JPH01297122A - Gas separation device with hydrophobic porous film - Google Patents

Gas separation device with hydrophobic porous film

Info

Publication number
JPH01297122A
JPH01297122A JP575088A JP575088A JPH01297122A JP H01297122 A JPH01297122 A JP H01297122A JP 575088 A JP575088 A JP 575088A JP 575088 A JP575088 A JP 575088A JP H01297122 A JPH01297122 A JP H01297122A
Authority
JP
Japan
Prior art keywords
membrane
liquid
film
gas
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP575088A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP575088A priority Critical patent/JPH01297122A/en
Publication of JPH01297122A publication Critical patent/JPH01297122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent solvent dissipation, reduce the thickness of a liquid film and make possible applications at high pressure differences by employing a material consisting of a thin film of liquid containing a carrier held in a laminated form with a film composed of only hydrophobic pores of 0.1mum or less as a liquid film for gas separation. CONSTITUTION:A material consisting of a thin film of liquid containing a carrier held in a laminated form with a film 1 composed of only hydrophobic pores of 0.1mum or less, is used as a liquid film for gas separation. This liquid film is supported by a hydrophobic film which allows gas to permeate freely but does not allow a solvent to penetrate. The solvent does not leak if pressure is applied to the liquid film. Consequently, it is possible to operate the gas separation device with a liquid film of reduced thickness and large pressure differences for improved performance. Furthermore, the solvent in the liquid film does not dissipate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気体混合物から目的の気体を分離濃縮する気体
分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas separation device for separating and concentrating a target gas from a gas mixture.

(従来の技術) 従来、気体の分離方法としてiα体膜を使用する方法が
ある。多孔質支持膜中に分離気体の溶解度の大きい液体
を染み込ませ(多くの場合溶媒以外にキャリヤーを含む
)、片側を他方よりも加圧して目的の気体を溶解させて
他方に放出するものである。キャリヤーとしては非揮発
性の金属塩や金属錯体等が良く用いられる。
(Prior Art) Conventionally, there is a method of using an iα body membrane as a gas separation method. A porous support membrane is impregnated with a liquid in which the separated gas has a high solubility (often containing a carrier in addition to the solvent), and one side is pressurized more than the other to dissolve the target gas and release it to the other side. . Nonvolatile metal salts, metal complexes, and the like are often used as carriers.

例えは、銀イオンをキャリヤーとするオレフィンガス選
択透過膜かある。これは銀イーオンをキャリヤーとしポ
リオレフィンからなる多孔質中空糸に硝酸銀水溶液を含
浸させたものである。銀イオンとオレフィンの平衡定数
はよく知られており、エチレン=98、プロピレン=9
7、シクロヘキセン=860である。、銀イオンを含む
液体膜てはオレフィンか選択的に透過し、エタン、メタ
ン、エチレンを等モル含む混合気体から99〜99゜9
%のエチレンかえられ、エチレンの分離係数は210〜
290である。使用された中空糸は外径2.24mm、
内径0.84mmである。
An example is an olefin gas selective permeation membrane that uses silver ions as a carrier. This is a porous hollow fiber made of polyolefin using silver ions as a carrier and impregnated with an aqueous solution of silver nitrate. The equilibrium constants of silver ions and olefins are well known: ethylene = 98, propylene = 9.
7. Cyclohexene = 860. , a liquid membrane containing silver ions selectively permeates olefins, and is 99-99°9 from a mixed gas containing equimolar amounts of ethane, methane, and ethylene.
% of ethylene is exchanged, and the separation coefficient of ethylene is 210~
It is 290. The hollow fiber used had an outer diameter of 2.24 mm.
The inner diameter is 0.84 mm.

この例は中規模装置で実用化の研究がなされたが、液体
膜の溶液が水で有るため膜支持体:こ含ませた水分の散
逸を防ぎきれず中座している。その他炭酸イオンをキャ
リヤーとする硫化水素選択透過膜がある。ヘモグロビン
、ミオグロビンをキャリヤーとし、空気から酸素を分離
濃縮する選択透過膜等もある。
Research on the practical use of this example was carried out using a medium-scale device, but since the solution in the liquid membrane was water, it was not possible to prevent the water contained in the membrane support from dissipating, and the method was abandoned. There is also a hydrogen sulfide selective permeation membrane that uses carbonate ions as a carrier. There are also selectively permeable membranes that use hemoglobin or myoglobin as carriers to separate and concentrate oxygen from the air.

さらに、液体膜の両面に白金網を電極とし、電気的に推
進される膜輸送現象を利用した方法がある。この方法は
塩化第一鉄と塩化第二鉄をホルムアミド溶液に溶かした
液膜を白金電極で挟みN。
Furthermore, there is a method in which platinum wire mesh is used as electrodes on both sides of a liquid membrane, and an electrically propelled membrane transport phenomenon is utilized. In this method, a liquid film of ferrous chloride and ferric chloride dissolved in a formamide solution is sandwiched between platinum electrodes.

を電気的に輸送し分離しようとするものである。The aim is to electrically transport and separate the

C○についても同様な原理で輸送分離が出来る。Transport separation can also be performed for C○ using the same principle.

(発明が解決しようとする問題点) 従来のキャリヤーを含む液体膜は液体膜の溶媒が主に水
で有るため膜支持体に含ませた水分の散逸を防ぎきれな
いこと、液体だけでは膜とならないので多孔質の支持体
を必要とする。ところが、膜支持体が多孔質であるため
溶解した液が拡散しにくくキャリヤーとしての十分な能
力を発揮できない。能力の向上を図るために多孔質の膜
支持体の薄膜化を行なうと膜の強度が低下してしまい膜
厚を0 、5mm以下にすることは困難である。能率よ
く気体分離を行なう為には大きな圧力差をつけることが
必要であるが膜の強度と分離能力が反比例の関係である
ため大きな圧力差をつけることは出来ない等の欠点があ
った。
(Problems to be solved by the invention) In conventional liquid membranes containing carriers, the solvent of the liquid membrane is mainly water, so it is impossible to prevent the moisture contained in the membrane support from dissipating. Therefore, a porous support is required. However, since the membrane support is porous, it is difficult for the dissolved liquid to diffuse, and the membrane support cannot exhibit sufficient ability as a carrier. If the porous membrane support is made thinner in order to improve its performance, the strength of the membrane will decrease, making it difficult to reduce the membrane thickness to 0.5 mm or less. In order to perform gas separation efficiently, it is necessary to create a large pressure difference, but there are drawbacks such as the inability to create a large pressure difference because the strength of the membrane and separation capacity are inversely proportional.

さらに、電気的に推進される膜輸送現象を利用した分離
方法では蒸気圧の高いホルムアミドか使用され、蒸気圧
の高い水溶液は水分が蒸発して液膜が破壊されてしまう
ために使用に適さない。さらに差圧によって液膜が破壊
されないように気体の分離に関して不用な3oミsoン
のシリコーノ膜を接合しなければならない等の欠点があ
った。
Furthermore, separation methods that utilize electrically propelled membrane transport phenomena use formamide, which has a high vapor pressure, and aqueous solutions with high vapor pressure are not suitable for use because water evaporates and the liquid film is destroyed. . Further, there were drawbacks such as the need to bond an unnecessary silicone membrane of 30 mm with respect to gas separation in order to prevent the liquid membrane from being destroyed by differential pressure.

(発明の目的) この発明の気体分離装置は、従来例の上記欠点を解消し
たものである。液体膜の溶媒の散逸をふせぎ液体膜の安
定化、能力の向上を図るために液体膜の薄膜化と大きな
圧力差をつけ運転出来るようにする。その結果、長期間
にわたって安定にかつ、能率よく気体分離が可能な装置
を提供することを目的とする。
(Object of the Invention) The gas separation device of the present invention eliminates the above-mentioned drawbacks of the conventional example. In order to prevent the dissipation of the solvent in the liquid film, stabilize the liquid film, and improve its performance, the liquid film is thinned and a large pressure difference is applied to enable operation. As a result, it is an object of the present invention to provide an apparatus capable of stably and efficiently separating gases over a long period of time.

(問題点を解決するための手段) 本発明は、キャリヤーを含む液体の薄膜を0゜1ミクロ
ン以下の疎水性細孔のみからなる膜で層状に保持した。
(Means for Solving the Problems) In the present invention, a thin film of a liquid containing a carrier is held in a layered manner by a film consisting only of hydrophobic pores of 0°1 micron or less.

その為、液体膜は疎水性膜に保持されるので液体膜に圧
力が加えられても溶媒が漏れてることはない。0. 1
ミクロン以下の疎水性細孔のみからなる膜の耐水圧は水
の場合には5電圧以上となる。さらに、この細孔は疎水
性であるため水溶液は進入しないが気体は自由に出入り
が可能であるので分離気体の拡散等に与える影響は小さ
い。口径が小さくなるとクヌーセン流れとなり個々の分
子間の影響が少なくなる利点もある。
Therefore, since the liquid film is held by the hydrophobic film, the solvent will not leak even if pressure is applied to the liquid film. 0. 1
The water pressure resistance of a membrane consisting only of hydrophobic pores of micron size or less is 5 voltage or more in the case of water. Furthermore, since these pores are hydrophobic, aqueous solutions cannot enter them, but gas can freely enter and exit, so that the effect on the diffusion of separated gas is small. There is also the advantage that the smaller the diameter, the more Knudsen flow occurs and the influence between individual molecules is reduced.

(作用) この発明の気体分離装置は以上のように構成したので、
従来の方法の欠点がすべて解消された。すなわち、溶媒
が蒸発した場合でも外部からキャリヤーを含む液体の供
給ができるので液体膜の破壊が無い。膜全体の強度は疎
水性膜で持たせることができるので、分離能力の向上を
図るためにキャリヤーを含む液体膜の薄膜化を行なうこ
とができる。すなはち、薄いi夜膜とすることができる
のでキャリヤーの移動が容易になり、かつ移動距離が短
縮できるので分離能力が増加する。能率よく気体分離を
行なう為に大きな圧力差をつけることが必要であるが膜
の強度は疎水膜が受は持つために大きな圧力差をつける
ことが可能となった。この膜の気体透過速度は液体膜の
透過速度に比べ十分速くこの膜の有無か分離気体の透過
に影響しないと言う利点がある。
(Function) Since the gas separation device of the present invention is configured as described above,
All the shortcomings of traditional methods have been eliminated. That is, even if the solvent evaporates, the liquid film containing the carrier can be supplied from the outside, so there is no destruction of the liquid film. Since the strength of the entire membrane can be provided by the hydrophobic membrane, the liquid membrane containing the carrier can be made thinner in order to improve the separation ability. In other words, since the membrane can be made thinner, the carriers can be easily moved, and the moving distance can be shortened, so that the separation capacity can be increased. In order to efficiently separate gases, it is necessary to create a large pressure difference, but because the strength of the membrane is supported by the hydrophobic membrane, it has become possible to create a large pressure difference. The gas permeation rate of this membrane is sufficiently faster than that of a liquid membrane and has the advantage that the presence or absence of this membrane does not affect the permeation of the separated gas.

さらに、電気的に推進される膜輸送現象を利用したもの
にもO21ミクロン以下の疎水性細孔のみからなる膜を
そのまま、或はこの膜に電極となる導電性物質を接合す
ることで電極として使用できる。
Furthermore, for those that utilize electrically propelled membrane transport phenomena, a membrane consisting only of hydrophobic pores of 1 micron or less can be used as an electrode, or by bonding a conductive material to the membrane. Can be used.

この発明の気体分離装置は以上のように構成したので、
従来の液体膜を使用した装置に比べ気体分離が高能率で
安定かつ容易にできる様になった。
Since the gas separation device of this invention is configured as described above,
Compared to devices using conventional liquid membranes, gas separation can now be performed more efficiently, stably, and easily.

(実施例) 以下本発明の実施例を記載するが、該実施例は本発明を
限定するものではない。
(Examples) Examples of the present invention will be described below, but these examples do not limit the present invention.

本発明の基本は第1図に示した疎水膜とキャリヤーを含
む液体膜をサンドイッチにした構造てあリ、液体膜用の
溶媒が減少しても外部からポンプで供給できるし、溶媒
のりザーバーを設けてもよい。液体膜中に疎水膜どうし
がコンタクトしない為にメツシュなどをいれてもよい。
The basics of the present invention are a structure in which a hydrophobic membrane and a liquid membrane containing a carrier are sandwiched together as shown in Fig. 1.Even if the solvent for the liquid membrane decreases, it can be supplied from the outside with a pump, and the solvent reservoir can be used. It may be provided. A mesh or the like may be inserted into the liquid film to prevent the hydrophobic films from coming into contact with each other.

第2図は疎水膜上に親水性多孔層を接合したものである
。親水性多孔層に液体を滲み込ませて、液体膜を構成す
るためのもので100ミクロン以下の膜厚に容易にてき
る。第3図はさらに第2図の多孔層の上に部分的に疎水
部を着けたものである。分離する気体と液体膜用液体を
同時に流すと気体は疎水部に付着し、液体膜で容易に分
離される。この様にする事で液体膜用の液体も容易に供
給される。第4図、第5図は第3図の膜をバイブ状にし
たものでパイプの内部または外部に混合ガスとキャリヤ
ーを含む液体を同時に流すことによって気体分離を行な
う。液体膜用のキャリヤーを含む液体は気体と混相流、
または霧状に間欠的に供給してもよい。
FIG. 2 shows a hydrophilic porous layer bonded onto a hydrophobic membrane. It is used to form a liquid film by allowing liquid to seep into a hydrophilic porous layer, and can easily reach a film thickness of 100 microns or less. FIG. 3 shows a structure in which a hydrophobic portion is partially provided on the porous layer of FIG. 2. When the gas to be separated and the liquid for liquid membrane are flowed simultaneously, the gas adheres to the hydrophobic portion and is easily separated by the liquid membrane. By doing this, the liquid for the liquid film can also be easily supplied. FIGS. 4 and 5 show the membrane shown in FIG. 3 in the form of a vibrator, and gas separation is carried out by simultaneously flowing a mixed gas and a liquid containing a carrier inside or outside the pipe. The liquid containing the carrier for the liquid film is in a multiphase flow with the gas,
Alternatively, it may be supplied intermittently in the form of a mist.

膜の媒質としては水溶液系以外にエチレングリコールな
どの有機溶媒も疎水膜を濡らさなければ適宜使用できる
。ざらにイオン交換樹脂にイオン種のキャリヤーを対イ
オンとして導入し水溶液で空隙を満たして使用できる。
As the membrane medium, in addition to aqueous solutions, organic solvents such as ethylene glycol can also be appropriately used as long as they do not wet the hydrophobic membrane. It can be used by introducing a carrier of ionic species as a counterion into an ion exchange resin and filling the voids with an aqueous solution.

疎水性膜は0.1ミクロン以下の細孔が多数あるほど良
い。疎水性微粒子例えば、アセチレンブラック等とPT
FE等の撥水性樹脂の微粒子を混合した後ホットプレス
等で結着し膜状にしても良い。
The more pores the hydrophobic membrane has than 0.1 micron, the better. Hydrophobic fine particles such as acetylene black and PT
It is also possible to mix fine particles of water-repellent resin such as FE and then bind them together using a hot press or the like to form a film.

ざらにPTFE、ポリエチレン、ポリプロピレン等を延
伸処理した撥水性多孔膜でもよい。
A water-repellent porous film made of roughly stretched PTFE, polyethylene, polypropylene, etc. may also be used.

分離能力は液体膜に接している細孔の数に比例するので
撥水性膜と液体膜の界面に凹凸を着けることが°望まし
い。
Since the separation ability is proportional to the number of pores in contact with the liquid membrane, it is desirable to provide unevenness at the interface between the water-repellent membrane and the liquid membrane.

キャリヤーを含む液体を保持する為の多孔層は親水性の
高分子膜、シリカ、アルミナ微粒子を高分子て結着した
膜でもよい。さらに撥水性膜と液体膜の界面に凹凸を着
けるために撥水性膜に撥水部と親水部を混在させた膜を
結着させることが出来る。
The porous layer for retaining a liquid containing a carrier may be a hydrophilic polymer membrane, or a membrane made of silica or alumina fine particles bonded together with a polymer. Furthermore, in order to create irregularities at the interface between the water-repellent film and the liquid film, a film containing a mixture of water-repellent portions and hydrophilic portions can be bonded to the water-repellent film.

分離気体としての対象の例は02)C02)H2S、S
O2)Co、No、オレフィン等でキャリヤーとしては
それぞれヘモグロビン、重炭酸塩、炭酸塩、エチレング
リコール、Cu〜イオン、Fe〜イオン、Ag+イオン
、である。第6図にAg0イオンをキャリヤーとするエ
チレンの促進輸送の原理を示した。 Ag゛イオンを含
む液体膜は疎水性膜で保持されるので加圧下で安定に存
在でき、かつ液体膜の両面にある疎水性膜中には細孔が
多数有るので透過気体、及び分離気体は容易に移動でき
る。
Examples of targets as separated gases are 02) C02) H2S, S
O2) Co, No, olefin, etc., and the carriers are hemoglobin, bicarbonate, carbonate, ethylene glycol, Cu~ ion, Fe~ ion, Ag+ ion, respectively. FIG. 6 shows the principle of facilitated transport of ethylene using Ag0 ions as carriers. Since the liquid membrane containing Ag' ions is held by a hydrophobic membrane, it can exist stably under pressure, and since there are many pores in the hydrophobic membranes on both sides of the liquid membrane, permeated gas and separated gas are Can be easily moved.

能率よく気体分離を行なう為に大きな圧力差をつけるこ
とが必要な場合には疎水性膜の口径を小さくすれば良い
。例えば、0.05ミクロン以下の細孔のみとすれば1
0 kg/am2以上となる。このとき膜の保護のため
にステンレスフィルター等の補強材を接合してもよい。
If it is necessary to create a large pressure difference for efficient gas separation, the diameter of the hydrophobic membrane may be made smaller. For example, if the pores are only 0.05 microns or less, then 1
0 kg/am2 or more. At this time, a reinforcing material such as a stainless steel filter may be attached to protect the membrane.

さらに、電気的に推進される膜輸送現象を利用した気体
分離は第7図の様に構成する。電極は膜が導電性であれ
ばそのまま、あるいは電極触媒として白金等を担持して
用いることが出来る。非導電性の膜の場合は白金網、カ
ーボンブラックとポリテトラフロロエチレンの混合物等
を膜に接合して用いる。この電極としてはいわゆるガス
拡散電極でも良いものである。このガス拡散電極の反応
層は疎水部と親水部が微細に混在してなることが望まし
い。
Furthermore, gas separation using electrically propelled membrane transport phenomenon is configured as shown in FIG. As long as the membrane is conductive, the electrode can be used as it is or by supporting platinum or the like as an electrode catalyst. In the case of a non-conductive film, a platinum mesh, a mixture of carbon black and polytetrafluoroethylene, etc. are used by bonding it to the film. This electrode may be a so-called gas diffusion electrode. It is desirable that the reaction layer of this gas diffusion electrode has a fine mixture of hydrophobic parts and hydrophilic parts.

大鼠皿1 0.1ミクロン以下の細孔のみを持つ膜は以下のように
作成し・た。平均粒径0.04ミクULのアセチレンブ
ラックと平均粒径0.3ミクロンのポリテトラフロロエ
チレンを7:3と、液相混合したのちろ過、乾燥後粉末
にして金型に充填し、プレス圧力600Kg/cm2)
温度380℃で3秒間ホットプレスを行い急冷し厚さ0
. 3mm、平均口径0.04 ミクロンの疎水性細孔
を有する膜1を得た。
Large Mouse Plate 1 A membrane having only pores of 0.1 micron or less was prepared as follows. Acetylene black with an average particle size of 0.04 μm UL and polytetrafluoroethylene with an average particle size of 0.3 μm are mixed in a liquid phase at a ratio of 7:3, filtered, dried, powdered, filled into a mold, and pressed under pressure. 600Kg/cm2)
Hot press at a temperature of 380℃ for 3 seconds and rapidly cool to a thickness of 0.
.. A membrane 1 was obtained having hydrophobic pores of 3 mm and an average diameter of 0.04 microns.

第8図に示す構成図のように作成した6πcm2の電極
面積を持つ二枚の膜10間を0.3mmとしt液体膜5
をさらに両側から4πcn’+2のステンレス製のフィ
ルターを有する治具7て挟み、高圧室1゜と低圧室11
を設けた。キャリヤーとしてAgNO3を2モル含む水
溶液5を液体膜とし、パルスポンプて0.1ml/mi
nの速度で循環させた。
The distance between two membranes 10 having an electrode area of 6πcm2 prepared as shown in the configuration diagram shown in FIG. 8 is 0.3 mm, and the liquid membrane 5
is further sandwiched between a jig 7 having a stainless steel filter of 4πcn'+2 from both sides, and a high pressure chamber 1° and a low pressure chamber 11 are formed.
has been established. An aqueous solution 5 containing 2 mol of AgNO3 as a carrier was used as a liquid film, and a pulse pump was used to pump the liquid at 0.1 ml/mi.
It was circulated at a speed of n.

温度25度で高圧室に2Kg/cm”の圧力でエチレン
とエタンの等モルの混合物を圧入しつつ低圧室を10m
mHgに減圧した。その結果、純度99%以上のエチレ
ンが得られた。このとき水分が流出気体と共に液膜から
奪われるが循環する水溶液に水分を供給するか、分離気
体の湿度を制御することで回避出来る。
At a temperature of 25 degrees, an equimolar mixture of ethylene and ethane is injected into the high pressure chamber at a pressure of 2 kg/cm'', while the low pressure chamber is 10 m deep.
The pressure was reduced to mHg. As a result, ethylene with a purity of 99% or more was obtained. At this time, water is taken away from the liquid film together with the outflowing gas, but this can be avoided by supplying water to the circulating aqueous solution or by controlling the humidity of the separated gas.

大鼠耐ス 電気的に推進される膜輸送現象を利用したものは第7図
の様に構成した。0.2モルの塩化第一鉄と0.2モル
の塩化第二鉄水溶液を液体膜5とし、4πClT12の
電極面積を持つ二枚のガス拡散電極1(白金を0.51
g/cIT12担持)で極間0.5 mmで挟みNOを
電気的に陰極室8から陽極室9に輸送した。
A device utilizing the electrically propelled membrane transport phenomenon was constructed as shown in Figure 7. The liquid membrane 5 is made of 0.2 mol of ferrous chloride and 0.2 mol of ferric chloride aqueous solution, and two gas diffusion electrodes 1 with an electrode area of 4πClT12 (0.51 mol of platinum are used)
NO was electrically transported from the cathode chamber 8 to the anode chamber 9 with a gap of 0.5 mm between the electrodes.

陰極室8、陽極室9とも同圧のNoを満たしておき2m
、A、/ c m”で電解でき、陰極室8から陽極室9
に移動した。従来例より移動量、効率とも優っていたう (発明の効果) 本発明は、気体分離を行なう液体膜の構成を、キャリヤ
ーを含む液体の薄膜を0.1ミクロン以下の疎水性細孔
のみからなる膜で層状に保持した。
Both cathode chamber 8 and anode chamber 9 are filled with the same pressure No.2m.
, A, / cm", from cathode chamber 8 to anode chamber 9
Moved to. The amount of movement and efficiency were superior to the conventional example (effects of the invention) The present invention improves the structure of the liquid membrane for gas separation by forming a thin film of liquid containing a carrier only through hydrophobic pores of 0.1 micron or less. It was held in a layered manner with a film.

その為、液体膜は気体が自由に透過できるが溶媒が浸透
しない疎水性膜に保持されるので液体膜に圧力が加えら
れても溶媒が漏れてることはない。
Therefore, the liquid membrane is held by a hydrophobic membrane through which gas can freely permeate but not the solvent, so even if pressure is applied to the liquid membrane, the solvent will not leak out.

液体膜の溶媒の散逸は無く、能力の向上を図るために液
体膜の薄膜化、高差圧化が可能どなった。
There is no dissipation of the solvent in the liquid film, and in order to improve performance, the liquid film can be made thinner and the pressure differential can be increased.

その結果いろいろな気体を安定に能率よく分能てぎる。As a result, various gases can be separated stably and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な構成を示す図。第2図は従来
の液体膜に疎水性細孔層を接合した膜を示す。第3図は
第2図の膜にさらに疎水部を接合した膜を示す。第4図
は第3図、第5図、の膜をバイブ状にして気液混相流と
して供給する事を示す図。第6図、Ag゛液膜によるエ
チレンの分離装置の概念図。第7図、Fe”液膜による
電気的に推進される膜輸送現象を利用したNoの濃縮装
置。第8図、Ag”液膜によるエチレンの分離装置。 第1図 1、疎水性膜 2)液膜 3、多孔親水性膜(液体膜) 4、混合気体 5、斗ヤリャーを含む液体 6、分離された気体 第4図         第5図 第6図 C2H4 A4”+C2HJ → Ag−C,H,。 ↑        ↓     −m−−5Ag”+c
よH,−Ag−C,H,” 2H4 第8図 9、ステンレス製治具 10、高圧室 11、低圧室 手続補正書(方式) %式% 2)発明の名称 疎水性細孔膜を有する気体分離装置 3、補正をする者 事件との関係   特許出願人 平成1年7月4日 5、補正の対象 明細書の図面の簡単な説明の欄 6、補正の内容 明細書第12頁第13行の「第3図、第5図、」を[第
2図の膜をパイプ状にして気液混相流として供給する事
を示す図。第5図は第3図」に補正する。
FIG. 1 is a diagram showing the basic configuration of the present invention. FIG. 2 shows a membrane in which a hydrophobic pore layer is bonded to a conventional liquid membrane. FIG. 3 shows a membrane in which a hydrophobic portion is further bonded to the membrane of FIG. 2. FIG. 4 is a diagram showing that the membranes of FIGS. 3 and 5 are shaped into a vibrator and supplied as a gas-liquid multiphase flow. FIG. 6 is a conceptual diagram of an ethylene separation device using an Ag liquid membrane. Fig. 7: No concentration device using electrically propelled membrane transport phenomenon using an Fe'' liquid membrane. Fig. 8: Ethylene separation device using an Ag'' liquid membrane. Figure 1 1, Hydrophobic membrane 2) Liquid membrane 3, Porous hydrophilic membrane (liquid membrane) 4, Mixed gas 5, Liquid containing 6, Separated gas Figure 4 Figure 5 Figure 6 C2H4 A4 "+C2HJ → Ag-C,H,. ↑ ↓ -m--5Ag"+c
YoH, -Ag-C,H," 2H4 Figure 8 9, Stainless steel jig 10, high pressure chamber 11, low pressure chamber Procedure amendment (method) % formula % 2) Name of the invention Having a hydrophobic pore membrane Gas separation device 3, relationship with the case of the person making the amendment Patent applicant July 4, 1999 5, column 6 for a brief explanation of the drawings of the specification subject to the amendment, page 12, item 13 of the specification of the contents of the amendment The rows ``Figure 3, Figure 5,'' are replaced by [Figure 2 showing that the membrane in Figure 2 is made into a pipe shape and supplied as a gas-liquid multiphase flow. Figure 5 has been corrected to Figure 3.

Claims (3)

【特許請求の範囲】[Claims] (1)0.1ミクロン以下の疎水性細孔のみを有する膜
とキャリヤーを含む液体膜から構成することを特徴とす
る気体分離装置。
(1) A gas separation device comprising a membrane having only hydrophobic pores of 0.1 micron or less and a liquid membrane containing a carrier.
(2)特許請求の範囲1で示した膜を有する二枚の電極
で液体膜を挟んだことを特徴とする電気的推進力による
気体分離装置。
(2) A gas separation device using electrical propulsion, characterized in that a liquid membrane is sandwiched between two electrodes having the membrane as set forth in claim 1.
(3)特許請求の範囲2の電極がガス拡散電極であるこ
とを特徴とする気体分離装置。
(3) A gas separation device characterized in that the electrode according to claim 2 is a gas diffusion electrode.
JP575088A 1988-01-14 1988-01-14 Gas separation device with hydrophobic porous film Pending JPH01297122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP575088A JPH01297122A (en) 1988-01-14 1988-01-14 Gas separation device with hydrophobic porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP575088A JPH01297122A (en) 1988-01-14 1988-01-14 Gas separation device with hydrophobic porous film

Publications (1)

Publication Number Publication Date
JPH01297122A true JPH01297122A (en) 1989-11-30

Family

ID=11619788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP575088A Pending JPH01297122A (en) 1988-01-14 1988-01-14 Gas separation device with hydrophobic porous film

Country Status (1)

Country Link
JP (1) JPH01297122A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575835A (en) * 1995-08-11 1996-11-19 W. L. Gore & Associates, Inc. Apparatus for removing moisture from an environment
JP2011098327A (en) * 2009-11-09 2011-05-19 Toyota Central R&D Labs Inc Separation membrane for nitrogen oxide, nitrogen oxide separator using the same, method for separation of nitrogen oxide, nitrogen oxide cleaning device, and nitrogen oxide cleaning method
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
WO2013110950A1 (en) 2012-01-25 2013-08-01 Acal Energy Limited Improved fuel cell electrolyte regenerator and separator
JP2018001131A (en) * 2016-07-07 2018-01-11 株式会社クラレ Carbon dioxide separation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575835A (en) * 1995-08-11 1996-11-19 W. L. Gore & Associates, Inc. Apparatus for removing moisture from an environment
JP2011098327A (en) * 2009-11-09 2011-05-19 Toyota Central R&D Labs Inc Separation membrane for nitrogen oxide, nitrogen oxide separator using the same, method for separation of nitrogen oxide, nitrogen oxide cleaning device, and nitrogen oxide cleaning method
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
WO2013110950A1 (en) 2012-01-25 2013-08-01 Acal Energy Limited Improved fuel cell electrolyte regenerator and separator
US20150031124A1 (en) * 2012-01-25 2015-01-29 Acal Energy Limited Separator
JP2018001131A (en) * 2016-07-07 2018-01-11 株式会社クラレ Carbon dioxide separation apparatus

Similar Documents

Publication Publication Date Title
US3729400A (en) Method of separating mixtures of gases
Matson et al. Separation of gases with synthetic membranes
US3396510A (en) Liquid membranes for use in the separation of gases
US4617029A (en) Method for gas separation
JP5617048B2 (en) Carbon dioxide permeation apparatus and carbon dioxide transport method
Figoli et al. Facilitated oxygen transport in liquid membranes: review and new concepts
CN105358238A (en) Multiple channel membranes
JPH0290915A (en) Molten hydrated salt film for separating gas
JPH0691130A (en) High pressured promotion film for selective separation and its usage
Nymeijer et al. Composite hollow fiber gas–liquid membrane contactors for olefin/paraffin separation
Ito et al. Permeation of wet CO2/CH4 mixed gas through a liquid membrane supported on surface of a hydrophobic microporous membrane
JPH01297122A (en) Gas separation device with hydrophobic porous film
Fu et al. Ionic liquids for carbon capture
EP0084768A1 (en) Continuous production of polymethylpentene membranes
EP0194483B1 (en) Method for gas separation
JPH10309445A (en) Spiral type film module
JP4357882B2 (en) Gas separation method and apparatus
JPS6230554A (en) Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same
JPH0363414B2 (en)
US20220379260A1 (en) Humidification and selective permeation module
JPH0477607B2 (en)
Figoli Liquid membrane in gas separations
JPS61268338A (en) Selective separation of gas
JPH0626651B2 (en) Liquid mixture separation method
JPH026817A (en) Separation of gas by membrane