JPS62224673A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS62224673A
JPS62224673A JP61067582A JP6758286A JPS62224673A JP S62224673 A JPS62224673 A JP S62224673A JP 61067582 A JP61067582 A JP 61067582A JP 6758286 A JP6758286 A JP 6758286A JP S62224673 A JPS62224673 A JP S62224673A
Authority
JP
Japan
Prior art keywords
deposited film
gaseous
halogen
film forming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067582A
Other languages
Japanese (ja)
Other versions
JPH0645892B2 (en
Inventor
Keishi Saito
恵志 斉藤
Toshihito Yoshino
豪人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61067582A priority Critical patent/JPH0645892B2/en
Publication of JPS62224673A publication Critical patent/JPS62224673A/en
Publication of JPH0645892B2 publication Critical patent/JPH0645892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To economize on energy and to make characteristics uniform by specifying the intensity ratio of the light emitted by Si-H and Si-halogen in a method for bringing a gaseous raw material contg. Si and H atoms and gaseous halogen oxidizing agent into contact with each other in a reaction space. CONSTITUTION:For example, gaseous SiH4 filled in a cylinder 101 is introduced from an introducing pipe 109 into a vacuum chamber 120, and F2, H2 respectively filled in cylinders 106, 107 are introduced from an introducing pipe 111 into the vacuum chamber 120, respectively at prescribed flow rates. The pressure in the chamber 120 is adjusted to a prescribed degree of vacuum by regulating the opening degree of a vacuum valve 119. SiH4 receives an oxidation effect by the contact with F2 and forms plural precursors including the precursors in an excited state by accompanying the light emission. A deposited film is formed on a substrate 118 kept at a prescribed temp. with such precursors as the supply source for the element to constitute the deposited film. The intensity ratio (Si-H)/(Si-X) between the light emitted by the Si-H and the light emitted by the Si-X (X: halogen) is kept at <=1 in this stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写ヰ用
の感光デバイス、光学的画像入力装置用の光入力センサ
ーデバイス等の電子デバイスの用途に有用な機能性堆積
膜の形成法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to functional films, particularly electronic devices such as semiconductor devices, photosensitive devices for electronic photography, and optical input sensor devices for optical image input devices. The present invention relates to a method for forming a functional deposited film useful for applications.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性膜は、所望される物
理的特性や用途等の観点から個々に適した成膜方法が採
用されている。
Conventionally, amorphous or polycrystalline functional films such as semiconductor films, insulating films, photoconductive films, magnetic films, or metal films have been formed by forming films that are individually suited from the viewpoint of desired physical properties and applications. method has been adopted.

例えば、必要に応じて、水素原子(H)やハロゲン原子
(X)等の補償剤で不対電子が補償された非晶質や多結
晶質の非単結晶シリコン(以後rNON−Si (H、
X) J 、!:略記シ、その中でも殊に非晶質シリコ
ンを示す場合にはrA−Si  (H、X) J 、多
結晶質シリコンを示ス場合ニl* rp o 1y−S
 i (H,X) J ト記す)膜等のシリコン堆積膜
(尚、俗に言う微結晶シリコンは、 A−S i (H
、X)の範噂中にはいることは断るまでもない)の形成
には、真空法着法、プラズマCVD法、熱CVD法。
For example, if necessary, amorphous or polycrystalline non-single crystal silicon (rNON-Si (H,
X) J,! : Abbreviation shi, especially rA-Si (H,
i (H,
, X) can be formed using vacuum deposition method, plasma CVD method, and thermal CVD method.

反応スパッタリング法、イオンブレーティング法、光C
VD法などが試みられており、一般的には、プラズマC
VD法がが広く用いられ、企業化されている。
Reactive sputtering method, ion blating method, optical C
VD method etc. have been tried, and generally plasma C
The VD method is widely used and commercialized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

面乍ら、従来から一般化されているプラズマCVD法に
よるシリコン堆積膜の形成に於ての反応プロセスは、従
来のCVD法に比較してかなり複雑であり、その反応機
構も不明な点が少なくない。又、その堆積膜の形成パラ
メータも多く(例えば、基体温度、導入ガスの流量と比
However, the reaction process in forming silicon deposited films by the conventionally popular plasma CVD method is considerably more complicated than that of the conventional CVD method, and there are still many unknowns about the reaction mechanism. do not have. In addition, there are many formation parameters for the deposited film (for example, substrate temperature, flow rate and ratio of introduced gas, etc.).

形成時の圧力、高周波電力、電極構造1反応容器の構造
、排気の速度、プラズマ発生方式など)これらの多くの
パラメータの組み合わせによるため、時にはプラズマが
不安定な状態になり、形成された堆積膜に著しい悪影響
を与えることが少なくなかった。そのうえ、装置特有の
パラメータを装置ごとに選定しなければならず、したが
って製造条件を一般化することがむずかしいというのが
実状であった。
Due to the combination of these many parameters (pressure during formation, high frequency power, electrode structure 1 reaction vessel structure, pumping speed, plasma generation method, etc.), the plasma sometimes becomes unstable and the formed deposited film This often had a significant negative impact on Moreover, it is necessary to select device-specific parameters for each device, making it difficult to generalize manufacturing conditions.

他方、シリコン堆積膜として、電気的、光学的特性を各
用途毎に十分に満足させ得るものを発現させるためには
、現状ではプラズマCVD法によって形成することが最
良とされている。
On the other hand, in order to develop a silicon deposited film that satisfies the electrical and optical properties for each application, it is currently considered best to form it by plasma CVD.

面乍ら、シリコン堆積膜の応用用途によっては、大面積
化、膜厚均一性、1品質の均一性を十分満足させて再現
性のある量産化を図らねばならないため、プラズマCV
D法によるシリコン堆積膜の形成においては、量産装置
に多大な設イメi投資が必要となり、またその量産の為
の管理項目も、複雑になり、管理許容幅も狭く、装置の
調整も微妙であることから、これらのことが、今後改善
すべき問題点として指摘されている。
However, depending on the application of silicon deposited films, plasma CV
Forming a silicon deposited film using the D method requires a large investment in equipment for mass production, and the management items for mass production are also complex, the tolerance for management is narrow, and the adjustment of the equipment is delicate. For these reasons, these have been pointed out as problems that should be improved in the future.

又、プラズマCVD法の場合には、成膜される基体の配
されている成膜空間に於て高周波或いはマイクロ波等に
よって直接プラズマを生成している為に、発生する電子
や多数のイオン種が成nり過程に於て膜にダメージを与
え膜品質の低下、膜品質の不均一化の要因となっている
In addition, in the case of plasma CVD method, since plasma is directly generated by high frequency waves or microwaves in the film forming space where the substrate to be film is placed, the generated electrons and many ion species are This causes damage to the film during the formation process, causing deterioration of film quality and non-uniformity of film quality.

この点の改良として提案されている方法には、間接プラ
ズマCVD法がある。
An indirect plasma CVD method has been proposed as an improvement in this respect.

該間接プラズマCVD法は、成■々空間から離れた上流
位置にてマイクロ波等によってプラズマを生成し、該プ
ラズマを成膜空間まで輸送することで、成膜に有効な化
学種を選択的に使用出来る様に計ったものである。
In the indirect plasma CVD method, plasma is generated using microwaves or the like at an upstream position far from the film-forming space, and the plasma is transported to the film-forming space to selectively select chemical species that are effective for film-forming. It was designed to be usable.

面乍ら、斯かるプラズマCVD法でも、プラズマの輸送
が必須であることから、成膜に有効な化学種の寿命が長
くなければならず、自ずと、使用するガス種が制限され
、種々の堆積膜が得られないこと、及びプラズマを発生
する為に多大なエネルギーを要すること、成膜に有効な
化学種の生成及び量が簡便な管理下に木質的に置かれな
いこと等の問題点は残端している。
However, since the plasma CVD method also requires plasma transport, the lifetime of the chemical species effective for film formation must be long, which naturally limits the types of gases that can be used, and Problems include the inability to obtain a film, the need for a large amount of energy to generate plasma, and the fact that the generation and amount of chemical species effective for film formation cannot be easily controlled. There are some leftovers.

プラズマCVD法に対して、光CVD法は、成l々時と
膜品質にダメージを与えるイオン種や電子が発生しない
という点で有利ではあるが、光源にそれ程多くの種類が
ないこと、光源の波長も紫外に片寄っていること、工業
化する場合には犬型の光源とその電源を要すること、光
源からの光を成膜空間に導入する窓が成膜時に被膜され
てしまう為に成膜中に光硅の低下、強いては、光源から
の光が成膜空間に入射されなくなるという問題点がある
The photo-CVD method has an advantage over the plasma CVD method in that it does not generate ion species or electrons that can damage the film quality, but it does not have as many types of light sources and is The wavelength is also biased toward ultraviolet, a dog-shaped light source and its power source are required for industrialization, and the window that introduces the light from the light source into the deposition space is covered with a film during deposition. Another problem is that the optical density decreases, and even more so, the light from the light source no longer enters the film forming space.

上述の如く、シリコン堆積膜の形成に於ては、解決され
るべき点は、まだまだ残っており、その実用可能な特性
、均一性を維持させながら低コストな装置で省エネルギ
ー化を計って量産化できる形成方法を開発することが切
望されている。これ等のことは、他の機能成膜、例えば
窒化シリコン膜、炭化シリコン膜、酸化シリコン膜に於
ても各々同様の解決されるべき問題点として挙げること
が出来る。
As mentioned above, there are still many issues to be solved regarding the formation of silicon deposited films, and it is important to mass-produce them using low-cost equipment that saves energy while maintaining its practical properties and uniformity. There is a strong desire to develop a forming method that can do this. These problems can be cited as similar problems to be solved in other functional films, such as silicon nitride films, silicon carbide films, and silicon oxide films.

〔目的〕〔the purpose〕

本発明の目的は、上述した堆積膜形成法の次点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to eliminate the disadvantages of the above-mentioned deposited film forming method, and at the same time to provide a novel deposited film forming method that does not rely on conventional forming methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a method for forming a deposited film that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成法を提供することでもある
Still another object of the present invention is to provide a method for forming a deposited film that is highly productive and mass-producible, and can easily produce a film with high quality and excellent physical properties such as electrical, optical, and semiconductor properties. be.

〔問題を解決するための手段〕[Means to solve the problem]

L記目的を達成する本発明の堆積膜形成法は、堆積膜形
成用の少なくともシリコン原子と、水素原子とを含有す
る気体状原料物質と、該原料物質に酸化作用をする性質
を有する気体状ハロゲン系酸化剤とを反応空間内に導入
して、接触させることで励起状態の前駆体を含む複数の
前駆体を含む複数の前駆体を発光を伴って生成し、これ
らの前駆体の内少なくとも1つの前駆体を堆積膜構成要
素の供給源として、成膜空間内にある基体上に堆積膜を
形成する堆積膜形成法において、Si−Hによる発光と
Si−X(X:ハロゲン原子)による発光の強度比([
S i −H] / [S i−X])を1以下にする
ことを特徴としている。
The method for forming a deposited film of the present invention that achieves the object described in item L includes a gaseous raw material containing at least silicon atoms and hydrogen atoms for forming a deposited film, and a gaseous raw material having the property of oxidizing the raw material. By introducing a halogen-based oxidizing agent into the reaction space and bringing it into contact, a plurality of precursors including a plurality of precursors including excited state precursors are generated with light emission, and at least one of these precursors is produced. In a deposited film forming method in which a deposited film is formed on a substrate in a film forming space using one precursor as a source of deposited film constituent elements, light emission due to Si-H and emission due to Si-X (X: halogen atom) are detected. Emission intensity ratio ([
It is characterized in that S i -H]/[S i-X]) is set to 1 or less.

〔作用〕[Effect]

上記の本発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化、膜厚均一性、膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその量産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the deposited film forming method of the present invention described above, it is possible to save energy, increase the area, uniformity of film thickness, and uniformity of film quality, simplify management and mass production, and save a lot of money on mass production equipment. It does not require major capital investment, the control items for mass production become clear, the control tolerance is wide, and equipment adjustment becomes easy.

本発明の堆積膜形成法に於て、使用される堆積膜形成用
の気体状原料物質は、少なくともシリコン原子と水素原
子とを含有し、更に気体状ハロゲン系酸化剤との接触に
より酸化作用をうけ、Si−Hc7)発光トS E  
X (X : ハロゲン原子)の発光をするものであり
、目的とする堆積膜の種類、特性、用途等によって所望
に従って適宜選択される。未発明に於ては、上記の気体
状原料物質及び基体状ハロゲン系酸化剤は、化学的接触
をする際に気体状とされるものであれば良く、通常の場
合は、気体でも液体でも固体であっても差支えない。
In the deposited film forming method of the present invention, the gaseous raw material for deposited film formation used contains at least silicon atoms and hydrogen atoms, and further has an oxidizing effect upon contact with a gaseous halogen-based oxidizing agent. Uke, Si-Hc7) Luminous S E
It emits light of X (X: halogen atom), and is appropriately selected depending on the type, characteristics, intended use, etc. of the desired deposited film. In the case of non-invention, the above-mentioned gaseous raw materials and base halogen-based oxidizing agent may be those that are made into a gaseous state upon chemical contact, and in normal cases, they may be gaseous, liquid, or solid. There is no problem even if it is.

堆積膜形成用の原料物質或いは/\ロゲン系酸酸化剤液
体又は固体である場合には、Ar。
When the raw material for forming a deposited film or /\\rogen-based acid oxidizing agent is liquid or solid, Ar.

He 、N2 、H2等のキャリアーガスを使用し。Use a carrier gas such as He, N2, H2, etc.

必要に応じては熱も加えながらバブリングを行なって反
応空間に堆積膜形成用の原料物質及びハロゲン系酸化剤
を気体状として導入する。
If necessary, bubbling is performed while applying heat to introduce the raw material for forming the deposited film and the halogen-based oxidizing agent in gaseous form into the reaction space.

この際、上記気体状原料物質及び気体状/\ロゲン系酸
酸化剤分圧及び混合比は、キャリアーガスの流量或いは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
革気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous/\halogen-based acid oxidizing agent are adjusted by adjusting the flow rate of the carrier gas or the pressure of the raw material and the gaseous halogen-based oxidizing agent for forming the deposited film. It is set by

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆積膜を得るのであれば、直鎖状、及び分岐状の鎖状シ
ラン化合物、環状シラン化合物等が有効なものとして挙
げることが出来る。
As the raw materials for forming the deposited film used in the present invention, for example, in order to obtain a semiconductor or electrically insulating silicon deposited film, linear and branched chain silane compounds, Effective examples include cyclic silane compounds.

具体的には、直鎖状シラン化合物としてはSinH2n
+2(n=1.2.3,4,5゜6.7.8)、分岐状
鎖状シラン化合物としては、SiH3SiH(SiH3
)SiH2SiH3等が挙げられる。
Specifically, the linear silane compound is SinH2n.
+2 (n=1.2.3,4,5°6.7.8), branched chain silane compound is SiH3SiH (SiH3
) SiH2SiH3 and the like.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw materials can be used not only alone, but also as a mixture of two or more.

本発明に於て使用されるハロゲン系酸化剤は、反応空間
内に導入される際気体状とされ、同時に反応空間内に導
入される堆積膜形成用の気体状原料物質に化学的接触だ
けで効果的に酸化作用をする性質を有するもので、F2
 、Fci 。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when introduced into the reaction space, and is simultaneously introduced into the reaction space through chemical contact with the gaseous raw material for forming a deposited film. It has the property of effectively oxidizing, and F2
, Fci.

Cu2.Br2.I2等のハロゲンガスを挙げることが
出来る。
Cu2. Br2. Examples include halogen gases such as I2.

これ等のハロゲン系酸化剤は気体状で、前記の堆1!i
膜形成用の原料物質の気体と共に所望の流量と供給圧を
与えられて反応空間内に導入されて前記原料物質と混合
衝突することで接触をし、前記原料物質に酸化作用をし
て励起状態の前駆体を含む複数種の前駆体を効果的に生
成する。生成される励起状態の前駆体及び他の前駆体は
、少なくともそのいずれか1つが形成される堆積膜の構
成要素の供給源として働く。
These halogen-based oxidizing agents are gaseous, and the above-mentioned deposits 1! i
It is introduced into the reaction space together with the gas of the raw material material for film formation, given a desired flow rate and supply pressure, and is brought into contact with the raw material material by mixing and colliding, thereby oxidizing the raw material material and bringing it into an excited state. effectively produce multiple types of precursors, including precursors of The excited state precursors and other precursors that are generated serve as a source of components for the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或は
必要に応じてエネルギーを放出はするがそのままの形態
で成膜空間に配設された基体表面に触れることで三次元
ネットワーク構造の堆積膜が作成される。
The precursors produced may decompose or react to form another excited state precursor or a precursor in another excited state, or may be formed in that form, releasing energy if necessary. A deposited film with a three-dimensional network structure is created by touching the surface of the substrate disposed in the film space.

励起されるエネルギーレベルとしては、前記励起状態の
前駆体がより低いエネルギーレベルにエネルギー遷移す
る。又は別の化学種に変化する過程に於て発光を伴うエ
ネルギーレベルであることが好ましい。斯かるエネルギ
ーの遷移に発光を伴なう励起状態の前駆体を含め活性化
された前駆体が形成されることで本発明の堆積膜形成プ
ロセスは、より効率良く、より省エネルギーで進行し、
膜全面に亘って均一でより良好な物理特性を有する堆積
膜が形成される。
As the energy level is excited, the excited state precursor undergoes an energy transition to a lower energy level. Alternatively, the energy level is preferably one that accompanies luminescence in the process of changing into another chemical species. By forming activated precursors including excited state precursors that are accompanied by light emission due to such energy transition, the deposited film forming process of the present invention proceeds more efficiently and with more energy savings.
A deposited film is formed that is uniform over the entire surface of the film and has better physical properties.

堆積膜形成用の気体状原料物質(少なくともシリコン原
子と水素原子を含有)と該気体状原料物質に酸化作用を
する性質を有する気体状/\ロゲン系酸酸化剤を接触さ
せて堆積膜を形成する場合、例えばSiH4とF2の反
応を1例として説明すると、SiH4のF2による酸化
反応は次の様な過程を含んでいる事が知られている。
A deposited film is formed by bringing a gaseous raw material for forming a deposited film (containing at least silicon atoms and hydrogen atoms) into contact with a gaseous/\rogen-based acid oxidizing agent having the property of oxidizing the gaseous raw material. In this case, taking the reaction of SiH4 and F2 as an example, it is known that the oxidation reaction of SiH4 with F2 includes the following process.

S  i H2+ F + S  iH* + HF 
 (1)SiH+F2→S  i F)lc+HF  
(2)Si+F2   →S i F)+C+F   
C3)(*印は発光種を示す) この様に、S iH4のF2による酸化はF2によるS
iH4からの水素の引き抜き、その後、SiHの水素の
フッ素との交換反応等が生じる。
S i H2+ F + S iH* + HF
(1) SiH+F2→SiF)lc+HF
(2) Si+F2 →S i F)+C+F
C3) (*marks indicate luminescent species) In this way, the oxidation of SiH4 by F2 is the oxidation of S by F2.
Hydrogen is extracted from iH4, and then an exchange reaction of SiH hydrogen with fluorine, etc. occurs.

SiH+とF2との反応が進み、SiH4がSiF4ま
で酸化されるとSiF4は堆積しないため、堆積膜を得
ることができない。
If the reaction between SiH+ and F2 progresses and SiH4 is oxidized to SiF4, SiF4 will not be deposited, so a deposited film cannot be obtained.

したがって、酸化反応の進行状態を制御することが重要
である。
Therefore, it is important to control the progress of the oxidation reaction.

本発明は、酸化反応に伴って、SiH及びSiX(x:
ハロゲン原子)が発光することに注目して、鋭意実験を
重ね研究した結果、SiH及びSiXの発光比が堆積膜
の特性や再現性に重要な影響を与えることを見い出した
In the present invention, SiH and SiX (x:
As a result of intensive experiments and research focusing on the fact that halogen atoms (halogen atoms) emit light, it was discovered that the emission ratio of SiH and SiX has an important effect on the characteristics and reproducibility of the deposited film.

良質な特性の堆積膜を再現性良く得る為には。In order to obtain a deposited film with good quality characteristics with good reproducibility.

SiHの発光とSrXの発光比([SiH]/[SiX
])を好ましくは、1以下に、より好ましくは0.8以
下に、最適には0.5以下にすることが望ましい。
Emission ratio of SiH and SrX ([SiH]/[SiX
]) is preferably 1 or less, more preferably 0.8 or less, and optimally 0.5 or less.

本発明においては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される可く
、成膜因子としての、原料物質及びハロゲン系酸化剤の
種類と組み合せ。
In the present invention, the type and combination of raw material and halogen-based oxidizing agent are used as film-forming factors so that the deposited film forming process can proceed smoothly and a film with high quality and desired physical properties can be formed.

これ等の混合比、混合時の圧力、流量、成膜空間内圧、
ガスの波型、成膜温度(基体温度及び雰囲気温度)が所
望に応じて適宜選択される。
These mixing ratios, pressure during mixing, flow rate, internal pressure of film forming space,
The waveform of the gas and the film forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired.

これ等の成膜因子は有機的に関連し、単独で決定される
ものではなく相互関連の下に夫々に応じて決定される。
These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明に於いて、反応空間に導入される堆積膜形成用の
気体状原料物質と気体状ハロゲン系酸化剤とのにの割合
は、上記成膜因子の中関連する成膜因子との関係に於て
適宜所望に従って決められるが、導入流珊比で、好まし
くは1/100〜100/1が適当であり、より好まし
くは1150〜50/1とされるのが望ましい。
In the present invention, the ratio between the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined depending on the relationship with the relevant film-forming factors among the above-mentioned film-forming factors. Although it can be determined as desired, the ratio of introduced flow coral is preferably 1/100 to 100/1, more preferably 1150 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状/\ロゲン系酸化剤との化学
的接触を確率的により高める為には、より高い方が良い
が1反応性を考慮して適宜所望に応じて@適値を決定す
るのが良い、前記混合時の圧力としては、上記の様にし
て決められるが、夫々の導入時の圧力として、好ましく
はlXl0−7気圧〜10気圧、より好ましくはI X
 10 ’気圧〜3気圧とされるのが望ましい。
The pressure at the time of mixing when introduced into the reaction space is preferably as high as 1, in order to increase the probability of chemical contact between the gaseous raw material and the gaseous/\rogen-based oxidant. The appropriate value should be determined as desired in consideration of the reactivity. The pressure at the time of mixing is determined as described above, but the pressure at the time of each introduction is preferably lXl0- 7 atm to 10 atm, more preferably I
It is desirable that the pressure is between 10' and 3 atmospheres.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成nりに効
果的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space where the substrate on which the film is to be formed is disposed, is the pressure of the excited state precursor (E) generated in the reaction space and, if necessary, the precursor. The precursor (D) derived from the body (E) is appropriately set as desired so as to effectively contribute to the formation of n.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入及び量流
との関連に於いて1例えば差動排気或いは、大型の排気
装置の使用等の工夫を加えて調整することが出来る。
When the film forming space is open and continuous with the reaction space, the internal pressure of the film forming space is determined by the introduction of the substrate-like raw material for forming the deposited film and the gaseous halogen-based oxidizing agent into the reaction space. In relation to the flow rate, it is possible to adjust the amount by adding measures such as using differential exhaust or a large exhaust device.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。
Alternatively, if the conductance of the connection between the reaction space and the film-forming space is small, an appropriate exhaust system may be provided in the film-forming space.
By controlling the exhaust volume of the device, the pressure in the film forming space can be adjusted.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前途の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
In addition, if the reaction space and film-forming space are integrated and the reaction position and film-forming position are only spatially different, use differential pumping as in the previous example, or use a large-scale pump with sufficient exhaust capacity. It is best to install an exhaust system.

上記の様にして成膜空間内の圧力は、反応空間に導入さ
れる気体状原料物質と気体状ハロゲン酸化剤の導入圧力
との関係に於いて決められるが、好ましくは、0.00
1 T o r r 〜l O0Torr、より好まし
くは0.0ITorr〜30To r r 、最適には
0.05〜10Torrとされるのが望ましい。
As described above, the pressure in the film forming space is determined based on the relationship between the gaseous raw material introduced into the reaction space and the introduction pressure of the gaseous halogen oxidizing agent, but is preferably 0.00.
It is desirable that the torque is 1 Torr to 100 Torr, more preferably 0.0 ITorr to 30 Torr, and optimally 0.05 to 10 Torr.

ガスの流量に就いては、反応空間への前記堆積膜形成用
の原料物質及び/\ロゲン系酸化剤の導入の際にこれ等
が均一に効率良く混合され、前記前駆体(E)が効率的
に生成され且つ成膜が支障なく適切になされる様に、ガ
ス導入口と基体とガス排気口との幾何学的配置を考慮し
て設計される必要がある。この幾何学的な配置の好適な
例の1つが第1図に示される。
Regarding the flow rate of the gas, when introducing the raw material for forming the deposited film and/\\rogen-based oxidizing agent into the reaction space, these are uniformly and efficiently mixed, and the precursor (E) is efficiently The geometrical arrangement of the gas inlet, the substrate, and the gas outlet must be designed in consideration of the geometrical arrangement of the gas inlet, the substrate, and the gas outlet so that the gas can be generated and the film can be formed properly without any problems. One preferred example of this geometry is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の整数と要求される特性に応じて
、個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から450℃、より好まし
くは50〜400℃とされるのが望ましい。殊に半導体
性や光導電性等の特性がより良好なシリコン堆積+1/
Jを形成する場合には、基体温度(Ts)は70〜35
0°Cとされるのが望ましい。また、多結晶の膜を得る
場合には、好ましくは200〜650°C1より好まし
くは300〜600℃とされるのが望ましい。
The substrate temperature (Ts) during film formation is set individually as desired depending on the type of gas used and the integer and required characteristics of the deposited film to be formed. When obtained, the temperature is preferably from room temperature to 450°C, more preferably from 50 to 400°C. In particular, silicon deposition with better properties such as semiconductivity and photoconductivity +1/
When forming J, the substrate temperature (Ts) is 70 to 35
It is desirable that the temperature be 0°C. Further, when obtaining a polycrystalline film, the temperature is preferably 200 to 650°C, more preferably 300 to 600°C.

成膜空間の雰囲気温度(T a t )としては、生成
される前記前駆体(E)及び前記前駆体(D)が成膜に
不適当な化学種に変化せず、且つ効率良く前記前駆体(
E)が生成される様に基体温度(Ts)との関連で適宜
所望に応じて決められる。
The atmospheric temperature (T a t ) in the film forming space is set so that the precursor (E) and the precursor (D) to be produced do not change into chemical species unsuitable for film formation, and the precursor is efficiently (
E) is determined as desired in relation to the substrate temperature (Ts).

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い、導電性基体
としては、例えば、NiCr、ステンレス、Ai、Cr
、Mo。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is selected as desired depending on the use of the deposited film to be formed. , for example, NiCr, stainless steel, Ai, Cr
, Mo.

Au、I r、Nb、Ta、V、Ti 、Pt 。Au, Ir, Nb, Ta, V, Ti, Pt.

Pd等の金属又はこれ等の合金が挙げられる。Examples include metals such as Pd and alloys thereof.

電気絶縁性基体としては、ポリエステル。Polyester is used as the electrically insulating substrate.

ポリエチレン、ポリカーボネート、セルローズアセテー
ト、ポリプロピレン、ポリ塩化ビニル。
Polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride.

ポリ塩化ビニリデン、ポリスチレン、ポリアミド等の合
成樹脂のフィルム又はシート、ガラス。
Films or sheets of synthetic resins such as polyvinylidene chloride, polystyrene, polyamide, etc., and glass.

セラミック、紙等が通常使用される。これらの電気絶縁
性基体は、好適には少なくともその一方の表面が導電処
理され、該導゛尾処理された表面側に他の層が設けられ
るのが望ましい。
Ceramic, paper, etc. are commonly used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

Au 、Cr 、Mo 、Au、I r、Nb 、Ta
Au, Cr, Mo, Au, Ir, Nb, Ta
.

V、Yi 、Pt 、Pd、In2O3,5n02゜I
TO(I n203+5n02)等c7) 14膜を設
ける事によって導電処理され、或いはポリエステルフィ
ルム等の合成樹脂フィルムであれば、NiCr、AM、
Ag、Pb、Zn、Ni。
V, Yi, Pt, Pd, In2O3,5n02゜I
TO(I n203+5n02) etc. c7) 14 If it is conductive treated by providing a film, or if it is a synthetic resin film such as polyester film, NiCr, AM,
Ag, Pb, Zn, Ni.

Au、Cr、Mo、Ir、Nb、Ta、V。Au, Cr, Mo, Ir, Nb, Ta, V.

Ti、Pt等の金属で真空蔦着、電子ビーム基若、スパ
ッタリング等で処理し、又は前記金属でラミネート処理
して、その表面が導電処理される。支持体の形状として
は1円筒状、ベルト状、板状等、任意の形状とし得、所
望によって、その形状が決定される。
The surface is treated with a metal such as Ti or Pt by vacuum deposition, electron beam deposition, sputtering, etc., or laminated with the metal, and the surface thereof is subjected to conductive treatment. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined according to desire.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい、更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
It is preferable to select the substrate from among the above in consideration of the adhesion and reactivity between the substrate and the film. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, making it difficult to obtain a good quality film. Therefore, it is preferable to select and use a substrate whose thermal expansion difference is close to that of the two substrates.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接間係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
Furthermore, since the surface condition of the substrate is directly related to the structure (orientation) of the film and the generation of cone-shaped structures, the surface of the substrate is treated to obtain a film structure and structure that provides the desired properties. is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

101〜108は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜108aは夫々ガス
供給パイプ、101b〜108bは夫々各ボンベからの
ガスの流量調整用のマスフローコントローラ、101C
〜108cはそれぞれガス圧力計、told〜108d
及び101e 〜108eは夫々バルブ、101f−1
08fは夫々対応するガスボンベ内の圧力を示す圧力計
である。
101 to 108 are cylinders filled with gas used for film formation, 101a to 108a are gas supply pipes, 101b to 108b are mass flow controllers for adjusting the flow rate of gas from each cylinder, and 101C.
~108c are gas pressure gauges,told~108d
and 101e to 108e are valves, 101f-1
08f is a pressure gauge that indicates the pressure inside the corresponding gas cylinder.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を宥し、且つ該配管のガス排出口に対向して、基体1
18が設置される様に基体ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三重同心円配置構造となっており、中よりガスボ
ンベ101,102よりのガスが導入される第1のガス
導入管109、ガスボンベ103〜105よりのガスが
導入される第2のガス導入管110、及びガスボンベ1
06〜108よりのガスが導入される第3のガス導入管
111を有する。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a gas introduction pipe is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided such that a substrate holder 18 is installed therein. The gas introduction pipes have a triple concentric arrangement structure, with a first gas introduction pipe 109 into which gas from gas cylinders 101 and 102 is introduced, and a second gas introduction pipe into which gas from gas cylinders 103 to 105 is introduced. gas introduction pipe 110 and gas cylinder 1
It has a third gas introduction pipe 111 into which gases from 06 to 108 are introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配され
る設計とされている。即ち、外側の管になる程その内側
にある管を包囲する様に夫々のガス導入管が配設されて
いる。
Each gas introduction tube is designed to discharge gas into the reaction space so that the inner tube is located further away from the surface of the substrate. That is, the gas introduction pipes are arranged so that the outer pipes surround the inner pipes.

各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
Gas is supplied from the tube cylinder to each introduction pipe through gas supply pipelines 123 to 125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チャン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
Each gas introduction pipe, each gas supply pipeline, and the vacuum chamber 120 are evacuated via the main vacuum valve 119 by a vacuum evacuation device (not shown).

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The base body 118 is installed at a desired distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特性
、ガス流量、真空チャンバーの内圧等を考慮して適切な
状態になる様に決められるが、好ましくは、数mm〜2
0cmより好ましくは、5mm〜15cm程度とされる
のが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas inlet pipe is determined appropriately by taking into consideration the type of deposited film to be formed, its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. It can be determined as desired, but preferably several mm to 2
It is more preferably about 5 mm to 15 cm than 0 cm.

113は、基体118を成llI2詩に適当な温度に加
熱したり、或いは、成膜前に基体118を予備加熱した
り、更には、成膜後、膜を7ニールする為に加熱する基
体加熱ヒータである。
113 is a substrate heating process that heats the substrate 118 to an appropriate temperature for film formation, or preheats the substrate 118 before film formation, or further heats the film after film formation to anneal the film. It's a heater.

基体加熱ヒータ113は、導線114によりTL源11
5により電力が供給される。
The base heater 113 is connected to the TL source 11 by a conductive wire 114.
Power is supplied by 5.

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

堆積膜形成用の原料ガスとハロゲン系酸化剤との酸化反
応による発光は、窓126を通して発光分光器127で
分光して、モニターする。
The light emitted by the oxidation reaction between the raw material gas for forming the deposited film and the halogen-based oxidizing agent is analyzed by an emission spectrometer 127 through a window 126 and monitored.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained according to Examples.

実施例1 第1図に示す成膜装置を用いて、第1表に示す条件で次
の様にし本発明の方法による堆積膜を作成した。
Example 1 Using the film forming apparatus shown in FIG. 1, a deposited film was produced by the method of the present invention under the conditions shown in Table 1 as follows.

ボンベ101に充填されているSiH4ガスを流量20
5ccmでガス導入管109より、ボンベ106に充填
されているF2ガスを流量10105c、ボンベ107
に充填されているF2ガスを流量500secmでガス
導入管111より真空チャンバー102内に導入した。
The SiH4 gas filled in the cylinder 101 has a flow rate of 20
The F2 gas filled in the cylinder 106 is supplied from the gas introduction pipe 109 at a flow rate of 10105c to the cylinder 107.
The F2 gas filled in the chamber was introduced into the vacuum chamber 102 through the gas introduction pipe 111 at a flow rate of 500 seconds.

このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整して400mTorrにした。基
体に石英ガラス(15cmX15cm)を用いガス導入
口illと基体との距離は3cmに設定した。この様に
して、Si−Hの発光とSiFの発光の比を0.1とし
た。
At this time, the pressure inside the vacuum chamber 120 was adjusted to 400 mTorr by adjusting the opening/closing degree of the vacuum valve 119. A quartz glass (15 cm x 15 cm) was used as the base, and the distance between the gas inlet ill and the base was set to 3 cm. In this way, the ratio of the Si-H emission to the SiF emission was set to 0.1.

基体温度(Ts)は300 ’0に設定した。The substrate temperature (Ts) was set at 300'0.

この状態で3時間ガスを流すと、2.0μmの膜厚のS
i:H:Fff!!が基体上に堆積した。
When gas is flowed in this state for 3 hours, a film of S with a thickness of 2.0 μm is formed.
i:H:Fff! ! was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。成膜した
St :H:F膜はいずれの試料も電子線回折によって
非晶質であることが確認さ−れた。
Furthermore, the unevenness in film thickness distribution was within ±5%. It was confirmed by electron beam diffraction that the formed St:H:F films were amorphous in all samples.

更に成膜したSi:H:F膜のESRを測定した処、ス
ピン密度は−5X 10164 / c m’であり、
実用に十分な局在準位密度であった。
Furthermore, when the ESR of the deposited Si:H:F film was measured, the spin density was -5X 10164/cm',
The local level density was sufficient for practical use.

実施例2 実施例1と同様に第1図に示す成膜装置を用いて、第2
表に示す条件で、2.0μmの膜厚のSi:H:F膜を
基体上に堆積した。
Example 2 As in Example 1, a second film was formed using the film forming apparatus shown in FIG.
A 2.0 μm thick Si:H:F film was deposited on the substrate under the conditions shown in the table.

それぞれのSt:H:F膜についてESR測定を行い、
第3表に示す結果を得た。
ESR measurements were performed on each St:H:F film,
The results shown in Table 3 were obtained.

〔効果〕〔effect〕

以ヒの詳細な説明及び各実施例より、本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が再
現性良く得られる。又、生産性、量産性に借れ、高品質
で電気的、光学的、半導体的等の物理特性に優れた膜を
簡便に得ることが出来る。
From the detailed explanations and examples below, it is clear that the deposited film forming method of the present invention saves energy, makes it easy to control film quality, and produces deposited films with uniform physical properties over a large area with reproducibility. Good results. Furthermore, it is possible to easily obtain high-quality films with excellent physical properties such as electrical, optical, and semiconductor properties due to productivity and mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 101〜108−−−−−−−−−−−−−−−−ガス
ボンベ、101 a −108a−−−−一−−−−−
ガスの導入管、101b〜108 b−−−−−−マス
フロメーター、101 c −108c−−−−−−−
−−−−−ガス圧力計。 101d−108ci及び 101e〜108 e−−−−−−−−−−−−−−−
−バルブ、101f〜108 f−−一−−−−−−−
−−−−−−圧力計、109 、110 、111−一
−−−−−−ガス導入管、112−−−−−−一−−−
−−−−−−−−−−−−基体ホルダー、113−−−
−−−−−−−−−−−−一基体加熱用ヒーター、11
6−−−−−−−−−−基体温度モニター用熱電対、1
18−−−−−−−−−一−−−−−−−−−−−−−
−−−−−−一基体。 119−−−−−−−−−−−−−−−−−−−一真空
排気バルブ、126−−−−−−−−−−−−−−−−
−−−−−−−一−−−−−−−−吻127−−−−−
−−−−−−−−−−−−−−−−−−−発光分光器、
を夫々表わしている。
FIG. 1 is a schematic diagram of a film forming apparatus used in an example of the present invention. 101 to 108------------Gas cylinder, 101 a -108a----1------
Gas inlet pipe, 101b to 108b------Mass flow meter, 101c -108c---------
----- Gas pressure gauge. 101d-108ci and 101e-108e
-Valve, 101f~108f--1------
--------Pressure gauge, 109, 110, 111-1------Gas introduction tube, 112-------
-----------Substrate holder, 113---
-----------Heater for heating one substrate, 11
6-------Thermocouple for monitoring substrate temperature, 1
18----------1------------
-------- Monosubstrate. 119------------------- One vacuum exhaust valve, 126--------------
−−−−−−−−−−−−−−−−−−127−−−−−
−−−−−−−−−−−−−−−−−−−Emission spectrometer,
respectively.

Claims (14)

【特許請求の範囲】[Claims] (1)堆積膜形成用の少なくともシリコン原子と、水素
原子とを含有する気体状原料物質と、該原料物質に酸化
作用をする性質を有する気体状ハロゲン系酸化剤とを反
応空間内に導入して接触させる事で励起状態の前駆体を
含む複数の前駆体を発光を伴って生成し、これらの前駆
体の内少なくとも1つの前駆体を堆積膜構成要素の供給
源として、成膜空間内にある基体上に堆積膜を形成する
地積膜形成法において、Si−Hによる発光とSi−X
(X:ハロゲン原子)による発光の強度比([Si−H
]/[Si−X])を1以下にすることを特徴とする堆
積膜形成法。
(1) A gaseous raw material containing at least silicon atoms and hydrogen atoms for forming a deposited film, and a gaseous halogen-based oxidizing agent having a property of oxidizing the raw material are introduced into the reaction space. A plurality of precursors including excited state precursors are generated with light emission by bringing them into contact with each other, and at least one of these precursors is used as a source of a deposited film component in a deposition space. In the layered film formation method that forms a deposited film on a certain substrate, light emission due to Si-H and Si-X
(X: halogen atom) intensity ratio of light emission ([Si-H
]/[Si-X]) is 1 or less.
(2)前記気体状原料物質は、鎖状シラン化合物である
特許請求の範囲第1項に記載の堆積膜形成法。
(2) The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain silane compound.
(3)前記鎖状シラン化合物は、直鎖状シラン化合物で
ある特許請求の範囲第2項に記載の堆積膜形成法。
(3) The deposited film forming method according to claim 2, wherein the chain silane compound is a linear silane compound.
(4)前記直鎖状シラン化合物は、一般式Si_nH_
2_n_+_2(nは1〜8の整数)で示される特許請
求の範囲第3項に記載の堆積膜形成法。
(4) The linear silane compound has the general formula Si_nH_
The deposited film forming method according to claim 3, which is represented by 2_n_+_2 (n is an integer from 1 to 8).
(5)前記鎖状シラン化合物は、分岐状鎖状シラン化合
物である特許請求の範囲第2項に記載の堆積膜形成法。
(5) The deposited film forming method according to claim 2, wherein the chain silane compound is a branched chain silane compound.
(6)前記気体状原料物質は、珪素の環状構造を有する
シラン化合物である特許請求の範囲第1項に記載の堆積
膜形成法。
(6) The deposited film forming method according to claim 1, wherein the gaseous raw material is a silane compound having a silicon ring structure.
(7)前記気体状ハロゲン系酸化剤は、ハロゲンガスを
含む特許請求の範囲第1項に記載の堆積膜形成法。
(7) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen gas.
(8)前記気体状ハロゲン系酸化剤は、弗素ガスを含む
特許請求の範囲第1項に記載の堆積膜形成法。
(8) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
(9)前記気体状ハロゲン系酸化剤は、塩素ガスを含む
特許請求の範囲第1項に記載の堆積膜形成法。
(9) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains chlorine gas.
(10)前記気体状ハロゲン系酸化剤は、弗素原子を構
成成分として含むガスである特許請求の範囲第1項に記
載の堆積膜形成法。
(10) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent is a gas containing fluorine atoms as a constituent component.
(11)前記気体状ハロゲン系酸化剤は、発生期状態の
ハロゲンを含む特許請求の範囲第1項に記載の堆積膜形
成法。
(11) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
(12)前記基体は、前記気体状原料物質と前記気体状
ハロゲン系酸化剤の前記反応空間への導入方向に対して
対向する位置に配設される特許請求の範囲第1項に記載
の堆積膜形成法。
(12) The deposition according to claim 1, wherein the substrate is disposed at a position opposite to the direction in which the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space. Film formation method.
(13)前記気体状原料物質と前記気体状ハロゲン系酸
化剤は前記反応空間へ、多重管構造の輸送管から導入さ
れる特許請求の範囲第1項に記載の堆積膜形成法。
(13) The deposited film forming method according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space from a transport pipe having a multi-tube structure.
(14)前記気体状原料物質と前記気体状ハロゲン系酸
化剤が各々不活性ガスH_2ガス、N_2ガスで稀釈さ
れて、反応空間へ導入される特許請求の範囲第1項に記
載の堆積膜形成法。
(14) Deposited film formation according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidant are diluted with an inert gas H_2 gas and N_2 gas and introduced into the reaction space. Law.
JP61067582A 1986-03-25 1986-03-25 Deposited film formation method Expired - Lifetime JPH0645892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067582A JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067582A JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62224673A true JPS62224673A (en) 1987-10-02
JPH0645892B2 JPH0645892B2 (en) 1994-06-15

Family

ID=13349057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067582A Expired - Lifetime JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0645892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743376A2 (en) * 1995-04-26 1996-11-20 Canon Kabushiki Kaisha Light-receiving member, process for its production and its use in electrophotographic apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743376A2 (en) * 1995-04-26 1996-11-20 Canon Kabushiki Kaisha Light-receiving member, process for its production and its use in electrophotographic apparatus and method
EP0743376A3 (en) * 1995-04-26 1998-10-28 Canon Kabushiki Kaisha Light-receiving member, process for its production and its use in electrophotographic apparatus and method

Also Published As

Publication number Publication date
JPH0645892B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JPS62152171A (en) Thin-film transistor
JPS62158874A (en) Multi-layered structure of thin film and its formation
JPH06293595A (en) Deposited polysilicon film improved in evenness and device therefor
JPS62151573A (en) Deposited film forming device
JPS62139876A (en) Formation of deposited film
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS62224673A (en) Formation of deposited film
AU632204B2 (en) Method for forming a deposited film
JPS62142780A (en) Formation of deposited film
JPS6299463A (en) Deposited film formation
JPS62139875A (en) Formation of deposited film
JPS62199771A (en) Formation of deposited film
JPS62228479A (en) Deposited film forming device
JPS6338581A (en) Functional deposited film forming device
JPS6296675A (en) Formation of deposited film
JPS62158868A (en) Deposited film forming device
JPS6296674A (en) Formation of deposited film
JPS62228474A (en) Deposited film forming device
JPS6299464A (en) Deposited film formation
JPS62151571A (en) Deposited film forming device
JPS6299465A (en) Deposited film formation
JPS62228478A (en) Deposited film forming device
JPS6347363A (en) Formation of functional deposited film
JPS6299466A (en) Deposited film formation
JPS63216331A (en) Formation of deposit film