vaporization, and separation. CONSTITUTION:A liq. feed 2 prepared by adding K2CO3 as an electrolyte to a volatile org. liq./water mixture to be separated is charged into one side through the membrane 1, and an inert gas 3 such as gaseous N2 is passed through the other side. A high-frequency electric field is impressed between a metallic porous electrode 13 also used as a membrane carrier on the permeation side and a submerged charging electrode 5 on the liq. feed side to carry out permeation, vaporization, and separation, the volatile org. liq. is preferentially permeated, the permeated material is obtained as vapor, and the vapor is cooled in a cold trap 4 and collected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体混合物の分離方法、詳しくは有機液体と
水との混合物(以後有機液体/水の混合物と略記)から
有機液体を優先的に透過させる停機液体を膜により分離
濃縮する方法として浸透気化分離 pervapora
tion )が提案されている。これは分離膜を介して
片側に分離される対象である揮発性有機液体/水の混合
物を流し、もう一方便をポンプにより真空に引(もしく
は不活性ガスをキャリアとして流すことにより膜透過物
を蒸気として得、透過物を冷却することにより捕集する
方法である。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for separating a liquid mixture, and more specifically, a method for separating an organic liquid from a mixture of an organic liquid and water (hereinafter abbreviated as an organic liquid/water mixture). Pervaporation is a method of separating and concentrating the suspended liquid that is permeated through the membrane using a membrane.
) has been proposed. This is done by passing the volatile organic liquid/water mixture to be separated on one side through the separation membrane, and pumping the feces on the other side (or by passing an inert gas as a carrier) to remove the membrane permeate. It is obtained as a vapor and collected by cooling the permeate.

(発明が解決しようとする問題点) しかしながら難分離性揮発性有機液体/水の混合物の代
表例であるエタール(EtoH)/水 系についてはE
tOHを優先的に透過させる膜は数少なく、既知のもの
ではシリコーンゴム膜(特開昭52−68078号、膜
7353(1982)参照)が有名であり″、その他で
は最近ポリトリメチルシリルプロピン膜(特開昭6O−
753CJ6号参照)やポリフルオロアルキルアクリレ
ートグラフトポリスチレンをコートしたシリコーン膜(
Polymer PreprintsJapan34(
7)1841(1985)参照)が報告されているが、
いずれも透過性能が充分でないかもしくは膜の作成に高
度の技術を要するかで高い透過性能の膜は一般的には得
られにくいのが現状であるため開発されたものである。
(Problems to be Solved by the Invention) However, regarding the etal (EtoH)/water system, which is a typical example of a difficult-to-separate volatile organic liquid/water mixture, E
There are only a few membranes that allow tOH to permeate preferentially, and among the known ones, silicone rubber membranes (see JP-A No. 52-68078, Membrane 7353 (1982)) are famous. Kaisho 6O-
753CJ6) and silicone membrane coated with polyfluoroalkyl acrylate grafted polystyrene (see
Polymer Preprints Japan 34 (
7) 1841 (1985)) has been reported,
All of these were developed because it is generally difficult to obtain membranes with high permeability, either because the permeability is not sufficient or because advanced technology is required to create the membrane.

即ち本発明者は、分離膜の性能それ自体を高める方向で
はなく、より一般的に得られる外部のエネルギーを浸透
気化分離に利用し、膜分離における性能向上を一般的に
再現しやすい方法で実現させることによって、巧妙な合
成による膜材料開発の結果溝られる膜分離性能の向上と
ほぼ同等の効果を持たせることが出来ることとなるので
実用上きわめて意義深いものとなると考えた。
In other words, the present inventor did not aim to improve the performance of the separation membrane itself, but instead utilized more commonly available external energy for pervaporative separation to achieve improved performance in membrane separation in a generally easy-to-reproduce manner. By doing so, it would be possible to achieve an effect almost equivalent to the improvement in membrane separation performance that can be achieved as a result of developing membrane materials through clever synthesis, and we believe that this would be of great practical significance.

一般的な外部エネルギーとして最も手近に考えられるの
が電場のエネルギーである。一方はとんどの分子は分子
中で電気的に分極していることが知られている。また分
子をはさんで両側に交番電場を与えてやると電位の交代
に従って分子が配向することもよく知られた事実である
The most common type of external energy that can be considered is electric field energy. On the other hand, it is known that most molecules are electrically polarized within the molecule. It is also a well-known fact that when molecules are sandwiched and an alternating electric field is applied to both sides, the molecules become oriented as the potential changes.

そこで揮発性有機液体/水の分離に交番電場による分子
の配向力の差を適用することによって膜性能を向上する
ことを考えて検討した結果本発明全完成するに至ったも
のである。
Therefore, we considered and studied ways to improve the membrane performance by applying the difference in molecular orientation force caused by an alternating electric field to the separation of volatile organic liquid/water, and as a result, we have completed the present invention.

(問題点を解決するための手段) 即ち本発明は、揮発性有機液体/水 の混合物から揮発
性有機液体を優先的に透過させる膜分離において、電解
質を添加した該混合物の供給液中と膜の透過側とに一対
の電極を配置し、膜を介した該一対の電極に高周波電場
を印加しながら浸透気化分離を行なうことを特徴とする
液体混合物の分離方法である。
(Means for Solving the Problems) That is, the present invention provides membrane separation that preferentially permeates a volatile organic liquid from a mixture of volatile organic liquid/water, in which a feed liquid of the mixture to which an electrolyte is added and a membrane are separated. This is a method for separating a liquid mixture, characterized in that a pair of electrodes is disposed on the permeation side of the membrane, and pervaporation separation is performed while applying a high frequency electric field to the pair of electrodes through a membrane.

以下詳細に本発明を例示の図面に就いて詳述する。The invention will be explained in detail below with reference to the illustrative drawings.

側から高周波電場を印加させる。A high frequency electric field is applied from the side.

分離膜に対する高周波電場の印加方法はその周波数によ
り種々考えられるが、本発明方法で用いる1〜100 
MHzの周波数域では通常の銅線ケーブルでの伝送が可
能である。銅線ケーブルによる伝送は伝送路として導波
管、同軸管などを用いるよりも装置構成がたやすく、実
際的な使用においては有利となると考えられる。
Various methods of applying a high-frequency electric field to the separation membrane can be considered depending on the frequency, but the method used in the method of the present invention ranges from 1 to 100
In the MHz frequency range, transmission using ordinary copper wire cables is possible. Transmission using copper wire cables is easier to configure than using waveguides, coaxial tubes, etc. as transmission paths, and is considered to be advantageous in practical use.

第1図に本発明方法で使用した浸透気化実験セルの構成
を示す。膜(1)を介して片側(供給側)K分離される
べき揮発性有機液体/水の混合物を供給液(2)として
流し、もう−力価(透過側)にN2ガスなどの不活性ガ
ス(6)を流して透過物を蒸気として得コールドトラッ
プ(4)で冷却して捕集する。
FIG. 1 shows the configuration of a pervaporation experimental cell used in the method of the present invention. Through the membrane (1) on one side (feed side) the volatile organic liquid/water mixture to be separated flows as feed liquid (2), and on the other side (permeate side) an inert gas such as N2 gas. (6) to obtain the permeate as vapor, which is then cooled and collected in a cold trap (4).

課電用電極は供給側には供給液中に配置し液中課電(5
)とした。供給液中には電解質としてあとで述べる無機
塩を添加した。透過側電極(6)は、分離膜面のできる
かぎり大面積に課電できるのが望ましく、かつ課電の効
率を上げるために分離膜に密着して設置されねばならな
い。しかしながら膜透範囲においてできるかぎり小さい
ものが望ましい−i<、実際的には孔径0.1μrrL
〜1真の範囲で選択するのがよい。具体的には住友電工
製の発泡金属化゛ルメット(商品名)が挙げられる。
The voltage charging electrode is placed in the supply liquid on the supply side, and the voltage charging in the liquid (5
). An inorganic salt, which will be described later, was added as an electrolyte to the feed solution. The permeation side electrode (6) is desirably capable of applying electricity to as large an area of the separation membrane surface as possible, and must be placed in close contact with the separation membrane in order to increase the efficiency of electricity application. However, it is desirable that the pore size be as small as possible in the membrane permeability range -i<, in practice, the pore diameter is 0.1μrrL.
It is best to select within the range of 1 to 1. Specifically, Sumitomo Electric's foamed metallized lummet (trade name) can be mentioned.

なお第1図中(7)は高周波発振器、e)、(9)はセ
ル本体、(10)は絶縁体、(11) 、 (12)は
Oリングである。
In FIG. 1, (7) is a high frequency oscillator, e) and (9) are the cell body, (10) is an insulator, and (11) and (12) are O-rings.

(作用) 分離透過性能向上のための高周波電場についてはその周
波数が低すぎると性能向上効果が認められなくなり、高
すぎると銅線ケーブルでの伝送が困難となるので、1〜
100 MHzの範囲が望ましく、さらには10MHz
近辺が良好である。パワーは大きいほど効果が大きくな
るが分離膜を破壊しない範囲がその上限となるが、膜の
種類によっても適用できるパワーの値は異なってくる。
(Function) Regarding the high-frequency electric field for improving separation permeability performance, if the frequency is too low, the performance improvement effect will not be recognized, and if it is too high, it will be difficult to transmit using a copper cable, so
A range of 100 MHz is desirable, and even 10 MHz
The neighborhood is good. The higher the power, the greater the effect, but the upper limit is within the range that does not destroy the separation membrane, but the applicable power value also differs depending on the type of membrane.

また同パワーでは周波数が下がるほど効果は小さくなっ
てくる。
Furthermore, at the same power, the effect becomes smaller as the frequency decreases.

無機塩の添加は電解質としての役割に加えて塩析による
効果を同時に利用しようとするものである。エタノール
(ptoH)/水などの揮発性有機液体/水の混合物に
無機塩を高濃度に溶解すると混合ることによって分離性
能の向上を一層大きくすることができる。塩析効果に用
いる無機塩としては種々のものを検討した結果、アルカ
リ金属の炭酸塩(Na 2 CO5、K2Co、、Rb
2CO3、Cs□Co3)が良好であり、特にに2C0
5とRb2CO5が最良であった。Rb2C06は高価
であることもあって実際的にはに2C05が最も有望な
ものとなる。
The purpose of adding an inorganic salt is to simultaneously utilize the effect of salting out in addition to its role as an electrolyte. The improvement in separation performance can be even greater by mixing high concentrations of inorganic salts dissolved in volatile organic liquid/water mixtures such as ethanol (ptoH)/water. As a result of examining various inorganic salts used for the salting-out effect, we found that alkali metal carbonates (Na2CO5, K2Co, Rb
2CO3, Cs□Co3), especially 2C0
5 and Rb2CO5 were the best. Since Rb2C06 is expensive, 2C05 is actually the most promising.

本発明分離方法に使用する分離膜としては揮発性有機液
体/水の混合物から有機液体を優先的に透過する緻密膜
であれば良く、シリコーンゴム膜、有1シリコーンモノ
マーからのプラズマ重合膜などが使用できる。一方多孔
膜では高周波電場の印加が充分には行なえず、課電によ
る効果は現れにくい。
The separation membrane used in the separation method of the present invention may be any dense membrane that preferentially permeates organic liquids from volatile organic liquid/water mixtures, such as silicone rubber membranes and plasma polymerized membranes made from silicone monomers. Can be used. On the other hand, with a porous film, a high frequency electric field cannot be sufficiently applied, and the effect of applying electricity is difficult to appear.

(実施例) 以下に本発明の理解を助けるため実施例を述べる。(Example) Examples will be described below to help understand the present invention.

(実施例1) 透過実験に用いたセルの構造は第1図に示すものである
。膜の透過側の膜支持体全兼ねた金属多水 混合液の透
過実験を行なった。
(Example 1) The structure of the cell used in the transmission experiment is shown in FIG. We conducted a permeation experiment with a metal-rich water mixture that served as the membrane support on the permeation side of the membrane.

膜としてはポリプロピレン多孔膜(ジュラガー/j添加
した。その結果高周波電場を印加した時の透過特性値は
高周波電場を印加しなかった時の特性値と比較して透過
速度で1.2倍、分離係数で1.3倍となった(第1表
墓1参照)。
The membrane was a polypropylene porous membrane (Duragar/J was added. As a result, the transmission characteristic value when a high-frequency electric field was applied was 1.2 times the transmission rate compared to the characteristic value when no high-frequency electric field was applied, and the separation was The coefficient was 1.3 times (see Table 1, Tomb 1).

第  1  表 プラズマ重合へキサメチルジシロキサン膜の高周波電場
印加下での浸透気化実験(実施例2) 添加する炭酸カリウムの濃度を2.5 立1/lとした
他は実施例1と同様の実験を行なった結果、高周波電場
を印加した時の透過特性値は高周波電場を印加しなかっ
た時の特性値と比較して透過速度で1.2倍、分離係数
で1.5倍となった(第1表扁2参照)。
Table 1 Pervaporation experiment of plasma-polymerized hexamethyldisiloxane film under application of high-frequency electric field (Example 2) Same as Example 1 except that the concentration of added potassium carbonate was 2.5 μl/l. As a result of the experiment, the transmission characteristic value when a high-frequency electric field was applied was 1.2 times higher in transmission speed and 1.5 times higher in separation coefficient than the characteristic value when no high-frequency electric field was applied. (See Table 1, Table 2).

(発明の効果) 以上の様に本発明の分離方法によれば下記の様な利点が
ある。
(Effects of the Invention) As described above, the separation method of the present invention has the following advantages.

■既存の分離膜の分離性能全1.3〜.1.5倍向上さ
せることができる。
■The total separation performance of existing separation membranes is 1.3~. It can be improved by 1.5 times.

■高度な分離膜作成技術が不用である。即ち膜分離性能
向上を一般的な型で実現できる。
■Advanced separation membrane production technology is not required. In other words, improved membrane separation performance can be achieved with a general type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液体混合物の分離方法を説明するため
の課電透過実験用セルを例示している。 (1)・・・膜、(2)・・・供給液(混合液)、(3
)・・・不活性ガス、(4)用トラップ、(5)、(6
)・・・課電用電極、(7〕・・・高周波発振器、(8
)・・・セル本体(上側)、(9)・・・セル本体(下
側)、(10)・・・絶縁体、(11)、(12)・・
・0リング(13)・・・金属多孔質体
FIG. 1 exemplifies a cell for charged permeation experiments to explain the method of separating liquid mixtures of the present invention. (1)...Membrane, (2)...Supply liquid (mixed liquid), (3
)...Inert gas, trap for (4), (5), (6
)... Electrode for charging, (7)... High frequency oscillator, (8
)...Cell body (upper side), (9)...Cell body (lower side), (10)...Insulator, (11), (12)...
・0 ring (13)...Metal porous body

Claims (1)

【特許請求の範囲】 揮発性有機液体と水との混合物から揮発性有機液体を優
先的に透過させる膜分離において、電解質を添加した該
混合物の供給液中と膜の透過側とに一対の電極を配置し
、膜を介した該一対の電極に高周波電場を印加しながら
浸透気化分離を行なうことを特徴とする液体混合物の分
離方法。 (2)電解質として無機塩を用い、かつ0.5mol/
l以上の濃度に添加する特許請求の範囲第(1)項記載
の液体混合物の分離方法。 (3)炭酸塩を電解質として用いる特許請求の範囲第(
2)項記載の液体混合物の分離方法。 (4)炭酸カリウムを電解質として用いる特許請求の範
囲第(3)項記載の液体混合物の分離方法。 (5)1〜100MHzの周波数の高周波電場を印加す
る特許請求の範囲第(1)項記載の液体混合物の分離方
法。 (6)膜の透過側電極として金属多孔質体を用いる特許
請求の範囲第(1)項記載の液体混合物の分離方法。
[Claims] In membrane separation that preferentially permeates a volatile organic liquid from a mixture of a volatile organic liquid and water, a pair of electrodes is provided in the feed solution of the mixture to which an electrolyte is added and on the permeate side of the membrane. A method for separating a liquid mixture, characterized in that pervaporative separation is performed while applying a high frequency electric field to the pair of electrodes via a membrane. (2) Using an inorganic salt as an electrolyte, and 0.5 mol/
A method for separating a liquid mixture according to claim (1), wherein the liquid mixture is added to a concentration of 1 or more. (3) Claim No. 3 (2) in which carbonate is used as an electrolyte
2) The method for separating a liquid mixture described in section 2). (4) A method for separating a liquid mixture according to claim (3), using potassium carbonate as an electrolyte. (5) The method for separating a liquid mixture according to claim (1), wherein a high frequency electric field having a frequency of 1 to 100 MHz is applied. (6) A method for separating a liquid mixture according to claim (1), in which a porous metal body is used as the permeation side electrode of the membrane.
JP61068560A 1986-03-28 1986-03-28 Liquid mixture separation method Expired - Lifetime JPH0626651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068560A JPH0626651B2 (en) 1986-03-28 1986-03-28 Liquid mixture separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068560A JPH0626651B2 (en) 1986-03-28 1986-03-28 Liquid mixture separation method

Publications (2)

Publication Number Publication Date
JPS62225209A true JPS62225209A (en) 1987-10-03
JPH0626651B2 JPH0626651B2 (en) 1994-04-13

Family

ID=13377267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068560A Expired - Lifetime JPH0626651B2 (en) 1986-03-28 1986-03-28 Liquid mixture separation method

Country Status (1)

Country Link
JP (1) JPH0626651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469069A (en) * 1987-09-10 1989-03-15 Mitsubishi Electric Corp Gas laser equipment
JPH0368434A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Radiation resistant porous polymer membrane and membrane separating apparatus
RU2753404C1 (en) * 2020-10-22 2021-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Method for separation of solution components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895502A (en) * 1981-11-25 1983-06-07 Nitto Electric Ind Co Ltd Solution separator
JPS60209291A (en) * 1984-04-03 1985-10-21 Agency Of Ind Science & Technol Separation of water-soluble organic compound
JPS61404A (en) * 1984-06-14 1986-01-06 Agency Of Ind Science & Technol Separation of water-organic liquid mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895502A (en) * 1981-11-25 1983-06-07 Nitto Electric Ind Co Ltd Solution separator
JPS60209291A (en) * 1984-04-03 1985-10-21 Agency Of Ind Science & Technol Separation of water-soluble organic compound
JPS61404A (en) * 1984-06-14 1986-01-06 Agency Of Ind Science & Technol Separation of water-organic liquid mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469069A (en) * 1987-09-10 1989-03-15 Mitsubishi Electric Corp Gas laser equipment
JPH0368434A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Radiation resistant porous polymer membrane and membrane separating apparatus
RU2753404C1 (en) * 2020-10-22 2021-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Method for separation of solution components

Also Published As

Publication number Publication date
JPH0626651B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
TW200839817A (en) Supercapacitor desalination device and method of making
CN104437675B (en) Flowing electrode capacitance deionizer amberplex and the flowing electrode capacitance deionizer comprising it
JP3513097B2 (en) Proton conductive membrane and fuel cell using the same
TWI257324B (en) Electrodeionization apparatus
JPS62225209A (en) Separation of liquid mixture
JP5578565B2 (en) Separation and concentration method of butanol from low-concentration butanol aqueous solution and butanol separation and concentration membrane used in the method
US20150072267A1 (en) Energy harvesting with flow-through porous electrodes
Liu et al. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings
JPS62294407A (en) Manufacture of hydrophilic precision filtration film by plasma treatment
JP7011137B2 (en) Selective permeable membrane and its manufacturing method, water treatment method using the selective permeable membrane
CN104882579B (en) A kind of preparation method of PVDF PAM polymer lithium battery diaphragms
Ohya et al. Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane
CN105771698A (en) Stable promotive transfer film for olefin/alkane separation and preparation method thereof
KR100979028B1 (en) Separator Membrane for Capacitive Deionization of Waste Water or Saltwater, and Method for Deionization of Waste Water or Saltwater By Using the Separator Membrane
JP5370430B2 (en) FUEL CELL, FUEL CELL ASSEMBLY, POWER SUPPLY, ELECTRONIC DEVICE, AND FUEL CELL MANUFACTURING METHOD
KR20140028260A (en) A module for lithium ion recycling of seawater and method for recycling lithium ion thereof
JP4807918B2 (en) Method for preparing composite membrane
Kokufuta et al. Electrically controlled separation of maleic acid and fumaric acid through a poly (vinyl alcohol)/poly (acrylic acid) composite membrane
US5427662A (en) Method for producing an ionomer
JPS6099313A (en) Process for separating liquid using membrane
JPH01297122A (en) Gas separation device with hydrophobic porous film
JPS60165062A (en) Fuel cell
JPS6099312A (en) Process for separating liquid using membrane
CN1894813A (en) Fuel cell component with lyophilic surface
JP4991098B2 (en) Fuel cell, fuel cell assembly, power source and electronic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term