JPS622248B2 - - Google Patents

Info

Publication number
JPS622248B2
JPS622248B2 JP56127691A JP12769181A JPS622248B2 JP S622248 B2 JPS622248 B2 JP S622248B2 JP 56127691 A JP56127691 A JP 56127691A JP 12769181 A JP12769181 A JP 12769181A JP S622248 B2 JPS622248 B2 JP S622248B2
Authority
JP
Japan
Prior art keywords
load
converter
measuring device
plate
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56127691A
Other languages
Japanese (ja)
Other versions
JPS5830629A (en
Inventor
Toshio Sakai
Takeyasu Matsui
Akira Tanioka
Sachimiki Koyanagi
Takaaki Ookubo
Tooru Hori
Yoshihiko Matsui
Itsuo Kawagishi
Masahiro Fujii
Koichi Yabe
Haruhisa Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56127691A priority Critical patent/JPS5830629A/en
Priority to KR1019820002482A priority patent/KR840000798A/en
Priority to GB08216174A priority patent/GB2104671B/en
Priority to NO821869A priority patent/NO821869L/en
Priority to US06/385,449 priority patent/US4475609A/en
Priority to FR8213650A priority patent/FR2511504A1/en
Priority to SE8204655A priority patent/SE8204655L/en
Priority to NL8203181A priority patent/NL8203181A/en
Publication of JPS5830629A publication Critical patent/JPS5830629A/en
Publication of JPS622248B2 publication Critical patent/JPS622248B2/ja
Priority to KR2019890007278U priority patent/KR890004756Y1/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Description

【発明の詳細な説明】 本発明は、鋼板と防撓材等とからなる構造物
(以下単に鋼構造物と称す)等の比較的柔軟な部
材に負荷される大荷重を計測する大荷重計測装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for measuring large loads that measure large loads applied to relatively flexible members such as structures made of steel plates, stiffeners, etc. (hereinafter simply referred to as steel structures). Regarding equipment.

例えばジヤツキアツプ式リグと称される甲板昇
降式海洋石油掘削装置は、昇降可能な数本の脚を
持ち石油掘削用各種装置を搭載したプラツトフオ
ームであつて、移動時には脚をジヤツキアツプし
てプラツトフオームの浮力で浮遊した状態で曳航
し、作業時は脚を海底まで降し、更にプラツトフ
オームを海面上十分な高さまでジヤツキアツプ
し、波や潮流の影響を受けない安定した作業環境
の下に海底油田の試掘作業ができ、作業性、安全
性、経済性等の面から最も有利な掘削装置として
多用されている。このジヤツキアツププラツトフ
オームに於ては、作業時に脚を海底まで降し更に
プラツトフオームを海面上十分な高さまでジヤツ
キアツプする際、リグが転覆しないよう監視する
と共にリグを安定して設置するために、各脚にか
かる荷重を計測する計測装置を設置することが義
務付けられている。これに伴ない特に北海で使用
されるオイルリグおよびメンテナンスバージその
他のジヤツキアツププラツトフオームの荷重計測
装置が要請されるようになつた。
For example, a deck lift type offshore oil drilling rig called a jack-up type rig is a platform that has several legs that can be raised and lowered and is equipped with various oil drilling equipment. The platform is towed while floating due to the buoyancy of the platform, and during work, the legs are lowered to the seabed, and the platform is then jacked up to a sufficient height above the sea surface, creating a stable working environment unaffected by waves and currents. It is often used as the most advantageous drilling equipment in terms of workability, safety, economy, etc., and is capable of conducting test drilling in offshore oil fields. When working on this jack-up platform, when the legs are lowered to the seabed and the platform is jacked up to a sufficient height above the sea surface, the rig must be monitored to ensure it does not capsize and the rig must be stably installed. Therefore, it is mandatory to install a measuring device to measure the load on each leg. As a result, there has been a demand for load measuring devices for oil rigs, maintenance barges, and other jack-up platforms used particularly in the North Sea.

上記、ジヤツキアツプ式リグ等の荷重計測装置
として、従来から負荷の伝達径路中に油を封入し
た袋状のパツドを介挿し、該パツド内の油圧から
荷重を求める油圧式荷重計が用いられている。
As a load measuring device for the above-mentioned jack-up type rigs, etc., a hydraulic load cell has traditionally been used, in which a bag-shaped pad filled with oil is inserted into the load transmission path, and the load is determined from the hydraulic pressure inside the pad. .

しかしながら、この油圧式荷重計の場合、油温
の変化による測定誤差が大きく表われ、その温度
補償が極めて困難であり、またエツジ部分に応力
集中が起こり大荷重が負荷されると破損の虞れが
ありまたその製造方法においても困難であるなど
の欠点を有していた。
However, in the case of this hydraulic load cell, measurement errors due to changes in oil temperature appear significantly, making it extremely difficult to compensate for the temperature, and there is also a risk of damage due to stress concentration at the edges when a large load is applied. However, it also had drawbacks such as difficulty in its manufacturing method.

このような従来装置の欠点に鑑み、本願の発明
者等は、この油圧式荷重計に代えてひずみゲージ
式荷重変換器の採用を試みたところ、次に述べる
問題点に遭遇した。
In view of the shortcomings of the conventional devices, the inventors of the present invention attempted to use a strain gauge type load transducer in place of the hydraulic load cell, and encountered the following problems.

すなわち、例えばジヤツキアツプ式リグはいわ
ゆる鋼構造物であり、特に脚から受ける反力を支
持するジヤツキハウスの支持部(天板)も鋼構造
物で比較的柔軟な部材(鋼板)で形成されている
ため、荷重変換器に均一な荷重が伝達されず、正
確な荷重計測ができない。この問題に対処するた
め、荷重変換器と構造物の被測定部との間に剛性
の大きい厚板材からなる当て金を介挿せしめるこ
とで測定精度を高めることはできるが、当て金の
厚みに相応してジヤツキハウスも高くせねばなら
ず、全構造物の重量および材料費の増大をもたら
すという新たな問題を生ずる。これらの問題につ
いて、図面を参照しながら更に詳細に説明する。
第1図は圧延機にひずみゲージ式の荷重変換器を
組込んだ例を示す正面図である。この圧延機は図
示A方向から板材を上下の圧延ローラ1,2間に
送り込み、上方に設けた調整ねじ3によつて調整
された所定の板厚に圧延するものであり、圧延時
の各支持部4,5,6,7,8に加わる荷重をワ
ツシヤ形荷重変換器9、フラツト形荷重変換器1
0,11で計測するようになしてある。この圧延
機においては、本体部12および各荷重変換器
9,10,11に当接する各支持部4,5,6,
7,8は剛性を大きくしてあるので、各支持部の
変形は、殆んど無視し得る程度であり、各支持部
と荷重変換器の平行度に留意すれば、各支持部に
負荷される荷重を正確に計測することができる。
That is, for example, a jack-up type rig is a so-called steel structure, and in particular, the support part (top plate) of the jack-up house that supports the reaction force received from the legs is also a steel structure and is made of a relatively flexible member (steel plate). , uniform load is not transmitted to the load converter, making accurate load measurement impossible. To deal with this problem, measurement accuracy can be improved by inserting a pad made of thick plate material with high rigidity between the load transducer and the part to be measured of the structure, but the thickness of the pad The jack house has to be correspondingly taller, creating additional problems resulting in an increase in the weight and material costs of the entire structure. These problems will be explained in more detail with reference to the drawings.
FIG. 1 is a front view showing an example in which a strain gauge type load transducer is incorporated into a rolling mill. This rolling mill feeds a plate from the direction A in the figure between upper and lower rolling rollers 1 and 2, and rolls the plate to a predetermined thickness adjusted by an adjustment screw 3 provided above. The loads applied to parts 4, 5, 6, 7, and 8 are transferred to a washer type load converter 9 and a flat type load converter 1.
It is arranged to measure at 0.11. In this rolling mill, each of the support parts 4, 5, 6, which abuts the main body part 12 and each load converter 9, 10, 11,
7 and 8 have increased rigidity, so the deformation of each support part is almost negligible, and if you pay attention to the parallelism of each support part and the load converter, the load on each support part can be reduced. It is possible to accurately measure the load applied.

ところが、第2図および第3図に平面図および
正面図をもつて示すような鋼構造物においては、
円筒状の荷重変換器13に当接すべき上部支持板
(天板)14、下部支持板15はいずれも柔軟で
変形しやすい鋼構造物からなり、これら上部支持
板14または下部支持板15の一方が上下方向に
接離移動可能となしてあり、接触時の衝撃を吸収
するためのシヨツクパツド16およびこのシヨツ
クパツド16の部分的変形を防止するための当て
金17を設けている。
However, in steel structures as shown in the plan and front views in FIGS. 2 and 3,
The upper support plate (top plate) 14 and the lower support plate 15 that are in contact with the cylindrical load converter 13 are both made of flexible and easily deformable steel structures. One of the two is movable toward and away from the other in the vertical direction, and is provided with a shock pad 16 for absorbing impact upon contact and a pad 17 for preventing partial deformation of the shock pad 16.

このような鋼構造物に、例えば下方から荷重が
加えられた場合、当て金17および上部支持板1
4に傾斜荷重、不等分布荷重が加わり易く、その
傾斜および不等分布の度合が僅かであつても第4
図に示すように、上部支持板14および当て金1
7等が変形し荷重変換器13への当り面も波状に
変形する。例えば、第5図に示すように上部支持
板14(二点鎖線で示す)が上方に湾曲した場合
には、荷重変換器13の受圧面の応力分布は、外
周縁部で最大となり内周縁部に近づくに従つて減
少する。反対に、上部支持板14が下方に湾曲し
た場合には、第6図に示すような応力分布とな
る。このように荷重変換器13の受圧面に不等分
布荷重が負荷すると、荷重と測定値との関係が線
形を失い例えば、第5図の場合は測定値が実荷重
より小さく、第6図の場合は大きく表われる傾向
にあり、いずれの場合も正確な測定が行われな
い。この欠点を除去すべく、第7図aに示すよう
に荷重変換器13の上面と上部支持板14との間
に荷重の伝達を均質化するためのh1の高さを有す
る当り構造物18を介挿するか、第8図aに示す
ように板厚h3が大で剛性の大きい当て金19を介
挿し且つ荷重変換器13の高さh4を大にすること
によつて、それぞれ第7図bおよび第8図bに示
すような応力分布となり、荷重変換器13の受圧
面において荷重が均等化され、荷重の再現性すな
わち測定精度を向上し得ることが見出された。
When a load is applied to such a steel structure from below, for example, the pad 17 and the upper support plate 1
An inclined load or unevenly distributed load is likely to be applied to the fourth
As shown in the figure, the upper support plate 14 and the pad 1
7 etc. are deformed, and the contact surface to the load converter 13 is also deformed into a wave shape. For example, when the upper support plate 14 (indicated by the two-dot chain line) is curved upward as shown in FIG. It decreases as it approaches . On the other hand, if the upper support plate 14 is curved downward, the stress distribution will be as shown in FIG. When an unevenly distributed load is applied to the pressure receiving surface of the load converter 13 in this way, the relationship between the load and the measured value loses linearity, and for example, in the case of Fig. 5, the measured value is smaller than the actual load, and in the case of Fig. 6 In both cases, accurate measurements cannot be taken. In order to eliminate this drawback, as shown in FIG . or by inserting a plate 19 with a large plate thickness h 3 and high rigidity and increasing the height h 4 of the load transducer 13 as shown in FIG. 8a. It has been found that the stress distribution becomes as shown in FIGS. 7b and 8b, the load is equalized on the pressure receiving surface of the load converter 13, and the reproducibility of the load, that is, the measurement accuracy can be improved.

しかしながら、上記第7図a、第8図aに示す
ように当り構造物18のh1、当て金19の高さ
h3、荷重変換器13の高さh4等が大となるため必
然的に上部支持板14と下部支持板15間の高さ
Hも大となる結果、重量やコストの増加を伴なう
ばかりでなく、横荷重に対し弱くなるという問題
が残る。
However, as shown in FIG. 7a and FIG.
h 3 , the height h 4 of the load converter 13, etc. become large, so the height H between the upper support plate 14 and the lower support plate 15 also becomes large, resulting in an increase in weight and cost. Not only that, but the problem remains that it becomes weak against lateral loads.

本発明は、このような問題を解決すべくなされ
たもので、鋼構造物等の比較的柔軟な部材に負荷
される大荷重を精度高く計測でき、小重量で低コ
ストな、鋼構造物等の大荷重計測装置を提供する
ことを目的としている。
The present invention has been made to solve these problems, and is capable of measuring large loads applied to comparatively flexible members such as steel structures with high accuracy, and is capable of measuring small weight, low cost steel structures, etc. The purpose is to provide a large load measuring device.

以下、本発明の一実施例を第9図、第10図、
および第11図に基いて説明する。
An embodiment of the present invention is shown below in FIGS. 9 and 10.
This will be explained based on FIG.

第9図〜第11図において、20は内部空間2
1を有し、全体形状が円筒状をなす荷重変換器
で、縦向きに配設され、その上端面22側には環
状の突部23が一体形成されており、円筒の内周
面および外周面の適宜な位置に荷重を電気量に変
換するひずみゲージ24が複数枚添着されてい
る。25は円盤状の上位当て板で、前記突部23
上に当接(載置)される。26は円柱状の突起シ
ートで、前記上位当て板25の上面でその中心位
置に設けられる。この突起シート26は、前記上
位当て板25上に載置してもよいし、一体化して
もよい。すなわちこの上位当て板25にその下端
を嵌合させてもよいし、さらには該上位当て板2
5と一体形成してもよい。ここで突起シート26
の径dは、この突起シート26の上面に当接する
支持部材(後述の上部共通シート39)が材料強
度的に耐え得る範囲内でできるだけ小さい方がよ
い。又突起シート26の厚みtはh1h3に比しわず
かの厚みを有すればよく因みに上記実施例におい
ては、この突起シート26の厚みtはたかだか10
mm以下に形成してある。
In FIGS. 9 to 11, 20 is the internal space 2
1, the load transducer has a cylindrical overall shape, is arranged vertically, and has an annular protrusion 23 integrally formed on the upper end surface 22 side, and has a cylindrical inner peripheral surface and an outer peripheral surface. A plurality of strain gauges 24 are attached at appropriate positions on the surface to convert the load into an electrical quantity. Reference numeral 25 denotes a disk-shaped upper abutting plate, which
It is abutted (placed) on top. Reference numeral 26 denotes a cylindrical projection sheet, which is provided at the center of the upper surface of the upper backing plate 25. This protrusion sheet 26 may be placed on the upper backing plate 25 or may be integrated. That is, the lower end may be fitted to this upper backing plate 25, or furthermore, the upper backing plate 2
It may be formed integrally with 5. Here, the projection sheet 26
It is preferable that the diameter d is as small as possible within the range that the supporting member (the upper common sheet 39, which will be described later) that comes into contact with the upper surface of the projection sheet 26 can withstand in terms of material strength. Further, the thickness t of the protrusion sheet 26 only needs to be slightly thicker than h 1 h 3. Incidentally, in the above embodiment, the thickness t of the protrusion sheet 26 is at most 10
It is formed to be less than mm.

上記のように構成された大荷重計測装置27
は、荷重変換器20をベース上に設置し、そして
突起シート26で被荷重物を支える状態で使用さ
れる。第12図aに示すように、突起シート26
の上面に当接する被荷重物が、鋼構造物等の比較
的柔軟な部材28である場合には、該部材28全
体が波状に変形し、部材28の応力分布もその変
形に相応して波状を呈することになる。そして、
該部材28に当接して荷重を受ける突起シート2
6は不等分布荷重を受けるためその表面の応力分
布も例えば、第12図bに示す如く中心部は小さ
く周縁部にいくに従つて大きくなるような分布状
態を呈する。ところが、突起シート26で受けた
上記不等分布荷重は、突起シート26で集中化さ
れ、また突起シート26の受圧面積が小さくなつ
ているため、被荷重物つまり部材28に発生して
いる不等分布荷重により生ずる曲げモーメントを
上位当て板25、荷重変換器20に伝達しない機
能を果たす。更に荷重が上位当て板25を介して
荷重変換器20に伝えられる際、、上位当て板2
5内で応力が拡散(分散)され、荷重変換器20
の上端面22側に設けられた突部23に至る段階
では、第12図cにおいて示す如くその応力分布
はかなり均質化される。そして、更に突部23を
介して荷重変換器20の上端面22に至る段階で
は、突部23の応力平滑化機能により上端面22
に負荷される荷重は均等分布荷重になり、応力分
布は第12図dに示す如く受圧面全体において均
一となる。このことは、荷重変換器20の上端面
22の応力の積分値は、第12図aに示す被測定
部材28の応力の積分値に正確に一致することを
意味する。従つて、荷重変換器20に添着された
ひずみゲージ24,24…の箇所に正しく荷重が
伝達され、被測定部材28に負荷される荷重に正
確に対応する電気的出力を該ひずみゲージ24,
24…によつて取り出すことができる。また上述
の構成によれば、突起シート26および上位当て
板25の厚み(高さ)は薄いものでよく、荷重変
換器20の高さも低いもので充分高精度な荷重計
測ができるので、装置の重量およびコストを低減
し得て甚だ好都合である。
Large load measuring device 27 configured as described above
is used with the load converter 20 installed on the base and the protruding sheet 26 supporting the load object. As shown in FIG. 12a, the projection sheet 26
When the loaded object that comes into contact with the upper surface is a relatively flexible member 28 such as a steel structure, the entire member 28 is deformed in a wavy manner, and the stress distribution of the member 28 is also wavy in accordance with the deformation. will be presented. and,
The protruding sheet 2 contacts the member 28 and receives the load.
6 receives an unevenly distributed load, so that the stress distribution on its surface is small at the center and becomes larger toward the periphery, as shown in FIG. 12b, for example. However, the unevenly distributed load received by the protruding sheet 26 is concentrated at the protruding sheet 26, and the pressure receiving area of the protruding sheet 26 is becoming smaller, so that the uneven distribution load that occurs on the loaded object, that is, the member 28, is reduced. It functions to prevent bending moments caused by distributed loads from being transmitted to the upper backing plate 25 and load converter 20. Furthermore, when the load is transmitted to the load converter 20 via the upper backing plate 25, the upper backing plate 2
5, the stress is diffused (dispersed) within the load transducer 20
At the stage reaching the protrusion 23 provided on the upper end surface 22 side, the stress distribution is considerably homogenized as shown in FIG. 12c. Further, at the stage of reaching the upper end surface 22 of the load converter 20 via the protrusion 23, the stress smoothing function of the protrusion 23 causes the upper end surface 22 to
The load applied to the surface becomes a uniformly distributed load, and the stress distribution becomes uniform over the entire pressure-receiving surface as shown in FIG. 12d. This means that the integrated value of the stress on the upper end surface 22 of the load transducer 20 exactly matches the integrated value of the stress on the member to be measured 28 shown in FIG. 12a. Therefore, the load is correctly transmitted to the strain gauges 24, 24, .
24... can be taken out. Further, according to the above-mentioned configuration, the thickness (height) of the protruding sheet 26 and the upper backing plate 25 may be small, and the height of the load converter 20 may be low enough to perform load measurement with high accuracy. It is very advantageous to reduce weight and cost.

次に、本発明の大荷重計測装置27を前述のジ
ヤツキアツププラツトフオームに適用した一例を
第13図〜第15図に基いて説明する。29は一
対のラツク30を有する脚、31は前記ラツク3
0に咬合するピニオン32を有する支持枠体、3
3はピニオン駆動装置である。前記支持枠体31
の上面にはシヨツクパツド34が取付けられてい
る。ジヤツキハウス35の天板側から複数本の吊
りボルト36に支持される下部共通シート37上
には、夫々下位当て板38を介して3個の大荷重
計測装置27が設置され、各突起シート26は、
ジヤツキハウス35の下面に取付けた上部共通シ
ート39に対して下方から当接している。
Next, an example in which the large load measuring device 27 of the present invention is applied to the above-mentioned jack up platform will be described with reference to FIGS. 13 to 15. 29 is a leg having a pair of racks 30; 31 is the rack 3;
a support frame body with a pinion 32 that engages with 0; 3;
3 is a pinion drive device. The support frame 31
A shock pad 34 is attached to the upper surface of the holder. On the lower common seat 37 supported by a plurality of hanging bolts 36 from the top plate side of the jack house 35, three large load measuring devices 27 are installed via lower backing plates 38, and each protruding seat 26 ,
It abuts from below against an upper common sheet 39 attached to the lower surface of the jack house 35.

このような構成からなるジヤツキアツププラツ
トフオームの大荷重計測装置の動作につき説明す
る。
The operation of the large load measuring device for the jack-up platform having such a configuration will be explained.

前述したようにジヤツキアツププラツトフオー
ムの移動時には、ピニオン駆動装置33によつて
ピニオン32を図示方向に回転させ、これと咬合
するラツク30およびラツク30と一体の脚29
を上昇させる。プラツトフオームは自体の浮力で
浮遊するので、その状態で目標とする海底油田地
点まで曳航する。
As mentioned above, when the jack platform is moved, the pinion drive device 33 rotates the pinion 32 in the direction shown, and the rack 30 that engages with the pinion 32 and the leg 29 that is integral with the rack 30 are rotated by the pinion drive device 33.
to rise. Since the platform floats due to its own buoyancy, it is towed in that state to the target offshore oil field location.

次に海底油田の掘削(試掘)作業時は、ピニオ
ン駆動装置33を前述とは反対方向に駆動し脚2
9を海底まで降し、更にプラツトフオームを海面
上十分な高さまでジヤツキアツプする。この際、
支持枠体31には、ラツク30を下降させるピニ
オン32の反力によつて図示上方向の荷重がかか
り、この荷重は、シヨツクパツド34→下部共通
シート37→下位当て板38→荷重変換器20→
上位当て板25→突起シート26→上部共通シー
ト39→ジヤツキハウス(天板)35へと伝達さ
れ、プラツトフオームを押し上げる力となる。こ
のようにこの大荷重計測装置27は、負荷の伝達
径路間に介挿されており、しかも荷重変換器2
0、突部23、上位当て板25および突起シート
26との組合せにより構成されてなるので、上述
したように鋼構造物よりなるジヤツキハウス35
の天板28の如く比較的柔軟な部材にかかる大荷
重(この例の場合プラツトフオームの重量は
4000t〜20000t)を高精度で計測することができ
る。従つて、例えば、プラツトフオームをジヤツ
キアツプする際、数本の脚にかかる荷重の割合を
監視することができるから、転覆の危険を防止で
きる。特に海底の軟弱な地盤に脚を馴染ませて、
安定させることが極めて重要であり、その安定化
方法として、海水をプラツトフオーム内に汲み上
げて脚に大重量をかけたり、数本の脚のうち1〜
2本を浮かせて残りの脚に荷重を集中させたりす
るため、脚にかかる荷重バランスを監視しながら
慎重に操作を行なう必要がある。このような場合
における荷重計測装置として、本発明は頗る好適
なものとなる。
Next, when drilling (test drilling) an offshore oil field, the pinion drive device 33 is driven in the opposite direction to the above-mentioned direction.
9 to the seabed, and then jack up the platform to a sufficient height above the sea surface. On this occasion,
A load is applied to the support frame 31 in an upward direction in the drawing due to the reaction force of the pinion 32 that lowers the rack 30, and this load is applied as follows: shock pad 34 → lower common seat 37 → lower backing plate 38 → load converter 20 →
The force is transmitted from the upper backing plate 25 to the projection sheet 26 to the upper common sheet 39 to the jack house (top plate) 35, and becomes a force that pushes up the platform. In this way, this large load measuring device 27 is inserted between the load transmission paths, and the load converter 2
0, the projection 23, the upper backing plate 25, and the projection sheet 26.
A large load is applied to a relatively flexible member such as the top plate 28 (in this example, the weight of the platform is
4000t~20000t) can be measured with high precision. Thus, for example, when jacking up a platform, the proportion of the load on the several legs can be monitored, thereby preventing the risk of overturning. In particular, the legs adjust to the soft ground on the ocean floor,
Stabilization is extremely important, and methods of stabilization include pumping seawater into the platform and placing heavy weight on the legs, or
In order to concentrate the load on the remaining legs by lifting two legs, it is necessary to carefully operate while monitoring the load balance on the legs. The present invention is extremely suitable as a load measuring device in such a case.

なお、上記適用例では、ジヤツキアツププラツ
トフオームの場合を示しているが、その要旨を逸
脱しない範囲でその他、陸上、土木、建築用の大
荷重計測用としても応用できる。
In addition, although the above application example shows the case of a jack-up platform, it can also be applied to large load measurement for land, civil engineering, and construction without departing from the gist of the invention.

以上詳述したように、本発明によれば、荷重計
測装置全体としての高さを可及的に低減し、小重
量、低コスト化すると共に横荷重にも頗る強い構
成となし、しかも従来非常に困難とされていた鋼
構造物等の比較的柔軟な部材に負荷される大荷重
を高精度で計測可能な鋼構造物等の大荷重計測装
置を提供することができる。
As described in detail above, according to the present invention, the height of the load measuring device as a whole is reduced as much as possible, the weight is small, the cost is reduced, and the structure is extremely strong against lateral loads. It is possible to provide a large load measuring device for steel structures, etc., which can measure with high precision large loads applied to relatively flexible members, such as steel structures, which have been considered difficult.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の荷重計測装置の一例を示す正面
図、第2図〜第8図は鋼構造物等の比較的柔軟な
部材の荷重を計測する場合の問題点を説明するた
めの図であり、第2図および第3図は鋼構造物間
に荷重変換器を介挿した構成例を示す平面図、お
よび正面図、第4図は鋼構造物の負荷時の変形状
態を示す正面図、第5図および第6図は荷重変換
器上端面における応力分布状態を示す図、第7図
aおよびbは、鋼構造物間に荷重変換器を介挿し
た構成例を示す正面図および同図における各部の
応力分布状態を示す図、第8図aおよびbは第7
図aとは異なる構成例を示す正面図および同例に
おける各部の応力分布状態を示す図、第9図、第
10図および第11図は本発明の一実施例の構成
を示す斜視図、一部切欠正面図および平面図、第
12図a,b,c,dは本発明に係る大荷重計測
装置の各部における応力分布状態を示す図、第1
3図、第14図および第15図は本発明の適用例
を示す平面図、正面図および第14図における要
部の拡大図である。 20……荷重変換器、21……内部空間、22
……上端面、23……環状の突部、24……ひず
みゲージ、25……上位当て板、26……突起シ
ート、27……大荷重計測装置、28……天板、
29……脚、30……ラツク、31……支持枠
体、32……ピニオン、33……ピニオン駆動装
置、34……シヨツクパツド、35……ジヤツキ
ハウス、37……下部共通シート、38……下位
当て板、39……上部共通シート。
Figure 1 is a front view showing an example of a conventional load measuring device, and Figures 2 to 8 are diagrams for explaining problems when measuring loads on relatively flexible members such as steel structures. Figures 2 and 3 are a plan view and front view showing an example of a configuration in which a load converter is inserted between steel structures, and Figure 4 is a front view showing the deformation state of the steel structure under load. , Fig. 5 and Fig. 6 are diagrams showing the stress distribution state on the upper end surface of the load converter, and Figs. Figure 8 a and b are diagrams showing the stress distribution state of each part in the figure.
FIGS. 9, 10 and 11 are a front view showing a configuration example different from that shown in FIG. Fig. 12 a, b, c, and d are diagrams showing the stress distribution state in each part of the large load measuring device according to the present invention;
3, FIG. 14, and FIG. 15 are a plan view, a front view, and an enlarged view of the main parts in FIG. 14, showing an application example of the present invention. 20... Load converter, 21... Internal space, 22
... Upper end surface, 23 ... Annular protrusion, 24 ... Strain gauge, 25 ... Upper backing plate, 26 ... Protrusion sheet, 27 ... Large load measuring device, 28 ... Top plate,
29... Leg, 30... Rack, 31... Support frame, 32... Pinion, 33... Pinion drive device, 34... Shock pad, 35... Jacket house, 37... Lower common seat, 38... Lower Backing plate, 39... Upper common sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼構造物等の比較的柔軟な部材に負荷される
大荷重を、負荷の伝達径路間に介挿される荷重変
換器により計測する荷重計測装置において、全体
形状が円筒状をなし、負荷を受ける端面のうち少
なくとも一方の端面側にリング状に形成された突
部を有し周面に添着されたひずみゲージによつて
その両端面に負荷される荷重を電気量に変換する
荷重変換器と、この荷重変換器の前記突部を有す
る一端面側に当接する当て板と、この当て板の他
面側に当接または一体化する円柱状の突起シート
とを備えてなることを特徴とする鋼構造物等の大
荷重計測装置。
1 In a load measuring device that measures a large load applied to a relatively flexible member such as a steel structure using a load converter inserted between the load transmission path, the overall shape is cylindrical and the device that receives the load a load converter that has a ring-shaped protrusion on at least one of the end faces and converts a load applied to both end faces into an electrical quantity by a strain gauge attached to the peripheral surface; A steel plate characterized by comprising a caul plate that abuts one end surface having the protrusion of the load converter, and a cylindrical protrusion sheet that abuts or is integrated with the other side of the abutment plate. Large load measuring device for structures, etc.
JP56127691A 1981-08-17 1981-08-17 Measuring device for big load such as steel structure Granted JPS5830629A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP56127691A JPS5830629A (en) 1981-08-17 1981-08-17 Measuring device for big load such as steel structure
KR1019820002482A KR840000798A (en) 1981-08-17 1982-06-03 Heavy load measuring device for steel structure
GB08216174A GB2104671B (en) 1981-08-17 1982-06-03 Device for gauging large load exerted on steel structure or the like
NO821869A NO821869L (en) 1981-08-17 1982-06-04 DEVICE FOR MAJOR MAJOR LOADS.
US06/385,449 US4475609A (en) 1981-08-17 1982-06-07 Device for gauging large load exerted on steel structure or the like
FR8213650A FR2511504A1 (en) 1981-08-17 1982-08-04 DEVICE FOR MEASURING HIGH LOADS EXERCISING ON STEEL OR OTHER STRUCTURE
SE8204655A SE8204655L (en) 1981-08-17 1982-08-11 DEVICE FOR SEALING OF RADICAL CONSTRUCTIONS AND SIMILAR EXTENDED LOADS
NL8203181A NL8203181A (en) 1981-08-17 1982-08-13 APPARATUS FOR MEASURING A LARGE LOAD ON A STEEL CONSTRUCTION OR THE LIKE.
KR2019890007278U KR890004756Y1 (en) 1981-08-17 1989-05-30 Weight measurement in rigid structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127691A JPS5830629A (en) 1981-08-17 1981-08-17 Measuring device for big load such as steel structure

Publications (2)

Publication Number Publication Date
JPS5830629A JPS5830629A (en) 1983-02-23
JPS622248B2 true JPS622248B2 (en) 1987-01-19

Family

ID=14966315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127691A Granted JPS5830629A (en) 1981-08-17 1981-08-17 Measuring device for big load such as steel structure

Country Status (2)

Country Link
JP (1) JPS5830629A (en)
KR (2) KR840000798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506797A (en) * 1993-12-22 1997-07-08 エイ. レディンハム,ブレイク Painting brush with replaceable bristle pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506797A (en) * 1993-12-22 1997-07-08 エイ. レディンハム,ブレイク Painting brush with replaceable bristle pack

Also Published As

Publication number Publication date
KR840000798A (en) 1984-02-27
KR890004756Y1 (en) 1989-07-20
JPS5830629A (en) 1983-02-23

Similar Documents

Publication Publication Date Title
JP2014088689A (en) Loading test method and loading test device for composite reinforcement ground
US20210355917A1 (en) Floating wind turbine generator installation
US4475609A (en) Device for gauging large load exerted on steel structure or the like
US20030196342A1 (en) Alignment tool and method for aligning large machinery
US5975805A (en) Oil drilling rig system
JPS622248B2 (en)
CA2063380A1 (en) Jackable oil rigs and corner columns for producing legs in an oil rig
JPS6244211B2 (en)
CN211178849U (en) Measuring device for ocean wave load
US20150241299A1 (en) Determining a leg load of a jack-up vessel
KR890008912Y1 (en) Load measuring device of steel structure
KR100415010B1 (en) Leveler
JP5165714B2 (en) Load measuring device
GB2071740A (en) Method of assembling and testing a vertically movable marine working platform having groundable support frames
KR100426250B1 (en) The test equipment of static loading on a pile and its method, using the sand compaction pile ship on the marine
EP0064214B1 (en) Device controlling the load on the legs of a self-elevating platform
JPS6156932B2 (en)
KR102314934B1 (en) lifting system of barges invoked ball-pad holding clamp
KR20180113304A (en) Offshore structure
US4559817A (en) Hydrodynamic test apparatus with offshore structure model using gas bag seal at model bottom
CN216695227U (en) Weighbridge anti-floating device
CN220104554U (en) Shore scale telescopic sampling device for surface water
CN220472960U (en) Pressure-bearing detection device of balance beam assembly
KR102212860B1 (en) Horizontal bearing capacity measuring system of underwater foundation and horizontal bearing capacity measuring method using the same
JP6694639B1 (en) Lifting device and work table boat equipped with the lifting device