JPH0645892B2 - Deposited film formation method - Google Patents

Deposited film formation method

Info

Publication number
JPH0645892B2
JPH0645892B2 JP61067582A JP6758286A JPH0645892B2 JP H0645892 B2 JPH0645892 B2 JP H0645892B2 JP 61067582 A JP61067582 A JP 61067582A JP 6758286 A JP6758286 A JP 6758286A JP H0645892 B2 JPH0645892 B2 JP H0645892B2
Authority
JP
Japan
Prior art keywords
deposited film
gas
halogen
gaseous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61067582A
Other languages
Japanese (ja)
Other versions
JPS62224673A (en
Inventor
恵志 斉藤
豪人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61067582A priority Critical patent/JPH0645892B2/en
Publication of JPS62224673A publication Critical patent/JPS62224673A/en
Publication of JPH0645892B2 publication Critical patent/JPH0645892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入力装置用の光入力センサ
ーデバイス等の電子デバイスの用途に有用な機能性堆積
膜の形成法に関する。
The present invention relates to a functional film, in particular, an electronic device such as a semiconductor device, a photosensitive device for electrophotography, an optical input sensor device for an optical image input device, and the like. The present invention relates to a method for forming a functional deposited film useful for an application.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性膜は、所望される物
理的特性や用途等の観点から個々に適した成膜方法が採
用されている。
Conventionally, an amorphous or polycrystalline functional film such as a semiconductor film, an insulating film, a photoconductive film, a magnetic film, or a metal film is individually formed from the viewpoint of desired physical characteristics or intended use. The method has been adopted.

例えば、必要に応じて、水素原子(H)やハロゲン原子
(X)等の補償剤で不対電子が補償された非晶質や多結
晶質の非単結晶シリコン(以後「NON−Si(H,
X)」と略記し、その中でも殊に非晶質シリコンを示す
場合には「A−Si(H,X)」、多結晶質シリコンを
示す場合には「poly−Si(H,X)」と記す)膜
等のシリコン堆積膜(尚、俗に言う微結晶シリコンは、
A−Si(H,X)の範疇中にはいることは断るまでも
ない)の形成には、真空蒸着法,プラズマCVD法,熱
CVD法,反応スパツタリング法,イオンプレーテイン
グ法,光CVD法などが試みられており、一般的には、
プラズマCVD法がが広く用いられ、企業化されてい
る。
For example, amorphous or polycrystalline non-single-crystal silicon (hereinafter referred to as "NON-Si (H)" in which unpaired electrons are compensated with a compensating agent such as a hydrogen atom (H) or a halogen atom (X), if necessary. ,
X) ”, and in particular,“ A—Si (H, X) ”indicates amorphous silicon, and“ poly-Si (H, X) ”indicates polycrystalline silicon. A silicon deposited film such as a film (the so-called microcrystalline silicon is
It is needless to say that it falls within the category of A-Si (H, X)) for forming a vacuum vapor deposition method, a plasma CVD method, a thermal CVD method, a reaction sputtering method, an ion plating method, a photo CVD method. Have been tried, and in general,
The plasma CVD method is widely used and commercialized.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

而乍ら、従来から一般化されているプラズマCVD法に
よるシリコン堆積膜の形成に於ての反応プロセスは、従
来のCVD法に比較してかなり複雑であり、その反応機
構も不明な点が少なくない。又、その堆積膜の形成パラ
メータも多く(例えば、基体温度,導入ガスの流量と
比,形成時の圧力,高周波電力,電極構造,反応容器の
構造,排気の速度,プラズマ発生方式など)これらの多
くのパラメータの組み合わせによるため、時にはプラズ
マが不安定な状態になり、形成された堆積膜に著しい悪
影響を与えることが少なくなかった。そのうえ、装置特
有のパラメータを装置ごとに選定しなければならず、し
たがって製造条件を一般化することがむずかしいという
のが実状であった。
However, the reaction process for forming a silicon deposited film by the plasma CVD method, which has been generalized in the past, is considerably complicated as compared with the conventional CVD method, and the reaction mechanism has few unclear points. Absent. In addition, there are many formation parameters of the deposited film (for example, substrate temperature, introduced gas flow rate and ratio, formation pressure, high frequency power, electrode structure, reaction vessel structure, exhaust speed, plasma generation method, etc.). Due to the combination of many parameters, the plasma was sometimes in an unstable state and had a significant adverse effect on the formed deposited film. In addition, it is difficult to generalize the manufacturing conditions because it is necessary to select a device-specific parameter for each device.

他方、シリコン堆積膜として、電気的,光学的特性を各
用途毎に十分に満足させ得るものを発現させるために
は、現状ではプラズマCVD法によって形成することが
最良とされている。
On the other hand, in order to develop a silicon deposited film that can sufficiently satisfy electrical and optical characteristics for each application, it is currently best formed by the plasma CVD method.

而乍ら、シリコン堆積膜の応用用途によっては、大面積
化,膜厚均一性,膜品質の均一性を十分満足させて再現
性のある量産化を図らねばならないため、プラズマCV
D法によるシリコン堆積膜の形成においては、量産装置
に多大な設備投資が必要となり、またその量産の為の管
理項目も複雑になり、管理許容幅も狭く、装置の調整も
微妙であることから、これらのことが、今後改善すべき
問題点として指摘されている。
However, depending on the application of the silicon deposited film, it is necessary to achieve a large area, film thickness uniformity, and film quality uniformity for mass production with reproducibility.
In forming a silicon deposited film by the D method, a large amount of capital investment is required for a mass production device, the management items for the mass production are complicated, the control allowance is narrow, and the adjustment of the device is delicate. However, these are pointed out as problems to be improved in the future.

又、プラズマCVD法の場合には、成膜される基体の配
されている成膜空間に於て高周波或いはマイクロ波等に
よって直接プラズマを生成している為に、発生する電子
や多数のイオン種が成膜過程に於て膜にダメージを与え
膜品質の低下、膜品質の不均一化の要因となっている。
Further, in the case of the plasma CVD method, plasma is directly generated by high frequency or microwave in the film forming space in which the substrate to be formed is arranged, so that electrons and a large number of ion species are generated. Causes damage to the film during the film formation process, which causes deterioration of film quality and nonuniformity of film quality.

この点の改良として提案されている方法には、間接プラ
ズマCVD法がある。
A method proposed as an improvement on this point is an indirect plasma CVD method.

該間接プラズマCVD法は、成膜空間から離れた上流位
置にてマイクロ波等によってプラズマを生成し、該プラ
ズマを成膜空間まで輸送することで、成膜に有効な化学
種を選択的に使用出来る様に計ったものである。
In the indirect plasma CVD method, plasma is generated by microwaves or the like at an upstream position away from the film formation space, and the plasma is transported to the film formation space to selectively use chemical species effective for film formation. It is measured so that it can be done.

而乍ら、斯かるプラズマCVD法でも、プラズマの輸送
が必須であることから、成膜に有効な化学種の寿命が長
くなければならず、自ずと、使用するガス種が制限さ
れ、種々の堆積膜が得られないこと、及びプラズマを発
生する為に多大なエネルギーを要すること、成膜に有効
な化学種の生成及び量が簡便な管理下に本質的に置かれ
ないこと等の問題点は残積している。
However, even in such a plasma CVD method, the transport of plasma is indispensable, so that the lifetime of the chemical species effective for film formation must be long, and naturally, the gas species used are limited, and various kinds of deposition are deposited. There are problems such as not being able to obtain a film, requiring a large amount of energy to generate plasma, and being essentially unable to control the generation and amount of chemical species effective for film formation under simple control. I have left over.

プラズマCVD法に対して、光CVD法は、成膜時と膜
品質にダメージを与えるイオン種や電子が発生しないと
いう点で有利ではあるが、光源にそれ程多くの種類がな
いこと、光源の波長も紫外に片寄っていること、工業化
する場合には大型の光源とその電源を要すること、光源
からの光を成膜空間に導入する窓が成膜時に被膜されて
しまう為に成膜中に光量の低下、強いては、光源からの
光が成膜空間に入射されなくなるという問題点がある。
In contrast to the plasma CVD method, the photo CVD method is advantageous in that it does not generate ion species or electrons that damage the film quality and film quality, but there are not so many types of light sources, and the wavelength of the light source is large. Is also deviated to the ultraviolet, a large light source and its power source are required for industrialization, and the window for introducing the light from the light source into the film formation space is coated during film formation. There is a problem that the light from the light source is not incident on the film formation space.

上述の如く、シリコン堆積膜の形成に於ては、解決され
るべき点は、まだまだ残っており、その実用可能な特
性,均一性を維持させながら低コストな装置で省エネル
ギー化を計って量産化できる形成方法を開発することが
切望されている。これ等のことは、他の機能成膜、例え
ば窒化シリコン膜,炭化シリコン膜,酸化シリコン膜に
於ても各々同様の解決されるべき問題点として挙げるこ
とが出来る。
As described above, there are still points to be solved in the formation of the silicon deposited film, and while maintaining the practicable characteristics and uniformity, it is possible to mass-produce by saving energy with a low-cost device. It is eagerly desired to develop a forming method capable of forming. These can be mentioned as similar problems to be solved in other functional film formations such as a silicon nitride film, a silicon carbide film and a silicon oxide film.

〔目的〕〔Purpose〕

本発明の目的は、上述した堆積膜形成法の次点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to provide a novel deposited film forming method which does not rely on the conventional forming method while removing the second point of the deposited film forming method described above.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a deposited film forming method which can save energy and can easily control the film quality and can obtain a deposited film having uniform characteristics over a large area.

本発明の更に別の目的は、生産性,量産性に優れ、高品
質で電気的,光学的,半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成法を提供することでもあ
る。
Still another object of the present invention is to provide a deposited film forming method which is excellent in productivity and mass productivity, and which can easily obtain a film having high quality and excellent physical properties such as electrical, optical and semiconductor properties. is there.

〔問題を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の堆積膜形成法は、堆積膜形
成用の少なくともシリコン原子と、水素原子とを含有す
る気体状原料物質と、該原料物質に酸化作用をする性質
を有する気体状ハロゲン系酸化剤とを反応空間内に導入
して、接触させることで励起状態の前駆体を含む複数の
前駆体を含む複数の前駆体を発光を伴って生成し、これ
らの前駆体の内少なくとも1つの前駆体を堆積膜構成要
素の供給源として、成膜空間内にある基体上に堆積膜を
形成する堆積膜形成法において、Si−Hによる発光と
Si−X(X:ハロゲン原子)による発光の強度比
([Si−H]/[Si−X])を1以下にすることを
特徴としている。
The method for forming a deposited film of the present invention to achieve the above object is a gaseous raw material containing at least silicon atoms and hydrogen atoms for forming a deposited film, and a gaseous halogen having a property of oxidizing the raw material. By introducing a system oxidant into the reaction space and bringing them into contact with each other, a plurality of precursors including a plurality of precursors including excited state precursors are generated with light emission, and at least one of these precursors is generated. In a deposited film forming method for forming a deposited film on a substrate in a film formation space by using one precursor as a supply source of a deposited film constituent, light emission by Si-H and light emission by Si-X (X: halogen atom) Is characterized by setting the intensity ratio ([Si-H] / [Si-X]) of 1 or less.

〔作用〕[Action]

上記の本発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化,膜厚均一性,膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその量産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the above-described deposited film forming method of the present invention, energy saving as well as large area, film thickness uniformity, and film quality uniformity are sufficiently satisfied to simplify management and mass production, and to be used in a mass production apparatus. It does not require a large capital investment, the management items for its mass production are clarified, the management allowance range is wide, and the adjustment of the device is easy.

本発明の堆積膜形成法に於て、使用される堆積膜形成用
の気体状原料物質は、少なくともシリコン原子と水素原
子とを含有し、更に気体状ハロゲン系酸化剤との接触に
より酸化作用をうけ、Si−Hの発光とSi−X(X:
ハロゲン原子)の発光をするものであり、目的とする堆
積膜の種類、特性、用途等によって所望に従って適宜選
択される。本発明に於ては、上記の気体状原料物質及び
基体状ハロゲン系酸化剤は、化学的接触をする際に気体
状とされるものであれば良く、通常の場合は、気体でも
液体でも固体であっても差支えない。
In the deposited film forming method of the present invention, the gaseous raw material used for forming the deposited film contains at least silicon atoms and hydrogen atoms, and further has an oxidizing action by contact with a gaseous halogen-based oxidizing agent. Light emission of Si-H and Si-X (X:
It emits light of a halogen atom), and is appropriately selected according to the desired type, characteristics, intended use, etc. of the deposited film. In the present invention, the above-mentioned gaseous raw material and the substrate-like halogen-based oxidant may be those that are made gaseous at the time of chemical contact, and in the usual case, they are gas, liquid or solid. But it doesn't matter.

堆積膜形成用の原料物質或いはハロゲン系酸化剤が液体
又は固体である場合には、Ar,He,N,H等の
キヤリアーガスを使用し、必要に応じては熱も加えなが
らバブリングを行なって反応空間に堆積膜形成用の原料
物質及びハロゲン系酸化剤を気体状として導入する。
When the raw material for forming the deposited film or the halogen-based oxidant is a liquid or a solid, a carrier gas such as Ar, He, N 2 or H 2 is used, and bubbling is performed while adding heat as necessary. As a result, the raw material for forming the deposited film and the halogen-based oxidizing agent are introduced into the reaction space in a gaseous state.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キヤリアーガスの流量或いは堆
積膜形成用の原料物質及び気体状ハロゲン系酸化剤の蒸
気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidant are adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidant. Is set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆積膜を得るのであれば、直鎖状、及び分岐状の鎖状シ
ラン化合物、環状シラン化合物等が有効なものとして挙
げることが出来る。
Examples of the raw material for forming a deposited film used in the present invention include linear and branched chain silane compounds if a semiconductor or electrically insulating silicon deposited film is obtained. Cyclic silane compounds and the like can be mentioned as effective ones.

具体的には、直鎖状シラン化合物としてはSinH
2n+2(n=1,2,3,4,5,6,7,8)、分
岐状鎖状シラン化合物としては、SiHSiH(Si
)SiHSiH等が挙げられる。
Specifically, SinH is used as the linear silane compound.
2n + 2 (n = 1,2,3,4,5,6,7,8), as the branched chain silane compound, SiH 3 SiH (Si
H 3) SiH 2 SiH 3 and the like.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw material substances may be used alone or in combination of two or more.

本発明に於て使用されるハロゲン系酸化剤は、反応空間
内に導入される際気体状とされ、同時に反応空間内に導
入される堆積膜形成用の気体状原料物質に化学的接触だ
けで効果的に酸化作用をする性質を有するもので、
,Fcl,Cl,Br,I等のハロゲンガス
を挙げることが出来る。
The halogen-based oxidant used in the present invention is gasified when introduced into the reaction space, and at the same time, only by chemical contact with a gaseous raw material for forming a deposited film which is introduced into the reaction space. It has the property of effectively oxidizing,
Examples of the halogen gas include F 2 , Fcl, Cl 2 , Br 2 , and I 2 .

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
られて反応空間内に導入されて前記原料物質と混合衝突
することで接触をし、前記原料物質に酸化作用をして励
起状態の前駆体を含む複数種の前駆体を効果的に生成す
る。生成される励起状態の前駆体及び他の前駆体は、少
なくともそのいずれか1つが形成される堆積膜の構成要
素の供給源として働く。
These halogen-based oxidants are gaseous, and are introduced into the reaction space at a desired flow rate and supply pressure together with the gas of the raw material for forming the deposited film, and are mixed and collided with the raw material. The raw materials are brought into contact with each other to oxidize, and effectively generate a plurality of kinds of precursors including excited precursors. The excited state precursors and other precursors that are produced serve as a source of constituents of the deposited film, at least one of which is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或は
必要に応じてエネルギーを放出はするがそのままの形態
で成膜空間に配設された基体表面に触れることで三次元
ネツトワーク構造の堆積膜が作成される。
The produced precursor decomposes or reacts to become a precursor in another excited state or a precursor in another excited state, or releases energy as needed but is formed in its original form. A deposited film having a three-dimensional network structure is created by touching the surface of the substrate arranged in the film space.

励起されるエネルギーレベルとしては、前記励起状態の
前駆体がより低いエネルギーレベルにエネルギー遷移す
る、又は別の化学種に変化する過程に於て発光を伴うエ
ネルギーレベルであることが好ましい。斯かるエネルギ
ーの遷移に発光を伴なう励起状態の前駆体を含め活性化
された前駆体が形成されることで本発明の堆積膜形成プ
ロセスは、より効率良く、より省エネルギーで進行し、
膜全面に亘って均一でより良好な物理特性を有する堆積
膜が形成される。
The excited energy level is preferably an energy level accompanied by light emission in the process of energy transition of the precursor in the excited state to a lower energy level or change to another chemical species. The deposited film forming process of the present invention proceeds more efficiently and more energy saving by forming an activated precursor including a precursor in an excited state accompanied by light emission in such energy transition.
A deposited film having uniform and better physical properties is formed over the entire surface of the film.

堆積膜形成用の気体状原料物質(少なくともシリコン原
子と水素原子を含有)と該気体状原料物質に酸化作用を
する性質を有する気体状ハロゲン系酸化剤とを接触させ
て堆積膜を形成する場合、例えばSiHとFの反応
を1例として説明すると、SiHのFによる酸化反
応は次の様な過程を含んでいる事が知られている。
When forming a deposited film by contacting a gaseous source material (containing at least silicon atoms and hydrogen atoms) for forming a deposited film with a gaseous halogen-based oxidizing agent having a property of oxidizing the gaseous source material For example, taking the reaction of SiH 4 and F 2 as an example, it is known that the oxidation reaction of SiH 4 by F 2 includes the following processes.

SiH+F→SiH*+HF(1) SiH+F→SiF*+HF(2) Si+F →SiF*+F (3) (*印は発光種を示す) この様に、SiHのFによる酸化はFによるSi
からの水素の引き抜き、その後、SiHの水素のフ
ツ素との交換反応等が生じる。
SiH 2 + F → SiH * + HF (1) SiH + F 2 → SiF * + HF (2) Si + F 2 → SiF * + F (3) (* indicates emission species) Thus, the oxidation of SiH 4 by F 2 is F Si by 2
Extraction of hydrogen from H 4 is followed by an exchange reaction of SiH with fluorine.

SiHとFとの反応が進み、SiHがSiF
で酸化されるとSiFは堆積しないため、堆積膜を得
ることができない。
SiH 4 and F 2 and the reaction proceeds in order to SiH 4 is not deposited is when SiF 4 is oxidized to SiF 4, it can not be obtained deposited film.

したがって、酸化反応の進行状態を制御することが重要
である。
Therefore, it is important to control the progress of the oxidation reaction.

本発明は、酸化反応に伴って、SiH及びSiX(x:
ハロゲン原子)が発光することに注目して、鋭意実験を
重ね研究した結果、SiH及びSiXの発光比が堆積膜
の特性や再現性に重要な影響を与えることを見い出し
た。
In the present invention, SiH and SiX (x:
As a result of repeated intensive studies focusing on the fact that halogen atoms) emit light, it was found that the emission ratio of SiH and SiX has an important influence on the characteristics and reproducibility of the deposited film.

良質な特性の堆積膜を再現性良く得る為には、SiHの
発光とSiXの発光比([SiH]/[SiX])を好
ましくは、1以下に、より好ましくは0.8以下に、最適
には0.5以下にすることが望ましい。
In order to obtain a deposited film with good characteristics with good reproducibility, the emission ratio of SiH and the emission ratio of SiX ([SiH] / [SiX]) are preferably 1 or less, more preferably 0.8 or less, and most preferably. It is desirable to set it to 0.5 or less.

本発明においては、堆積膜形成プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜因子としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、混合時の圧力,流
量,成膜空間内圧,ガスの流型,成膜温度(基体温度及
び雰囲気温度)が所望に応じて適宜選択される。これ等
の成膜因子は有機的に関連し、単独で決定されるもので
はなく相互関連の下に夫々に応じて決定される。本発明
に於いて、反応空間に導入される堆積膜形成用の気体状
原料物質と気体状ハロゲン系酸化剤との量の割合は、上
記成膜因子の中関連する成膜因子との関係に於て適宜所
望に従って決められるが、導入流量比で、好ましくは1
/100〜100/1が適当であり、より好ましくは1
/50〜50/1とされるのが望ましい。
In the present invention, the deposited film forming process proceeds smoothly, a film having high quality and desired physical properties can be formed, and as a film forming factor, in combination with the kinds of the raw material and the halogen-based oxidizing agent, The mixing ratio, the pressure during mixing, the flow rate, the film forming space internal pressure, the gas flow pattern, and the film forming temperature (the substrate temperature and the ambient temperature) are appropriately selected as desired. These film forming factors are organically related, and are not determined individually but are determined according to each other under mutual relation. In the present invention, the ratio of the amounts of the gaseous raw material substance for forming a deposited film and the gaseous halogen-based oxidant introduced into the reaction space is related to the film forming factors related to the above film forming factors. However, the flow rate of introduction is preferably 1
/ 100 to 100/1 is suitable, and more preferably 1
/ 50 to 50/1 is desirable.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良い
が、反応性を考慮して適宜所望に応じて最適値を決定す
るのが良い。前記混合時の圧力としては、上記の様にし
て決められるが、夫々の導入時の圧力として、好ましく
は1×10-7気圧〜10気圧、より好ましくは1×10
-6気圧〜3気圧とされるのが望ましい。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to stochastically enhance the chemical contact between the gaseous raw material and the gaseous halogen-based oxidant, but the reactivity is higher. Considering the above, it is preferable to appropriately determine the optimum value as desired. The pressure at the time of mixing is determined as described above, but the pressure at each introduction is preferably 1 × 10 −7 atm to 10 atm, more preferably 1 × 10 7 atm.
It is desirable that the pressure is -6 atm to 3 atm.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space where the substrate on which the film is to be formed is disposed, is the precursor (E) in the excited state generated in the reaction space and the precursor in some cases. The precursor (D) derived from the body (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入及び量流
との関連に於いて、例えば差動排気或いは、大型の排気
装置の使用等の工夫を加えて調整することが出来る。
The internal pressure of the film formation space is such that when the film formation space is open and continuous with the reaction space, the introduction and introduction of the substrate-like raw material for forming the deposited film and the gaseous halogen-based oxidant into the reaction space are performed. In relation to the flow rate, it can be adjusted by adding a device such as a differential exhaust or using a large exhaust device.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。又、反応空間と成膜空間が一体的に
なっていて、反応位置と成膜位置が空間的に異なるだけ
の場合には、前途の様に差動排気するか或いは、排気能
力の充分ある大型の排気装置を設けてやれば良い。
Alternatively, when the conductance of the connecting portion between the reaction space and the film formation space is small, an appropriate exhaust device is provided in the film formation space,
The pressure in the film forming space can be adjusted by controlling the exhaust amount of the apparatus. Further, when the reaction space and the film formation space are integrated and the reaction position and the film formation position are spatially different from each other, differential evacuation is performed as before, or a large size with sufficient evacuation capacity. It suffices if an exhaust device is provided.

上記の様にして成膜空間内の圧力は、反応空間に導入さ
れる気体状原料物質と気体状ハロゲン系酸化剤の導入圧
力との関係に於いて決められるが、好ましくは、0.001
Torr〜100Torr,より好ましくは0.01Tor
r〜30Torr,最適には0.05〜10Torrとされ
るのが望ましい。
As described above, the pressure in the film formation space is determined by the relationship between the gaseous raw material introduced into the reaction space and the introduction pressure of the gaseous halogen-based oxidant, but preferably 0.001
Torr to 100 Torr, more preferably 0.01 Torr
It is desirable that it is r to 30 Torr, optimally 0.05 to 10 Torr.

ガスの流型に就いては、反応空間への前記堆積膜形成用
の原料物質及びハロゲン系酸化剤の導入の際にこれ等が
均一に効率良く混合され、前記前駆体(E)が効率的に
生成され且つ成膜が支障なく適切になされる様に、ガス
導入口と基体とガス排気口との幾何学的配置を考慮して
設計される必要がある。この幾何学的な配置の好適な例
の1つが第1図に示される。
Regarding the gas flow type, when the raw material for forming the deposited film and the halogen-based oxidant are introduced into the reaction space, these are uniformly and efficiently mixed, and the precursor (E) is efficiently mixed. It is necessary to design in consideration of the geometrical arrangement of the gas inlet, the substrate and the gas outlet so that the film can be properly formed and the film can be properly formed. One suitable example of this geometric arrangement is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じ
て、個々に適宜所望に従って設定されるが、非晶質の膜
を得る場合には好ましく室温から450℃、より好まし
くは50〜400℃とされるのが望ましい。殊に半導体
性や光導電性等の特性がより良好なシリコン堆積膜を形
成する場合には、基体温度(Ts)は70〜350℃と
されるのが望ましい。また、多結晶の膜を得る場合に
は、好ましくは200〜650℃、より好ましくは30
0〜600℃とされるのが望ましい。
The substrate temperature (Ts) at the time of film formation is individually set as desired according to the gas species used, the number of species of the deposited film to be formed and the required characteristics. In order to obtain the above, it is preferable that the temperature is from room temperature to 450 ° C, more preferably 50 to 400 ° C. In particular, when forming a silicon deposited film having better semiconductor properties and photoconductivity, the substrate temperature (Ts) is preferably 70 to 350 ° C. Further, when a polycrystalline film is obtained, the temperature is preferably 200 to 650 ° C., more preferably 30.
It is desirable that the temperature be 0 to 600 ° C.

成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(D)が成膜に不適当
な化学種に変化せず、且つ効率良く前記前駆体(E)が
生成される様に基体温度(Ts)との関連で適宜所望に
応じて決められる。
As the ambient temperature (Tat) of the film formation space, the generated precursor (E) and the precursor (D) do not change into chemical species unsuitable for film formation, and the precursor (E) is efficiently generated. ) Is appropriately determined as desired in relation to the substrate temperature (Ts).

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、NiCr,ステンレス,Al,C
r,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,
Pd等の金属又はこれ等の合金が挙げられる。
The substrate used in the present invention may be either conductive or electrically insulating as long as it is appropriately selected according to the intended use of the deposited film to be formed. As the conductive substrate, for example, NiCr, stainless steel, Al, C
r, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
Examples include metals such as Pd and alloys thereof.

電気絶縁性基体としては、ポリエステル,ポリエチレ
ン,ポリカーボネート,セルローズアセテート,ポリプ
ロピレン,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリ
スチレン,ポリアミド等の合成樹脂のフイルム又はシー
ト,ガラス,セラミツク,紙等が通常使用される。これ
らの電気絶縁性基体は、好適には少なくともその一方の
表面が導電処理され、該導電処理された表面側に他の層
が設けられるのが望ましい。
As the electrically insulating substrate, a film or sheet of synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene and polyamide, glass, ceramics, paper and the like are usually used. It is preferable that at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is provided on the surface subjected to the conductive treatment.

例えばガラスであれば、その表面がNiCr,Al,C
r,Mo,Au,Ir,Nb,Ta,V,Yi,Pt,
Pd,In,SnO,ITO(In+S
nO)等の薄膜を設ける事によって導電処理され、或
いはポリエステルフイルム等の合成樹脂フイルムであれ
ば、NiCr,Al,Ag,Pb,Zn,Ni,Au,
Cr,Mo,Ir,Nb,Ta,V,Ti,Pt等の金
属で真空蒸着、電子ビーム蒸着、スパツタリング等で処
理し、又は前記金属でラミネート処理して、その表面が
導電処理される。支持体の形状としては、円筒状、ベル
ト状、板状等、任意の形状とし得、所望によって、その
形状が決定される。
For example, in the case of glass, the surface is NiCr, Al, C
r, Mo, Au, Ir, Nb, Ta, V, Yi, Pt,
Pd, In 2 O 3, SnO 2, ITO (In 2 O 3 + S
nO 2 ), a conductive film is provided by providing a thin film, or a synthetic resin film such as a polyester film is NiCr, Al, Ag, Pb, Zn, Ni, Au,
A metal such as Cr, Mo, Ir, Nb, Ta, V, Ti, Pt is vacuum-deposited, electron-beam-deposited, sputtered, or the like, or laminated with the metal, and the surface thereof is subjected to a conductive treatment. The shape of the support may be any shape such as a cylindrical shape, a belt shape and a plate shape, and the shape is determined as desired.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
The substrate is preferably selected from the above in consideration of the adhesion and reactivity between the substrate and the film. Furthermore, if the difference in thermal expansion between the two is large, a large amount of strain may occur in the film, and a good quality film may not be obtained. Therefore, select and use a substrate with a close difference in thermal expansion between the two. Is preferred.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
Further, since the surface condition of the substrate is directly related to the structure (orientation) of the film and the generation of the conical structure, it is necessary to treat the surface of the substrate so that the film structure and the film structure can obtain desired characteristics. Is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for embodying the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられてい
る。
A reaction space and a film formation space are provided in the apparatus body.

101〜108は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜108aは夫々ガス
供給パイプ、101b〜108bは夫々各ボンベからの
ガスの流量調整用のマスフローコントローラ、101c
〜108cはそれぞれガス圧力計、101d〜108d
及び101e〜108eは夫々バルブ、101f〜10
8fは夫々対応するガスボンベ内の圧力を示す圧力計で
ある。
101 to 108 are cylinders filled with gas used for film formation, 101a to 108a are gas supply pipes, 101b to 108b are mass flow controllers for adjusting gas flow rates from the cylinders, 101c.
To 108c are gas pressure gauges, 101d to 108d, respectively.
And 101e to 108e are valves, and 101f to 10e, respectively.
Reference numerals 8f are pressure gauges showing the pressures inside the corresponding gas cylinders.

120は真空チヤンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が設置される様に基体ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三重同心円配置構造となっており、中よりガスボ
ンベ101,102よりのガスが導入される第1のガス
導入管109、ガスボンベ103〜105よりのガスが
導入される第2のガス導入管110、及びガスボンベ1
06〜108よりのガスが導入される第3のガス導入管
111を有する。
Reference numeral 120 denotes a vacuum chamber having a structure in which a gas introducing pipe is provided in an upper portion thereof, and a reaction space is formed in the downstream of the pipe, and the substrate 1 faces the gas outlet of the pipe.
It has a structure in which a film formation space in which the base holder 112 is provided so that 18 is installed is formed. The gas introduction pipe has a triple concentric circle arrangement structure, and the first gas introduction pipe 109 into which the gas from the gas cylinders 101 and 102 is introduced and the second gas from the gas cylinders 103 to 105 are introduced from the inside. Gas introduction pipe 110 and gas cylinder 1
It has a third gas introduction pipe 111 into which the gas from 06 to 108 is introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配され
る設計とされている。即ち、外側の管になる程その内側
にある管を包囲する様に夫々のガス導入管が配設されて
いる。
For the gas discharge to the reaction space of each gas introduction pipe, it is designed such that the inner pipe is located farther from the surface position of the substrate. That is, the respective gas introduction pipes are arranged so that the outer pipes surround the inner pipes.

各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
The supply of gas from the pipe cylinders to the respective introduction pipes is performed by gas supply pipelines 123 to 125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チヤン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
The gas introduction pipes, the gas supply pipelines, and the vacuum chamber 120 are vacuum-exhausted by a vacuum exhaust device (not shown) via the main vacuum valve 119.

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The substrate 118 is installed at a desired distance from the position of each gas introduction pipe by moving the substrate holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特
性,ガス流量,真空チヤンバーの内圧等を考慮して適切
な状態になる様に決められるが、好ましくは、数mm〜
20cm,より好ましくは、5mm〜15cm程度とさ
れるのが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas introduction pipe is in an appropriate state in consideration of the type of the deposited film to be formed, its desired characteristics, the gas flow rate, the internal pressure of the vacuum chamber, etc. However, it is preferably several mm
20 cm, more preferably 5 mm to 15 cm is desirable.

113は、基体118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜をアニールする為に加熱する基体加熱
ヒータである。
Reference numeral 113 denotes a substrate heating heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats after film formation to anneal the film. is there.

基体加熱ヒータ113は、導線114により電源115
により電力が供給される。
The substrate heater 113 is connected to the power source 115 via the conductor 114.
Is supplied with electric power.

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
Reference numeral 116 is a thermocouple for measuring the temperature of the substrate temperature (Ts), which is electrically connected to the temperature display device 117.

堆積膜形成用の原料ガスとハロゲン系酸化剤との酸化反
応による発光は、窓126を通して発光分光器127で
分光して、モニターする。
The light emission due to the oxidation reaction between the raw material gas for forming the deposited film and the halogen-based oxidant is monitored by being dispersed by the emission spectroscope 127 through the window 126.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 第1図に示す成膜装置を用いて、第1表に示す条件で次
の様にし本発明の方法による堆積膜を作成した。
Example 1 Using the film forming apparatus shown in FIG. 1, a deposited film was formed by the method of the present invention under the conditions shown in Table 1 as follows.

ボンベ101に充填されているSiHガスを流量20
sccmでガス導入管109より、ボンベ106に充填
されているFガスを流量10sccm,ボンベ107
に充填されているHガスを流量500sccmでガス
導入管111より真空チヤンバー102内に導入した。
The flow rate of the SiH 4 gas filled in the cylinder 101 is 20
The F 2 gas filled in the cylinder 106 is supplied through the gas introduction pipe 109 at a sccm of 10 sccm and the cylinder 107.
The H 2 gas filled in was introduced into the vacuum chamber 102 through the gas introduction pipe 111 at a flow rate of 500 sccm.

このとき、真空チヤンバー120内の圧力を真空バルブ
119の開閉度を調整して400mTorrにした。基
体に石英ガラス(15cm×15cm)を用いガス導入
口111と基体との距離は3cmに設定した。この様に
して、Si−Hの発光とSiFの発光の比を0.1とし
た。
At this time, the pressure in the vacuum chamber 120 was adjusted to 400 mTorr by adjusting the opening / closing degree of the vacuum valve 119. Quartz glass (15 cm × 15 cm) was used as the substrate, and the distance between the gas inlet 111 and the substrate was set to 3 cm. In this way, the ratio of Si—H emission to SiF emission was set to 0.1.

基体温度(Ts)は300℃に設定した。The substrate temperature (Ts) was set to 300 ° C.

この状態で3時間ガスを流すと、2.0μmの膜厚のS
i:H:F膜が基体上に堆積した。
When gas is flowed for 3 hours in this state, S with a film thickness of 2.0 μm
An i: H: F film was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。成膜した
Si:H:F膜はいずれの試料も電子線回折によって非
晶質であることが確認された。
The unevenness of the film thickness distribution was within ± 5%. It was confirmed by electron beam diffraction that each of the formed Si: H: F films was amorphous.

更に成膜したSi:H:F膜のESRを測定した処、ス
ピン密度は−5×10164/cm3であり、実用に十分
な局在準位密度であった。
Further, when the ESR of the formed Si: H: F film was measured, the spin density was −5 × 10 16 4 / cm 3 , which was a localized level density sufficient for practical use.

実施例2 実施例1と同様に第1図に示す成膜装置を用いて、第2
表に示す条件で、2.0μmの膜厚のSi:H:F膜を基
体上に堆積した。
Example 2 Using the film forming apparatus shown in FIG.
Under the conditions shown in the table, a Si: H: F film having a film thickness of 2.0 μm was deposited on the substrate.

それぞれのSi:H:F膜についてESR測定を行い、
第3表に示す結果を得た。
ESR measurement is performed on each Si: H: F film,
The results shown in Table 3 were obtained.

〔効果〕 以上の詳細な説明及び各実施例より、本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が再
現性良く得られる。又、生産性、量産性に優れ、高品質
で電気的、光学的、半導体的等の物理特性に優れた膜を
簡便に得ることが出来る。
[Effect] From the above detailed description and each example, according to the deposited film forming method of the present invention, it is possible to achieve energy saving and at the same time easily control the film quality and to obtain a deposited film having uniform physical properties over a large area. Obtained with good reproducibility. Further, it is possible to easily obtain a film which is excellent in productivity and mass productivity and has high quality and excellent physical properties such as electrical, optical and semiconductor properties.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 101〜108……ガスボンベ、 101a〜108a……ガスの導入管、 101b〜108b……マスフロメーター、 101c〜108c……ガス圧力計、 101d〜108d及び 101e〜108e……バルブ、 101f〜108f……圧力計、 109,110,111……ガス導入管、 112……基体ホルダー、 113……基体加熱用ヒーター、 116……基体温度モニター用熱電対、 118……基体、 119……真空排気バルブ、 126……窓、 127……発光分光器、 を夫々表わしている。
FIG. 1 is a schematic diagram of a film forming apparatus used in an example of the present invention. 101-108 ... Gas cylinder, 101a-108a ... Gas introduction pipe, 101b-108b ... Mass flow meter, 101c-108c ... Gas pressure gauge, 101d-108d and 101e-108e ... Valve, 101f-108f ... ... Pressure gauge, 109, 110, 111 ... Gas introduction pipe, 112 ... Substrate holder, 113 ... Substrate heating heater, 116 ... Substrate temperature monitoring thermocouple, 118 ... Substrate, 119 ... Vacuum exhaust valve , 126 ... Window, 127 ... Emission spectroscope, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/78 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/78 31/04

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】堆積膜形成用の少なくともシリコン原子
と、水素原子とを含有する気体状原料物質と、該原料物
質に酸化作用をする性質を有する気体状ハロゲン系酸化
剤とを反応空間内に導入して接触させる事で励起状態の
前駆体を含む複数の前駆体を発光を伴って生成し、これ
らの前駆体の内少なくとも1つの前駆体を堆積膜構成要
素の供給源として、成膜空間内にある基体上に堆積膜を
形成する堆積膜形成法において、Si−Hによる発光と
Si−X(X:ハロゲン原子)による発光の強度比
([Si−H]/[Si−X])を1以下にすることを
特徴とする堆積膜形成法。
1. A reaction space containing a gaseous raw material containing at least silicon atoms and hydrogen atoms for forming a deposited film, and a gaseous halogen-based oxidizing agent having a property of oxidizing the raw material. When introduced and brought into contact with each other, a plurality of precursors including a precursor in an excited state are generated with light emission, and at least one of these precursors is used as a supply source of deposited film constituents to form a film formation space. In a deposited film forming method for forming a deposited film on a substrate inside, an intensity ratio of light emitted by Si-H and light emitted by Si-X (X: halogen atom) ([Si-H] / [Si-X]) To 1 or less.
【請求項2】前記気体状原料物質は、鎖状シラン化合物
である特許請求の範囲第1項に記載の堆積膜形成法。
2. The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain silane compound.
【請求項3】前記鎖状シラン化合物は、直鎖状シラン化
合物である特許請求の範囲第2項に記載の堆積膜形成
法。
3. The deposited film forming method according to claim 2, wherein the chain silane compound is a straight chain silane compound.
【請求項4】前記直鎖状シラン化合物は、一般式Sin
H2n+2(nは1〜8の整数)で示される特許請求の
範囲第3項に記載の堆積膜形成法。
4. The linear silane compound has the general formula Sin.
The deposited film forming method according to claim 3, wherein the method is represented by H2n + 2 (n is an integer of 1 to 8).
【請求項5】前記鎖状シラン化合物は、分岐状鎖状シラ
ン化合物である特許請求の範囲第2項に記載の堆積膜形
成法。
5. The deposited film forming method according to claim 2, wherein the chain silane compound is a branched chain silane compound.
【請求項6】前記気体状原料物質は、珪素の環状構造を
有するシラン化合物である特許請求の範囲第1項に記載
の堆積膜形成法。
6. The deposited film forming method according to claim 1, wherein the gaseous raw material is a silane compound having a silicon ring structure.
【請求項7】前記気体状ハロゲン系酸化剤は、ハロゲン
ガスを含む特許請求の範囲第1項に記載の堆積膜形成
法。
7. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains a halogen gas.
【請求項8】前記気体状ハロゲン系酸化剤は、弗素ガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
8. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains a fluorine gas.
【請求項9】前記気体状ハロゲン系酸化剤は、塩素ガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
9. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains chlorine gas.
【請求項10】前記気体状ハロゲン系酸化剤は、弗素原
子を構成成分として含むガスである特許請求の範囲第1
項に記載の堆積膜形成法。
10. The gas-based halogen-based oxidizing agent is a gas containing a fluorine atom as a constituent.
The method for forming a deposited film according to item.
【請求項11】前記気体状ハロゲン系酸化剤は、発生期
状態のハロゲンを含む特許請求の範囲第1項に記載の堆
積膜形成法。
11. The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
【請求項12】前記基体は、前記気体状原料物質と前記
気体状ハロゲン系酸化剤の前記反応空間への導入方向に
対して対向する位置に配設される特許請求の範囲第1項
に記載の堆積膜形成法。
12. The substrate according to claim 1, wherein the substrate is arranged at a position opposed to a direction in which the gaseous raw material substance and the gaseous halogen-based oxidant are introduced into the reaction space. Method for forming deposited film.
【請求項13】前記気体状原料物質と前記気体状ハロゲ
ン系酸化剤は前記反応空間へ、多重管構造の輪送管から
導入される特許請求の範囲第1項に記載の堆積膜形成
法。
13. The method for forming a deposited film according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidant are introduced into the reaction space through a multi-tube structure transport pipe.
【請求項14】前記気体状原料物質と前記気体状ハロゲ
ン系酸化剤が各々不活性ガスHガス、Nガスで稀釈
されて、反応空間へ導入される特許請求の範囲第1項に
記載の堆積膜形成法。
14. The method according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidant are diluted with an inert gas H 2 gas and N 2 gas and introduced into the reaction space. Method for forming deposited film.
JP61067582A 1986-03-25 1986-03-25 Deposited film formation method Expired - Lifetime JPH0645892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067582A JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067582A JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62224673A JPS62224673A (en) 1987-10-02
JPH0645892B2 true JPH0645892B2 (en) 1994-06-15

Family

ID=13349057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067582A Expired - Lifetime JPH0645892B2 (en) 1986-03-25 1986-03-25 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0645892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530676B2 (en) * 1995-04-26 2004-05-24 キヤノン株式会社 Method for manufacturing light receiving member, light receiving member, electrophotographic apparatus having light receiving member, and electrophotographic process using light receiving member

Also Published As

Publication number Publication date
JPS62224673A (en) 1987-10-02

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPH0746729B2 (en) Method of manufacturing thin film transistor
US5160543A (en) Device for forming a deposited film
US5322568A (en) Apparatus for forming deposited film
JPH0645886B2 (en) Deposited film formation method
JPH0647730B2 (en) Deposited film formation method
JPH084070B2 (en) Thin film semiconductor device and method of forming the same
JPH0645890B2 (en) Deposited film formation method
JPH0645892B2 (en) Deposited film formation method
JPH0645885B2 (en) Deposited film formation method
JPH0645883B2 (en) Deposited film formation method
JPH0647734B2 (en) Deposited film formation method
JPH0645882B2 (en) Deposited film formation method
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPH0645888B2 (en) Deposited film formation method
JP2637396B2 (en) Deposition film formation method
JPS62142778A (en) Formation of deposited film
JPH0645895B2 (en) Deposited film forming equipment
JPH0645891B2 (en) Deposited film formation method
JPH0647731B2 (en) Deposited film formation method
JP2547728B2 (en) Deposition film forming equipment
JPH0770489B2 (en) Deposited film formation method
JP2531649B2 (en) Deposited film formation method
JPH0651907B2 (en) Method of forming thin film multilayer structure
JPH0645894B2 (en) Deposited film forming equipment